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WHAT IS DATA ANALYTICS AT EXASCALE?

e Scales to 200K cores?
* Processes PBs data in a reasonable time?

+ Assimulation proceeds, reduces PBs data by orders
of magnitude but ensures information quality?

* In situ extracts features so that post-processing
analysis could be performed in O(N) vs. O(N"™2)?

* Transforms a complex problem into a form that
makes many analysis techniques practical?

PROVIDES DATA-DRIVEN UNDERSTANDING OF
GRAND-CHALLENGE ScCI. APPLICATION PROBLEMS
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PHYSICS-BASED MODELS ARE ESSENTIAL BUT NOT ADEQUATE

+ Models make relatively reliable predictions
at global scale for ancillary variables:

— Sea Surface Temperature (SST)
— Temperature/humidity profiles over land
— Wind speed at different heights

+ They provide least reliable predictions for
variables that are crucial for impact ol S
assessment: ez =

Disagreement between IPCC models
18 T 7 A

. - . Regional hydrology (“P-E” changes in
- Reglonal precipitation and extremes 2030s) exhibits large variations among
-<Hurricane intensity and frequenzy major IPCC model projections
— Droughts and floods

“The sad truth of climate science is that the most crucial information is the least reliable” (Nature, 2010)

P AT
We need a systematic approach to hybrid data-driven + physics-based inference. I
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FAMILY = DOMAIN SCIENTISTS + CS RESEARCHERS

Hurricane activity is the climate system’s response initiated
by a liquid-vapor phase transition associated with non-linearly
coupled fluctuations in the ocean and the atmosphere.
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END-TO-END DATA ANALYTICS SOFTWARE STACK IS COMPLEX:
GENERIC (ALL APPLICATIONS) PERSPECTIVE

Exemplars
CDAT

Kepler, Vislt,
SciRun, FIESTA

PR, Vislt
Focus of RScalAPACK,
my talk NW-Minebench
OAK FastBit, ADIOS
RIDGE pnetCDF, HDF5
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THE LESSON LEARNED FROM LINEAR ALGEBRA

. o * ScaLAPACK
Dwarfs: « PETSC
Sparse, Dense, etc. . etc

/\

Pre-conditioner K Solver

“...conditions a given problem highly “optimized”
into a form that is more suitable computational kernel
for numerical solution.”

E%GE February 23, 2011 7 W

Ty

SOFTWARE FOR DATA ANALYTICS IS MORE AD HOC

» Should we adopt this approach from Linear Algebra
to Data Analytics at extreme scale? If so, then

— What are the “Dwarfs” for data analytics?
— What about the “Preconditioners?”
— What are the “Computational kernels?”

* Do we/should we have a ScaLAPACK-like library for
Exascale Data Analytics?

%RmGE February 23, 2011 Nagiza F. Samatova 8 W
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THE LESSON LEARNED FROM LINEAR ALGEBRA

“Dwarfs:”

Sparse, Dense, etc.

/

“...conditions a given problem
into a form that is more suitable

for numerical solution.”
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* etc

\

Solver

highly “optimized”
computational kernel

* ScalLAPACK
* PETSc

NG STATE UNIVERSITY

“CoMPUTATIONAL KERNELS” CONCEPT IS PROMISING

illustrative data mining algorithms and applications.

The frequency of kernel operations in

. Top 3 Kernels (%)

Application Kernel 1 (%) | Kernel2 (%) | Kernel 3 (%) il
K-means Distance (68) |Center (21) minDist (10) 99
Fuzzy K-means |Center (58) Distance (39) [fuzzySum (1) 98
BIRCH Distance (54) |Variance (22) |redist.(10) 86
HOP Density (39) Search (30) Gather (23) 92
Naive Bayesian [probCal (49) Variance (38) |dataRead (10) 97
ScalParC Classify (37) giniCalc (36)  |Compare (24) 97
Apriori Subset (58) dataRead (14) |Increment (8) 80
Eclat Intersect (39) |addClass (23) |invertC (10) 72
SVMlight quotMatrix(57) |quadGrad (38) |quotUpdate(2) 97
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IF WE ARE LUCKY...

