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1. METRIC STATEMENT FOR COMPUTATIONAL EFFECTIVENESS 

1.1 JOULE METRICS 

The Joule Software Metric for Computational Effectiveness is established by Public Authorizations 
PL 95-91, “Department of Energy Organization Act,” and PL 103-62, “Government Performance and 
Results Act.” 

The U.S. Office of Management and Budget (OMB)* oversees the preparation and administration of 
the President’s budget; evaluates the effectiveness of agency programs, policies, and procedures; assesses 
competing funding demands across agencies; and sets the funding priorities for the federal government. 
The OMB has the power of audit and exercises this right annually for each federal agency. According to 
the Government Performance and Results Act of 1993 (GPRA), federal agencies are required to develop 
three planning and performance documents: 

1. Strategic Plan: a broad, 3 year outlook; 
2. Annual Performance Plan: a focused, 1 year outlook of annual goals and objectives that is 

reflected in the annual budget request (What results can the agency deliver as part of its public 
funding?); and 

3. Performance and Accountability Report: an annual report that details the previous fiscal year 
performance (What results did the agency produce in return for its public funding?). 

OMB uses its Performance Assessment Rating Tool (PART) to perform evaluations. PART has seven 
worksheets for seven types of agency functions. The function of Research and Development (R&D) 
programs is included. R&D programs are assessed on the following criteria: 

• Does the R&D program perform a clear role? 
• Has the program set valid long term and annual goals? 
• Is the program well managed? 
• Is the program achieving the results set forth in its GPRA documents? 

In Fiscal Year (FY) 2003, the Department of Energy Office of Science (DOE SC-1) worked directly 
with OMB to come to a consensus on an appropriate set of performance measures consistent with PART 
requirements. The scientific performance expectations of these requirements reach the scope of work 
conducted at the DOE national laboratories. The Joule system emerged from this interaction. Joule 
enables the chief financial officer and senior DOE management to track annual performance on a 
quarterly basis. Joule scores are reported as “success, goal met” (green light in PART), “mixed results, 
goal partially met” (yellow light in PART), and “unsatisfactory, goal not met” (red light in PART). Joule 
links the DOE strategic plan† to the underlying base program targets. 

1.2 FY09 JOULE GOALS FOR THE DOE ASCR PROGRAM 

The DOE Advanced Scientific Computing Research (ASCR)‡ program has the following two annual 
performance measures as part of its PART requirements: 

1. SC GG 3.1/2.5.1—Focus usage of the primary supercomputer at the National Energy Research 
Scientific Computing Center (NERSC) on capability computing, defined as the percentage of the 
computing time used by computations that require at least 1/8 of the total resource. FY09 
performance metric: capability usage is at least 40%. 

                                                 
* http://www.whitehouse.gov/omb 
† http://www.er.doe.gov/about/MissionStrategic.htm 
‡ http://www.sc.doe.gov/ascr/About/about.html 
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2. SC GG 3.1/2.5.2—Improve computational science capabilities, defined as the average annual 
percentage increase in the computational effectiveness (either by simulating the same problem in 
less time or simulating a larger problem in the same time) of a subset of application codes. FY09 
performance metric: efficiency measure is ≥100%. 

Ensuring compliance with these metrics, which are tracked on a quarterly basis, is an important 
milestone each fiscal year for the DOE ASCR Program Office as well as for the success of the overall 
DOE SC-1 open science computing effort. This document details the results of the effectiveness of the 
computational science capability (SC GG 3.1/2.5.2). 

1.3 QUARTERLY TASKS RELATED TO SC GG 3.1/2.5.2 

The Joule effort to improve computational science capabilities is a year-long effort requiring quarterly 
updates. The quarterly sequence of tasks for exercising this software metric is as follows. 

Quarter One (Q1) Tasks (deadline: December 31). Identify a subset of candidate applications 
(scientific software tools) to be investigated on DOE SC supercomputers. Management (at DOE SC and 
national laboratories) decides upon a short list of applications and computing platforms to be exercised. 
The Advanced Scientific Computing Advisory Committee (ASCAC) approves or rejects the list. The Q1 
milestone is satisfied when a short list of target applications and machines (supercomputers) is approved. 

