Advanced Crash Course in Supercomputing:

Parallelism
—%,
J
OAk RIDGE LEADERSHIP COMPUTING FACILITY '

Rebecca Hartman-Baker
Oak Ridge National Laboratory
hartmanbakrj@ornl.gov

© 2004-2011 Rebecca Hartman-Baker. Reproduction permitted for non-
commercial, educational use only.

. DEPARTMENT OF

*g OAK RIDGE NATIONAL LABO
WANAGED v UT-BATTELLE FOR THE DEPARTMENT

Outline

l. Parallelism

ll. Supercomputer Architecture

lIl. Basic MPI

IV. MPI Collectives

V. Debugging and Performance Evaluation

> OLCFeeee SEIDGE

6/15/11

6/15/11

I. PARALLELISM

Parallel Lines by Blondie. Source:
http://xponentialmusic.org/blogs/885mmmm/2007/10/09/403-blondie-hits-1-with-heart-of-glass/

3 OLCFeeee

. Parallelism

* Concepts of parallelization
* Serial vs. parallel
« Parallelization strategies

4 OLCFeeee

Parallelization Concepts

 When performing task, some subtasks depend on one
another, while others do not

» Example: Preparing dinner
— Salad prep independent of lasagna baking
— Lasagna must be assembled before baking

* Likewise, in solving scientific problems, some tasks
independent of one another

s OLCFeeee

Serial vs. Parallel

* Serial: tasks must be performed in sequence

« Parallel: tasks can be performed independently in any
order

T:

Te

6 OLCFeeee

6/15/11

Serial vs. Parallel: Example

 Example: Preparing dinner y

— Serial tasks: making sauce, ((Dizg z
assembling lasagna, baking [{Rgee
lasagna; washing lettuce,
cutting vegetables,
assembling salad

— Parallel tasks: making
lasagna, making salad,
setting table

7 OLCFeeee

&

T c
C t
3

Serial vs. Parallel: Example

« Could have several Cﬁ%
chefs, each performing ([)\ CI\
one parallel task ;?—:é}/

* This is concept behind
parallel computing

s OLCFeeee

6/15/11

Parallel Algorithm Design: PCAM

* Partition: Decompose problem into fine-grained tasks to
maximize potential parallelism

» Communication: Determine communication pattern
among tasks

* Agglomeration: Combine into coarser-grained tasks, if
necessary, to reduce communication requirements or
other costs

 Mapping: Assign tasks to processors, subject to tradeoff
between communication cost and concurrency

(taken from Heath: Parallel Numerical Algorithms)
9 OLCFeeee

Discussion: Jigsaw Puzzle*

* Suppose we want to do 5000 piece jigsaw puzzle

* Time for one person to
complete puzzle: n hours

* How can we decrease walltime
to completion?

* Thanks to Henry Neeman

10w OLCFeeee

6/15/11

Discussion: Jigsaw Puzzle

* Add another person at the
table

— Effect on wall time
— Communication
— Resource contention

* Add p people at the table
— Effect on wall time
— Communication
— Resource contention

11 OLCFeeee

Discussion: Jigsaw Puzzle

 What about: p people, p
tables, 5000/p pieces
each?

» What about: one person
works on river, one works
on sky, one works on
mountain, etc.?

2 OLCFeeee

6/15/11

Il. ARCHITECTURE

Image: Louvre Abu Dhabi — Abu Dhabi, UAE, designed by Jean Nouvel, from
http://www.inhabitat.com/2008/03/31/jean-nouvel-named-2008-pritzker-architecture-laureate/