* and Jack Dongara did most of the work for us:
— Some data analysis routines call linear algebra functions
— InR, they are built on top of LAPACK library
* RScaLAPACK is an R wrapper library to ScaLAPACK

A = matrix(rnorm(256),16,16)
b = as.vector(rnorm(16))

Using RScaLAPACK: Using R:
library (RScaLAPACK) | ‘
sla.solve (A,b)

sla.svd (A)

sla.prcomp (A) )

%%{GE WHAT IF WE ARE NOT THAT LUCKY* NG STATENVERY
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KERNEL “OPTIMIZATION METRICS”’ GET COMPLEX

+ Depend on target data processing regimes
— In-situ, In-staging, Post processing, Out-of-core, Multi-resolution
— Data streams, Distributed
+ Depend on target performance criteria
— Strong/Weak Scalability, Memory & Data Movement Requirements
— Energy Efficiency, Resiliency, Concurrency, Fault Tolerance
— Numerical stability, Parameter-free
+ Depend on target layer in SW stack
— Simulation Code, Parallel 1/0 Library, Active Storage
— Vislt, Parallel R, Matlab, Python, stand-alone
+ Depend on target HW architecture

of GPUs, FPGA, and SSDs
— Clouds
OAK
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KERNEL “OPTIMIZATION METRICS”’ GET COMPLEX

+ Depend on target data processing regimes
— Insitu, In-staging, Post processing, Out-of-core, Multi-resolution
— Data streams, Distributed
+ Depend on target performance criteria
— Strong/Weak Scalability, Memory & Data Movem’t Requirements
— Energy Efficiency, Resiliency, Concurrency, Fault Tolerance
— Numerical stability, Parameter-free
* Depend on target layer in SW stack
— Simulation Code, Parallel 1/0 Library, Active Storage
— Vislt, Parallel R, Matlab, Python, stand-alone
* Depend on target HW architecture

— Hybrid multi-node, multi-core HPC architectures comprised of
amix of GPUs, FPGA, and SSDs

— Clouds
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PERFORMANCE IMPROVEMENTS ON GPUSs oVER CPUS

Using memory tiling for K-means

Tiling Performance on GPU

Data Size (M = Million data points)

Speedup w.r.t CPU
oHsnREHERE

¥ Speedup{Distance Computation] B Speedup{Cluster Updale) ¥ Speedup(Kmeans)

K-means (left) and Principal component analysis (right)

Clustering Algorith = i
8 MSteding R Eorim Principal Component Analysis
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PREVIOUS SUCCESSES (AND FAILURES) ON GPU
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V.W. Lee, C. Kim et al. Debunking the 100X GPU vs. CPU myth: An evaluation
of throughput computing on CPU and GPU. Int'l Symposium on Computer
Architecture, pages 451-460, 2010
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COMPUTATIONAL MOTIFS
Dense Linear Algebra . Combinational Logic
Sparse Linear Algebra . Graph Traversal
Spectral Methods . Dynamic Programming
. N-Body Methods .  acktrack and Branch-and-Bound
Structured Grids . Graphical Models
Unstructured Grids . Finite State Machines
MapReduce
Accelerated Weakly-Accelerated Hard-to-Accelerate
J. D. Owens. What's New with the GPU? GPUs for Scientific Computing
%G ;nd Visualization. Presented at SciDAC 2010 E—
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BACKTRACKING UBIQUITY IN DATA MINING

. Game-playing

. Constraint Satisfaction

. Frequent Itemset Mining

. k-d Tree Construction, Traversal

. Graph coloring/partitioning

ABC ABD ACD BCD
o i) -
- A 2
AR AL AD BC BD CD
N - " —
A B { B
R e
RIDGE,
B P ———

CHALLENGES: BACKTRACKING €= GPU CHARACTERISTICS

Backtracking GPU Optimal
(worst-case)
Problem Instance Irregular access pattern | regular access with
(e.g. sparse matrix mult) |locality (e.g. dense
matrix mult)
Work Unit variable in size and constant size, SIMD

computation (e.g CSP (e.g. stream processing)
on large sets)

Output exponential size, hard to | polynomial size, apriori
estimate (e.g. subset (e.g. dense matrix mult)
enumeration)

Search Space Tree-based, unbalanced | Fixed, apriori (if
(e.g. 8-queens) applicable) (e.g. k-d

trees)
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BACKTRACKING: 1.4--2.25 TIMES A SINGLE CPU CORE

Spesadup agalnst single core

B Combinational Logic
E CPU 4 cores wio Ib
& _CPUAcomswithib| Graph Traversal
. Dynamic Programming
# Backtrack and Branch-
..... = nd-Bound
Graphical Models
Finite State Machines
sip
Accelerated Weakly-Accelerated Hard-to-Accelerate
OAK LINIVERSITY
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KERNEL “OPTIMIZATION METRICS”’ GET COMPLEX

+ Depend on target data processing regimes
— Insitu, In-staging, Post processing, Out-of-core, Multi-resolution
— Data streams, Distributed