Quarter Two (Q2) Tasks (deadline: March 31). Problems that each chosen application must 
simulate on the target machines are determined. The science capability (simulation result) and 
computational performance of the implementation are benchmarked and baselined (recorded) on the 
target machines for the defined problems and problem instances. The Q2 milestone is satisfied when 
benchmark data—namely the machine operation count, execution time, and machine instance—is 
collected and explained. If an application is striving to achieve a new science result in addition to 
demonstrating improved performancing, then providing a detailed discussion of its current (prior to Q2) 
capability, a discussion of why the capability is insufficient, and a description of why the new capability 
being developed satisfy the Q2 milestone. 

Quarter Three (Q3) Tasks (deadline: June 30). The application software (its models, algorithms, 
and implementation) is enhanced for efficiency, scalability, science capability, etc. The Q3 milestone is 
satisfied when the status of each application is reported at the Q3 deadline. Corrections to Q2 problem 
statements are submitted at this time. 

Quarter Four (Q4) Tasks (deadline: September 30). Enhancements to the application software 
continue as in Q3. The enhancements are stated and demonstrated on the machines used to generate the 
Q2 baseline information. A comparative analysis of the Q2 and Q4 data is summarized and reported. The 
Q4 milestone is satisfied if the enhancements made to the application software are in accordance with the 
efficiency measure as defined in Q2 (run-time efficiency, scalability, or new result). 
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2. METRIC RESULTS FOR COMPUTATIONAL EFFECTIVENESS 
 
 
Each application is discussed and its baseline and metric problem described in the respective 

application sections. A brief description of the machine used for the application problems is given. A 
summary of measured results for each application is provided. 

2.1 TARGET HPC SYSTEM: JAGUARPF.CCS.ORNL.GOV 

The Cray XT5 high-performance computing (HPC) system, Jaguar/XT5, at the Oak Ridge National 
Laboratory (ORNL) National Center for Computational Sciences (NCCS) is used to exercise the DOE 
ASCR FY09 Joule software metric. 

Jaguar/XT5 has a total of 18,688 XT5 compute nodes. The compute node operating system is a 
variant of Linux (CNL2.0 during the Q2 baseline, CLE2.1 thereafter). The dual-socket compute nodes are 
Quad-Core AMD Opteron™ Processor 23 (B3) chips operating at 2.3 GHz with 16 gigabytes (GB) of 
unbuffered memory per node, 2 megabytes (MB) of shared L3 cache per chip, 512 kilobytes (KB) of L2 
cache per core, and 64 KB instruction and 64 KB data L1 caches per core. Each socket employs double 
data-rate two (DDR2) dual inline memory modules (DIMMs) at 800 MHz with, in the best case, 
25.6 GB/s of local memory bandwidth per node. 

Jaguar/XT5 has 192 input/output (I/O) and login/service nodes. Each of these nodes consists of a 
2.6 GHz dual-core AMD Opteron™ chip with 8 GB of memory per node. The I/O and service nodes are 
running a variant of SuSE Linux. Approximately 4 petabytes (PB) of disk space are available in the 
scratch file systems that support massive I/O parallelism through the Lustre file system software.* 
HyperTransport links all nodes to Cray’s proprietary SeaStar2+chips, which are used to construct a 3D 
torus communication network between nodes. There are six switch ports per Cray SeaStar2+ chip, and 
each port has a bandwidth of 9.6 GB/s. The best-case bandwidth between the compute node and the 
SeaStar2+ interconnect chip is 6.4 GB/s. Thus, the injection bandwidth is half this, or 3.2 GB/s. 

For further information, the NCCS website† describes the system and its software stack and is 
sufficiently detailed for the purposes of this report. For information on the Cray XT5 platform, see the 
Cray website.‡ For chip-specific information on the single socket 1000 series, see the AMD website.§ 

2.2 RESULTS SUMMARY 

The FY09 studies demonstrate both strong scaling, where the problem complexity for an application 
is fixed and the time to execute the instance is reduced by demonstrating effective utilization of an 
increased hardware allocation, and weak scaling, where the goal is to compute in the same wall-clock 
time a more complex problem on an increased hardware allocation (e.g., maintaining fixed work per 
processing element). 