B3 OLCFeeee

Il. Supercomputer Architecture

* What is a supercomputer?
* Conceptual overview of architecture

Cray 1
(1976) Architecture of IBM Blue Gene
System
4 pb S oo 64 cabinets
abinet 65,536 nodes.
IBM Blue y 2 midptaes (131,072 CPUs)
Gene . Node Card 1024 nodes (32X32x64)
(2005) \) ard 16 compute cards (2048 CPUs) TeosaoTFls
v 0210 cards (8x8x16) K
Chip 32 nodes 2.9/5.7 TFIs 1.2MwW
FRU (field (64 CPUs) 512 GiB* DDR 2,500 sq.f.
Zprocessor replaceable unit) (4xx2) 1520 KW MTBF 6.16 Days
4 MiB* eDRAM 25mmx32mm 90/180 GF/s
2nodes (4 CPUs) 16 GiB* DDR
(compars this whh 2 1968 (2x1x1)
Cray YMP/8 ot 27 GF/s) 2x(2.8/5.6) GF/s
2512 MiB* DOR
Cray XT5
(2009) BNk

AI’I"‘N;‘E'RQ\ |

14 OLCFeeee

6/15/11

What Is a Supercomputer?

* “The biggest, fastest computer right this minute.” -- Henry
Neeman

* Generally 100-10,000 times more powerful than PC

* This field of study known as supercomputing, high-
performance computing (HPC), or scientific computing

« Scientists use really big computers to solve really hard
problems

15 OLCFeeee

SMP Architecture

* Massive memory, shared by multiple processors

* Any processor can work on any task, no matter its location
in memory

* |deal for parallelization of sums, loops, etc.

16 OLCFeeee

6/15/11

Cluster Architecture

» CPUs on racks, do computations (fast)
« Communicate through myrinet connections (slow)

« Want to write programs that divide computations evenly but
minimize communication

7 OLCFeeee

State-of-the-Art Architectures

« Today, hybrid architectures gaining acceptance

* Multiple {quad, 8, 12}-core nodes, connected to other nodes
by (slow) interconnect

» Cores in node share memory (like small SMP machines)

* Machine appears to follow cluster architecture (with multi-
core nodes rather than single processors)

« To take advantage of all parallelism, use MPI (cluster) and
OpenMP (SMP) hybrid programming

s OLCFeeee

6/15/11

Iil. MPI

MPI also stands for Max Planck Institute for Psycholinguistics. Source: http://www.mpi.nl/WhatWeDo/istitute-pictures/building

v OLCFeeee

Iil. Basic MPI

* Introduction to MPI

« Parallel programming concepts

* The Six Necessary MPI Commands
 Example program

20 OLCFeeee

6/15/11

10

Introduction to MPI

« Stands for Message Passing Interface
* Industry standard for parallel programming (200+ page document)

* MPI implemented by many vendors; open source implementations
available too

— ChaMPlon-PRO, IBM, HP, Cray vendor implementations
— MPICH, LAM-MPI, OpenMP!I (open source)

 MPI function library is used in writing C, C++, or Fortran programs
in HPC

* MPI-1 vs. MPI-2: MPI-2 has additional advanced functionality and
C++ bindings, but everything learned today applies to both
standards

20 JLCFeeee

Parallelization Concepts

* Two primary programming paradigms:
— SPMD (single program, multiple data)
— MPMD (multiple programs, multiple data)

* MPI can be used for either paradigm

2 0OLCFeeee

6/15/11

11

SPMD vs. MPMD

» SPMD: Write single program that will perform same
operation on multiple sets of data

— Multiple chefs baking many lasagnas
— Rendering different frames of movie

* MPMD: Write different programs to perform different
operations on multiple sets of data

— Multiple chefs preparing four-course dinner
— Rendering different parts of movie frame

* Can also write hybrid program in which some processes
perform same task

» OLCFeeee 7

The Six Necessary MPI Commands

e int MPI Init(int *argc, char **argv)

e int MPI Finalize(void)

* int MPI Comm size(MPI_Comm comm, int *size)
e int MPI_ Comm rank(MPI_ Comm comm, int *rank)

e int MPI Send(void *buf, int count,
MPI Datatype datatype, int dest, int tag,
MPI_Comm comm)

e int MPI Recv(void *buf, int count,
MPI Datatype datatype, int source, int tag,
MPI Comm comm, MPI Status *status)