+ Depend on target performance criteria
— Strong/Weak Scalability, Memory & Data Movem’t Requirements
— Energy Efficiency, Resiliency, Concurrency, Fault Tolerance
— Numerical stability, Parameter-free

+ Depend on target layer in SW stack
— Simulation Code, Parallel 1/0 Library (ADIOS), Active Storage
— Vislt, Parallel R, Matlab, Python, stand-alone

+ Depend on target HW architecture

— Hybrid multi-node, multi-core HPC architectures comprised
of a mix of GPUs, FPGA, and SSDs

— Clouds
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IN-SITU COMMUNICATION-FREE, NUMERICALLY STABLE VARIANCE

1. 02 =E(X - E(X))?
Numerically stable, but X — E(X) requires communication

2. 0?=E(X)? - E(X?3):
Communication-free, but numerically unstable

3 07 = i[af +E[K’]]

i=1. .
Communication-free and n

Each Processor Group i saves local variance o2 and local mean m;, where
global mean G = L; + k;.
EX-GP=EX-(L;+k))?
=E[(X-L)*] + E[k?] - 2%k, *E[X - L]

Oalf (X — L)?] , numerically stable + communication-free, calculatw
%ﬂl}_@ﬁl_i_e time; E[k?] is calculated at read time.

THE LESSON LEARNED FROM LINEAR ALGEBRA

* ScaLAPACK
* PETSc
¢ etc
Pre-conditioner

“...conditions a given problem highly “optimized”

into a form that is more suitable computational kernel

for numerical solution.”
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“PRECONDITIONERS” FOR DATA ANALYTICS

*+ How to define a “preconditioner” for data analytics?
Solve a Problem Py,.q

/

Directly Indirectly (via “Preconditioner™):
Reduce a Hard Problem P, to a “Better” Problem Py,

P...« — Preconditioner — P,

etter

“Better” in terms of:

* Increased throughput

* Faster time-to-solution

» More accurate solution

* Higher data compression rate

0OAK » Approximate but real-time solution
RIDGE
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INDEXING AS A PRECONDITIONER FOR INDEX-BASED ANALYTICS

INDEX-BASED ANALYSIS IN VISIT

W
|
|;5
I

Request Histograms

2D Histoegrams

P

- Y
Data ||| FastBit
incl.
Bitmap
| Index
S

ext
D Histograms

Focus

Define_Condition @l Thresholds / |d's
Selected Data

Select and Trace

[Riibel, Prabhat, Wu, Childs, Meredith, Geddes, Cormier-Michel, Ahern, Weber, Messmer, Hagen, Hamann and Bethel.
$C08]
RIS,
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CHALLENGES FOR INDEX-BASED ANALYTICS

Multiple Variables over

FastBit Different Spatial Resolution
Query 1
Data N A Index over
Region Common Spatial Resolution

5 ‘Growing Query
Index .

(e.g., histogram) | are robustto
quantization?

0QAK

Ty

Region | . i
/ Tracking Regions| Quantized |Raw Data
Very Fast Data 1/0-bound
0.3—1.5X .
of Data Specific Analysis | Which analyses

RTDGE February 23, 2011 Nagiza F. Samatova 25 NF STATE Lifj"'-'EH:'-JI"'r'

THINGS GET WORSE AS INDEXING DERIVED OBJECTS

Raw Data

—

Compressed/Transformed
Data (Multi-Res.)

_

Features Extracted
e

.

Different
terpolations/Extrapolations

Processed by Different

* Deborah Silver, Rutgers Analyses and Parameters
* Valerio Pascucci, U. Utah

* Chandrika Kamath, LLNL

e e —
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Feature & Event classification for Fusion-

Feature Based Techniques to characterize and catalogue interesting

phenomena

Objects/Features Move Interact —Come Together/Apart

(Plazma specific)
BIIOIJ.‘.\' "\19%'(“7\
Fllzlnlx?nls Ehix hibes
Avaloids
Striations
Bursts
Radial streamers
IPO (Intermittent plasma Objects)
Holes (opposite of blobs, density

(Plasma specific)  (Plasma specific)

Spin/wake (blobs) Coalesce (blobs)
Loss Cone Zonal flows Breakup (blobs)
Flow shears
Rotation (CFD General)
(CFD general)

accrete  condense  roll-up
advect swirl aggregate disassemble plow
entangle transport  align disrupt reflect
disperse  wind bind finger scatter
flow bifurcate fssion spike
Favor roll hop burst focus split
filament separatrix migrate collapse  g,)g striate
spike stream fuse strip

spiral pair wind about

Chaotic Field line regions
(CFD-general)
bubble hole
blast wave packet
blobcloud patch
critical pt.  point
eddy ring