The program binary (a compiled/loaded executable constructed from the application source code) is 
the instantiation of the problem on the target machine, and the computational complexity of each problem 
instance is deduced directly by monitoring the values of the various program counters for the various 
functional units (e.g., floating point operations, or flops) activated during program execution. In other 
words, the required resources define the complexity of the problem and the work conducted to actually 
execute it. This measure of work is fairly basic from the hardware perspective and can be derived from 

                                                 
* http://www.lustre.org 
† http://www.nccs.gov/computing-resources/jaguar/ 
‡ http://www.cray.com/Assets/PDF/products/xt/CrayXT5Blade.pdf 
§ http://www.amd.com/us-en/Processors/ProductInformation/0,,3_118_8796_15226,00.html 
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system observables such as number of processing elements (PEs) dedicated to executing the program, 
execution time, total number of instructions executed,* the magnitude of the memory demand, etc. 

2.2.1 VisIt 

In Q2, a 103,716,288 cell, 4,096 domain, and 27 energy group Denovo nuclear power plant energy 
deposition study was executed on 4,096 cores of the Jaguar/XT5 target machine. The resulting run 
generated 4,096 HDF5 formatted files totaling 83.457 GB of storage. During execution of the isosurface 
benchmark, six different isosurfaces were computed and then rendered in a single image at 1,024 × 1,024 
pixel resolution. The rate that VisIt computed isocontours was 0.01778 s per isocontour on 4,096 cores. 
The isosurface benchmark required 173,459,136,793 floating point operations to complete. During 
execution of the volume rendering benchmark on 4,096 cores, 2,000 samples were computed per ray at 
1,024 × 1,024 pixel resolution. The average compute time (measured per process) to render was 
28.7293 s. The volume rendering exercise required 178,848,487,657 floating point operations to 
complete. 

In Q4, a 321,117,696 cell, 12,720 domain, 27 energy group Denovo nuclear power plant energy 
deposition study was executed on 12,720 cores of the Jaguar/XT5 target machine. The resulting run 
generated 12,720 HDF5 formatted files totaling 258.391 GB of storage. Again, in the isosurface 
benchmark, six different isosurfaces were computed and then rendered in a single image at 1,024 × 1,024 
pixel resolution. The rate that VisIt computed isocontours was 0.01686 s per isocontour on 12,720 cores. 
The isosurface benchmark required 522,908,518,594 floating point operations to complete.  During 
execution of the volume rendering benchmark on 12,720 cores, 2,000 samples are computed per ray at the 
same resolution as in Q2.  The average compute time (measured per process) to render was 6.37796 s. 
The volume rendering required 502,828,537,797 floating point operations to complete. 

In summary, the total wall-clock times spent in the processing pipeline, discussed in the detailed 
description of VisIt, include overheads not reported in these software benchmarks (such as I/O times in 
Q2 and Q4). The benchmarks performed in FY09 demonstrate the significant capabilities to volume 
render and isosurface large spatial data sets employing parallel computing techniques and resources. The 
isosurface benchmark revealed better than linear weak scaling to compute isocontours with the software. 
Indeed, a problem composed of a factor of 3.1054 more physical domains over a factor of 3.0961 more 
cells requiring a factor of 3.0145 floating point computations was computed at a rate that was 1.0545 
times faster in Q4 than in Q2 on 3.1054 times more cores of the same target machine. The volume 
rendering benchmark demonstrates substantially much better than linear weak scaling performance. 
Between Q2 and Q4 a performance and scaling bottleneck was identified and fixed in VisIt’s volume 
rendering capability (discussed in the detailed write-up of VisIt). The time to volume render the problem 
composed of a factor of 3.1054 more physical domains over a factor of 3.0961 times more cells requiring 
a factor of 2.8114 floating point computations was computed 4.5044 times faster in Q4 than in Q2. The 
weak scaling results for VisIt are outstanding; hence VisIt met its target Joule metric on weak scaling 
problems in both isosurfacing and volume rendering. 