2 0OLCFeeee 7

6/15/11

12

Initiation and Termination

*MPI Init(int *argc, char **argv)
initiates MP!I

— Place in body of code after variable declarations and before any

MPI commands

* MPI Finalize(void) shuts down MPI
— Place near end of code, after last MPl command

35 0OLCFeeee

Environmental Inquiry

* MPI Comm size(MPI Comm comm, int
*size)
— Find out number of processes
— Allows flexibility in number of processes used in program

* MPTI Comm rank(MPI Comm comm, int
*rank)
— Find out identifier of current process
— 0=srankssize-1

26 0OLCFeeee

6/15/11

13

Message Passing: Send

* MPTI Send(void *buf, int count,
MPI Datatype datatype, int dest, int
tag, MPI Comm comm)

— Send message of length count bytes and datatype datatype
contained in buf with tag tag to process number dest in
communicator comm

- Eg.MPI_Send(&x, 1, MPI_DOUBLE, manager,
me, MPI_COMM WORLD)

27 OLCFeeee

Message Passing: Receive

* MPI Recv(void *buf, int count,
MPI Datatype datatype, int source,
int tag, MPI Comm comm, MPI Status
*status)
— Receive message of length count bytes and datatype

datatype with tag tag in buffer buf from process number
source in communicator comm and record status status

— E.g.MPI Recv(&x, 1, MPI DOUBLE, source,
source, MPI COMM WORLD, &status)

8 OLCFeeee

6/15/11

14

Message Passing

« WARNING! Both standard send and receive functions are
blocking

* MPI_Recv returns only after receive buffer contains
requested message

* MPI_Send may or may not block until message received
(usually blocks)

» Must watch out for deadlock

» OLCFeeee 2;;;

Deadlocking Example (Always)

#include <mpi.h>
#include <stdio.h>
int main(int argc, char **argv) {
int me, np, g, sendto;
MPI_Status status;
MPI Init(&argc, &argv);
MPI_Comm size(MPI_COMM WORLD, &np);
MPI_ Comm rank(MPI_COMM WORLD, &me);
if (np%2==1) return 0;
if (me%2==1) {sendto = me-1;}
else {sendto = me+l;}
MPI Recv(&g, 1, MPI_ INT, sendto, sendto, MPI_COMM WORLD,
&status);
MPI_Send(&me, 1, MPI_INT, sendto, me, MPI_COMM WORLD) ;
printf(“Sent %d to proc %d, received %d from proc %d\n”,
me, sendto, g, sendto);
MPI_Finalize();
return 0;

0w OLCFeees 4Bipce

6/15/11

15

Deadlocking Example (Sometimes)

#include <mpi.h>
#include <stdio.h>
int main(int argc, char **argv) {
int me, np, g, sendto;
MPI_Status status;
MPI Init(&argc, &argv);
MPI Comm size(MPI_COMM WORLD, &np);
MPI_Comm rank(MPI_COMM WORLD, &me);
if (np%2==1) return 0;
if (me%2==1) {sendto = me-1;}
else {sendto = me+l;}
MPI Send(&me, 1, MPI_INT, sendto, me, MPI_ COMM WORLD) ;
MPI Recv(&gq, 1, MPI_INT, sendto, sendto, MPI_COMM WORLD,
&status);
printf(“Sent %d to proc %d, received %d from proc %d\n”,
me, sendto, g, sendto);
MPI Finalize();
return 0;

31 OLCFeeee

Deadlocking Example (Safe)

#include <mpi.h>
#include <stdio.h>
int main(int argc, char **argv) {
int me, np, g, sendto;
MPI_Status status;
MPI_Init(&argc, &argv);
MPI_Comm size(MPI_COMM WORLD, &np);
MPI_Comm rank(MPI_COMM_WORLD, &me);
if (np%2==1) return 0;
if (me%2==1) {sendto = me-1;}
else {sendto = me+l;}
if (me%2 == 0) {
MPI_Send(&me, 1, MPI_INT, sendto, me, MPI_COMM_WORLD) ;
MPI_Recv(&gq, 1, MPI_INT, sendto, sendto, MPI_COMM_WORLD,