: striation
helix vortex Deborah Silver, Rutgers

IN SITU PRECONDITIONERS FOR
SCIENTIFIC DATA COMPRESSION

* Myth: “Scientific data is almost uncompressible.”
GTS Fusion Simulation Data (Stephane, PPPL)

— l

C&R Data Analysis Data V&V Data

* Small
* Every 2" time step

1 1
1 1
+~2TB per C&R I« ~2TB per run (now) I
« Every 1 hour I« Every 10t time step I
* Two copies I« cannot afford storing all b/s of I
« Keep the last copy : « Analysis routines and 1/0 reads :
1 1
1 1
1 1
1 1

» Matlab analysis routines

Expected: 10-fold increase by 2012-2014
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Computing and Storage Resources

Facilities
Architectures
Years

Hrs used/year
NERSC'09 used
#Cores per run
Wall clock/run
Memory/run

Min Memory/core
Read/Write data
Checkpoint size
Data in/out nersc
On-line storage
Off-line storage

Ty

NERSC/OLCF
XT5,Power,Cluster
Present In 5 yrs
30M 50M
1.2Mhrs

512 512

12 24
512GB  1.024TB
1GB 2GB
4GB 8GB

NERSC/OLCF

XTS5

Present
24M
~2Mhrs
8-98K
72 Hrs
16-100T
1GB
2.5TB
1-8GB
5GB/run
4TB/10K
25GB

In 5 yrs
50M

32-130K
72 Hrs

32-160T8B

1GB
8TB
1-10 GB

10GB/run

8TB/10K
100GB

FROM C.S. CHANG'S TALK AT NERSC

NERSC/OLCF

XT5
Present In5 yrs
65M 500M
~8M hrs
10-223K 1M
20-100hrs 20-100hrs
40 TB 100 TB
0.3GB 0.1GB
5TB 25TB
1TB 5TB
10GB/day 50GB/day
4TB/3K 5TB/3K
1TB/30 10TB/100

*Unstructured mesh

EFFECT OF PRECONDITIONER ON WAVELET COMPRESSION

x107"

11

Decompressed Original

]
A

0.5

Original Data ;X 107

(B)

50 100

50

100

Decompressed with
Pre-conditioner
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ANALYSIS DATA COMPRESSION W/ ISABELA

* Analysis data is stored every N-th time step:
— Lossy data reduction
— Data is almost random—hard/impossible to compress; <10% lossless
— N is somewhat ad hoc (N=10 for GTS, N=100 for Supernova)
* ISABELA:
— Reduces the data by more than 75%
— Guarantees user-specified error-bounds
 Per pointerror (e.g., <1%)
» Overall correlation (>0.99*) & NRMSE (<0.01%*)

[Metric |[FPC|LZMA |ZIP|BZ2[ISABELA |Wavelets| B-splines|
Lossless? Yes | Yes |Yes| Yes No No No
CRy (%) -0.55] 2.72 [1.13]1.11] (81.44%) | 22.51% 0%
Compression (sec.) 0.58 | 7.01 |1.03]3.96 0.93 0.62 0.78
Decompression (sec.)|| 0.56 | 1.38 [0.49|1.18 1.05 0.58 0.82

EFFECT OF PRECONDITIONER ON
UNDERDETRMINED CLASSIFICATION PROBLEM (BENCH)

100 - - » Accuracy increase by 13%-16%
98 Bayesian Belief Network (BBN)97.142 * Across different classifiers
96 94.86 » On data with <100 samples
94 >d=4,000-7,000 dimensions—
E 92 underdetermined problems
g 90 S
< g * Training time reduced from
ES 86 1453 sec. (single BBN) to 25
sec. (BENCH)
84 82.856 82.85
82 81.427 .
— * When applied to seasonal
80 _ _ hurricane prediction (d>35K),
Single BBN  Bagging Random BENCH BENCH - -
(65/7129/1) (40/7129/5) Forest  (56/2205/5) (s6/3205/s9) | correlation with observed
(65/40/40) improved: 0.64 2 0.92-0.96
Classifier Single classifier | BENCH ensemble
BBN 82.856 97.142
O Decision Tree 82.856 95.714
RIDGE SVM 91.426 97.142 A N STATE UIIVESSIT|

2/23/2011
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SUMMARY

+ Exascale Analytics = Data-Driven Understanding of
Grand Challenge Science Application Problems

+ Co-design solutions with application scientists

+ End-to-end data analytics at scale requires different
technologies spanning all layers of SW stack

+ “Optimized” analytical kernels must be customized for
different performance metrics and constraints

* Preconditioners for data analytics are in very promising
but in their infancy
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