&status);
} else {
MPI_Recv(&gq, 1, MPI_INT, sendto, sendto, MPI_COMM_WORLD,
&status);

MPI_Send(&me, 1, MPI_INT, sendto, me, MPI_COMM WORLD) ;

}

printf(“Sent %d to proc %d, received %d from proc %d\n”, me,
sendto, g, sendto);

MPI_Finalize();

return 0;

2 0OLCFeeee

6/15/11

16

Explanation: Always Deadlock
Example

* Logically incorrect
* Deadlock caused by blocking MPI Recvs

« All processes wait for corresponding MPI _Sends to begin,
which never happens

3 0OLCFeeee

Explanation: Sometimes Deadlock
Example

* Logically correct

« Deadlock could be caused by MPI Sends competing for
buffer space

« Unsafe because depends on system resources

* Solutions:

— Reorder sends and receives, like safe example, having evens send
first and odds send second

— Use non-blocking sends and receives or other advanced functions
from MP! library (see MPI standard for details)

3 OLCFeeee

6/15/11

17

6/15/11

IV. MPI COLLECTIVES

“Collective Farm Harvest Festival” (1937) by Sergei Gerasimov. Source:
http://max.mmlc.northwestern.edu/~mdenner/Drama/visualarts/neorealism/34harvest.html

35 OLCFeeee 7

MPI Collectives

» Communication involving group of processes

» Collective operations
— Broadcast
— Gather
— Scatter
— Reduce
— All-
— Barrier

3 OLCFeeee 7

18

Broadcast

* Perhaps one message needs to be sent from manager to all
worker processes

» Could send individual messages
* Instead, use broadcast — more efficient, faster

eint MPI Bcast(void* buffer, int
count, MPI Datatype datatype, int
root, MPI Comm comm)

37y OLCFeeee

Gather

» All processes need to send same (similar) message to manager

* Could implement with each process calling MPI_Send(...)
and manager looping through MPI RecvV (...)

* Instead, use gather operation — more efficient, faster
» Messages concatenated in rank order

°*int MPI_Gather(void* sendbuf, int
sendcount, MPI Datatype sendtype, void*
recvbuf, int recvcount, MPI Datatype
recvtype, int root, MPI Comm comm)

* Note: recvcount = number of items received from each
process, not total

s OLCFeeee

6/15/11

19

Gather

. Mﬁybe some processes need to send longer messages than
others

« Allow varying data count from each process with
MPI Gatherv(..)

int MPI Gatherv(void sendbuf, int
sendcount, MPI Datatype sendtype, void*
recvbuf, int *recvcounts, int *displs,
MPI Datatype recvtype, int root,

MPI_ Comm comm)

* recvcounts is array; entry i indispls array specifies
displacement relative to recvbuf [0] at which to place data
from corresponding process number

39 OLCFeeee

Scatter

* Inverse of gather: split message into NP equal pieces, with ith
segment sent to ith process in group

int MPI Scatter(void sendbuf, int
sendcount, MPI Datatype sendtype, void*
recvbuf, int recvcount, MPI Datatype
recvtype, int root, MPI Comm comm)

« Send messages of varying sizes across processes in group:
MPI Scatterv(..)

int MPI_ Scatterv(void sendbuf, int
*sendcounts, int *displs, MPI datatype
sendtype, void* recvbuf, int recvcount,
MPI Datatype recvtype, int root,

MPI Comm comm)

40 OLCFeeee

6/15/11

20

Reduce

* Perhaps we need to do sum of many subsums owned by all
processors

* Perhaps we need to find maximum value of variable across
all processors

» Perform global reduce operation across all group members

int MPI Reduce(void sendbuf, void*
recvbuf, int count, MPI Datatype
datatype, MPI Op op, int root,

MPI Comm comm)

41 OLCFeeee

Reduce: Predefined Operations

[MPT_Op | Meaning | Allowed Types

MPI_ MAX Maximum Integer, floating point

MPI_ MIN Minimum Integer, floating point
MPI_SUM Sum Integer, floating point, complex
MPI_PROD Product Integer, floating point, complex
MPI LAND Logical and Integer, logical

MPI_ BAND Bitwise and Integer, logical

MPI_LOR Logical or Integer, logical

MPI_BOR Bitwise or Integer, logical

MPI_LXOR Logical xor Integer, logical

MPI_BXOR Bitwise xor Integer, logical

MPI MAXLOC Maximum value and location *
MPI_MINLOC Minimum value and location *

2 OLCFeeee

6/15/11

21

Reduce: Operations

°MPI_MAXLOCandMPI_MINLOC
— Returns {max, min} and rank of first process with that value

— Use with special MPI pair datatype arguments:
* MPI_FLOAT INT (floatandint)
* MPI_DOUBLE_INT (double and int)
* MPI LONG_INT (longand int)
* MPI 2INT (pairof int)

— See MPI standard for more details

» User-defined operations
— Use MPI_Op create(...) to create new operations
— See MPI standard for more details

3 OLCFeeee

All- Operations

» Sometimes, may want to have result of gather, scatter, or
reduce on all processes

» Gather operations

— int MPI Allgather(void* sendbuf, int
sendcount, MPI Datatype sendtype, void*
recvbuf, int recvcount, MPI Datatype
recvtype, MPI Comm comm)

— int MPI_ Allgatherv(void* sendbuf, int
sendcount, MPI Datatype sendtype, void*
recvbuf, int *recvcounts, int *displs,
MPI Datatype recvtype, MPI Comm comm)

4 OLCFeeee

6/15/11

22

All-to-All Scatter/Gather

* Extension of A11gather in which each process sends
distinct data to each receiver

* Block j from process i is received by process j into ith
block of recvbuf

eint MPI Alltoall(void* sendbuf, int
sendcount, MPI Datatype sendtype,
void* recvbuf, int recvcount,
MPI Datatype recvtype, MPI Comm
comm)

* Also corresponding A11toAl1v function available

s 0OLCFeeee

All-Reduce

» Same as MPI_Reduce except result appears on all
processes

int MPI Allreduce(void sendbuf,
void* recvbuf, int count,
MPI Datatype datatype, MPI Op op,
MPI Comm comm)

46 JLCFeeee

6/15/11

23

6/15/11

Barrier

* In algorithm, may need to synchronize processes
« Barrier blocks until all group members have called it

*int MPI Barrier (MPI_ Comm comm)

27 0OLCFeeee

Source: http:/www.uky.edu/Ag/Entomology/ythfacts/4h/unit1/i&tr.htm

V. DEBUGGING AND
PERFORMANCE
EVALUATION

48 OLCFeeee

24

V. Debugging and Performance
Evaluation

« Common errors in parallel programs “l’
* Debugging tools

* Overview of benchmarking and performance measurements

49 OLCFeeee

Common Errors

* Program hangs
— Send has no corresponding receive (or vice versa)
— Send/receive pair do not match in source/recipient or tag
— Condition you believe should occur does not occur

» Segmentation fault

— Trying to access memory you are not allowed to access/ memory
you should not have been allowed to access has been altered (e.g.
array index out-of-bounds, uninitialized pointers, using non-pointer
as pointer)

— Trying to access a memory location in a way that is not allowed
(e.g. overwrite a read-only location)

50 OLCFeeee

6/15/11

25

Debugging Tools

* Debugging parallel codes is particularly difficult
* Problem: figuring out what happens on each node

* Solutions:
— Print statements, 1/O redirection into files belonging to each node
— Debuggers compatible with MPI

51 OLCFeeee

Print Statement Debugging Method

* Each processor dumps print statements to stdout orinto
individual output files, e.g. 1og. 0001, 1og.0002, efc.

* Advantage: easy to implement, independent of platform or
available resources

* Disadvantage: time-consuming, extraneous information in
log files

20LCFeeee

6/15/11

26

MPI-Compatible Debuggers

» Commercial debuggers
— Easy-to-use GUI, intuitive

— Installed on production systems such as Crays, probably not
installed on local machines

— Examples: TotalView, Allinea DDT

* Free debuggers + mpirun

— Use mpirun command and specify your favorite debugger, e.g.

mpirun -dbg=ddd -np 4 ./myprog

— This option available with MPICH and most other MPI
implementations

— Not as “pretty” as commercial debugger but it gets job done

3 OLCFeeee

Why Use Debuggers?

* Debuggers can save time

— With print-statement debugging, must insert print statements into
code, sift through print statements, and find error

— Debugger allows you to find the line where problem occurs in a
single trial
» Complexity of bugs grows with complexity of code
— More lines of code, more potential for bugs
— More complicated algorithm, more potential for errors
— Parallelism only adds to complexity

sa OLCFeeee

6/15/11

27

Allinea DDT

* Distributed Debugging Tool

* Capable of debugging codes written with MPI, OpenMP,
threading, GPGPU (in beta)

* Allinea collaborating with ORNL to create petascale
debugging tool

* Easy to use, intuitive

s OLCFeeee

Using DDT

 Compile code with —g flag

* On OLCF systems:
— module load ddt
—ddt s

 Launch DDT from scratch
directory

 Can run it within interactive

job, or have DDT launch job

s OLCFeeee

6/15/11

28

Using DDT

800 '\ DDT - Run
Application: | AmpiworkhaiNUCCOR/compilerz/pgiinuccorpgi.O2.exe Hia
Arquments: | 1]
7] Run Without MPI Support
Opiion 0 queue | Change.
es Number of threads (QpenMP only): [Off_|2]
(1 Pause when the program reaches exitor _exi
x| bortor has
InputFile: | 8
O e oebgsing
4

* Running a job
— Enter application name
— Can have DDT launch job, or run interactive job
— Set arguments as necessary

51 OLCFeeee

Using DDT

DDT Starting up Opening Screen

s OLCFeeee

6/15/11

29

Using DDT

Insert Breakpoints, and Pause Can view the value of scalar
at that Point variable across all processes

000 [X| DDT - Cross-Process Comparison View

Compare across:
@ Processesin current group (All, 441 procs)

© Threads in current process (Process 0, with 1 thread)

Expression: b) ([compare][cances
0 Amay mode-evauate o, om ([to (L[] incusve
[] Limit comparisonto [=] st %] Align stack frames
Compare | Statisies | Visuaiize
|Processies) |value 2
334 7
198 18
200 2
3 28
100 3
25 w0
376 @
573 w
146 s
e 52
4 s6
272 o B
252,29 o ~
!
E— Use as P Rank | [Create Groups

Close
4

s OLCFeeee ~4Hines

Using DDT

800 '\ DDT - Multi-Dimensional Array Viewer

Array Expression: [1_ccm 2d(4, %) =)
~Range of $i Range of §j [} Autoupdate
To (33 B 1 [33 B
Display: [Columns [+] | Display: [Rows =) -

Aggregate Function
D (=15)

{ Data Table || Statistics
[a |2 3 4 5 B

| -63.37546630116249 0 0 0 0

2 | 0 -63.375466301162504 0 0

El 0 0 30.478025676321877 0 0

4| 0 0 0 -30478025676321863 0 @

(L])
Expression "f_ccm.f2d($i, $)" evaluated for process 0 at 00:55.

IVisualee in3D]] Exportto Spreadsheet...]] Close |
4

* View array on single process
« Can also view statistics, visualize, evaluate subsets

o OLCFeeee ciinte

6/15/11

30

Benchmarking and Performance
« Efficiency

* Scalability
* Performance modeling

6l OLCFeeee

Efficiency

» How well does parallel program perform compared to serial
program (or parallel program on 1 processor)?

__I
Y NT,
* E = efficiency, N = # processors, T, = time for p processors

2 OLCFeeee

6/15/11

31

Efficiency

* |deally, £, = I; realistically, £, < 1.

* Factors influencing efficiency
— Load balance (evenly distribute work for better efficiency)
— Concurrency (minimize idle time on all processors)

— Overhead (minimize work that serial computation would not do,
e.g. communication)

3 JOLCFeeee

Scalability: Speedup

» How well does parallel program take advantage of additional
processors?

1
TN
* §'=speedup, N = # processors, T, = time for p processors

S, =

64 OLCFeeee

6/15/11

32

6/15/11

Determining Scalability of Program

* How to measure scalability
— Fixed problem size, measure T, for different N's
— Increase problem size proportional to NV, compare T,

* Repeat performance runs at least 3 times for each N (ideally
>5 times)

* Plot on log-log graph; slope of line determines scalability

s OLCFeeee Ceiinied

Scalability
1000
F100 £
8
S — =k s A — A — — o — — -
E T —+—Ideal (fixed problem size)
‘a'; \‘ ~~~~~~~~ i === Realistic (fixed problem size)
E \ ~~~~~~~ =4 -ldeal (growing problem size)
= 10 ~ ~——Realistic (growing problem size)
$ \

1

1 2 4 8 16 32
Number of Processors
66 OLCFeeee SPIDGE

33

Performance Evaluation

* Create performance model
communication computation serial
T, =T, Hon y o 4 e

* Examine parallel algorithm and figure out which parts fit in
each category

« Perform least-squares fit with scalability data

¢ OLCFeeee

Bibliography/Resources: Programming
Concepts and Debugging

» Heath, Michael T. (2006) Notes for CS554: Parallel
Numerical Algorithms,
http://www.cse.illinois.edu/courses/cs554/notes/
index.html

» MPI Deadlock and Suggestions
http://www.ncsa.uiuc.edu/UserInfo/Resources/Hardware/
CommonDoc/MessPass/MPIDeadlock.html

* TotalView Tutorial
http://www.lInl.gov/computing/tutorials/totalview/

» Etnus TotalView page http://www.etnus.com/

s OLCFeeee

6/15/11

34

Bibliography/Resources: MPI1/ MPI
Collectives

* Snir, Marc, Steve W. Otto, Steven Huss-Lederman,
David W. Walker, and Jack Dongarra. (1996) MPI:The
Complete Reference. Cambridge, MA: MIT Press. (also
available at
http://www.netlib.org/utk/papers/mpi-book/mpi-book.html)

* MPICH Documentation
http://www-unix.mcs.anl.gov/mpi/mpich/

* C, C++, and FORTRAN bindings for MPI-1.2
http://www.lam-mpi.org/tutorials/bindings/

0 OLCFeeee

Bibliography/Resources: MPI1/ MPI
Collectives

» Message Passing Interface (MPI) Tutorial
https://computing.linl.gov/tutorials/mpi/

» MPI Standard at MPI Forum

— MPI1.1:
http://www.mpi-forum.gov/docs/mpi-11-html/mpi-report.htmli#Node0
— MPI-2:
http://www.mpi-forum.org/docs/mpi-20-html/mpi2-
report.htm#Node0

70 OLCFeeee

6/15/11

35

Bibliography/Resources:
Benchmarking and Performance

* Hernandez, Oscar et al. (2010) Debugging Applications on
Jaguar XT5 with DDT,
http://www.nccs.gov/wp-content/uploads/2010/02/ddt-ornl-
hex-core-workshop.pdf

* Heath, Michael T. (2006) Notes for CS554: Parallel
Numerical Algorithms,
http://www.cse.illinois.edu/courses/cs554/notes/index.html

71 OLCFeeee

6/15/11

36