2.2.2 CAM 

In both Q2 and Q4, CAM Version 3.5—configured with the spectral Eulerian dynamical core—was 
executed in uncoupled mode for a T341 grid (approximately 0.35° in latitude and longitude) with 
26 vertical levels on 8,192 processor cores of the target machine for a one-month simulation and constant 
time step of 150 s (17,856 simulation time steps). The uncoupled mode includes a fully active land model, 
and sea surface temperatures and sea ice concentrations are provided by external forcing datasets. The 
difference between the Q2 and Q4 execution models of CAM is characterized by changes made after the 

                                                 
* The instruction set is not to be confused with basic operations that are defined in the language of the 
instruction set of the chip.  For instance, in a single cycle, a single cup-core (1 PE) on Jaguar/XT5 can compute 
four double-precision mathematical operations (fused multiply and add). 
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Q2 benchmark that enabled an improved use of the multicore target architecture for the Q4 benchmark. 
The details are discussed in Sect. 3.2. 

The Q2 benchmark completed execution on 8,192 cores of Jaguar/XT5 in 6,481.724 s. The measured 
execution time of the main computation phases includes 5,916.475 s for the atmosphere model (with 
~4,247 s being the dynamical core) and 112.048 s for the land model. Writing the history files (I/O) took 
115.024 s.  

The Q4 benchmark completed execution on 8,192 cores of Jaguar/XT5 in 3,241.144 s. In the main 
phases of the computation, the atmosphere model took 2,823.365 s, the land model took 101.310 s, and 
the I/O phase was 41.302 s. 

The strong scaling result for CAM is outstanding. The same amount of Jaguar/XT5 resource (same 
number of cores) was utilized to compute the same physical problem in both Q2 and Q4, yet the Q4 
software executed 2 times faster than the Q2 version. CAM therefore met its target Joule metric by virtue 
of its factor of two reduction in execution time on a fixed size problem. Considering only the execution 
time of the atmosphere model with the spectral Eulerian dynamical core (which is the portion of the 
model where the algorithmic improvements were made), the Q4 variant executed 2.0955 times faster than 
the Q2 version. The improvements enable better throughput for climate scientists. 

2.2.3 XGC1 

The XGC1 magnetic fusion application yields solutions to the gyrokinetic Maxwell’s equations with 
a full plasma distribution function. This solution includes both the heat source in the core and particle loss 
on the edge (at the wall) for the entire volume of various tokamak geometries. XGC1 simulations include 
open and closed magnetic field regions, and the separatrix surface between these regions believed to be of 
vital significance to the construction of an ITER-scale tokamak. The science goal behind the XGC1 
benchmarks was to study non-local H-mode turbulent coupling driven by free energy in the ion 
temperature gradient in a simulation day or less utilizing as much hardware from the target architecture as 
possible. To enable a one-to-one comparison, the DIII-D tokamak geometry with a fixed number of 
plasma particles (13.5 billion) was used for both the Q2 benchmark and Q4 baseline simulations. The 
existing target architecture did not possess enough hardware (compute cores and associated memory) to 
allow ITER geometry computations in Q2 due to XGC1 scaling issues that existed at that time. 

In Q2, XGC1 was executed on 29,952 cores of the target machine. The simulation was executed for 
24 hours and terminated after 4,000 physical time steps. While the simulation was unable to evolve to the 
desired quasi-steady self-organized state in this time period, the simulation did reach a nonlinear phase 
where the turbulence intensity was seen to propagate from the edge to the core, indicating a nonlocal 
coupling between the edge and core regions. 

In Q4, 119,808 cores were utilized to execute 16,000 physical time steps in 21 hours of simulation 
time. The Q4 simulation evolved beyond the initial, bursty nonlinear turbulence phase observed in the 
results of the Q2 simulation to the quasi-steady self-organized phase characteristic of experiments. 
Valuable insights into the nonlocal turbulence propagation and the evolution of the turbulence and the 
plasma profile to the quasi-steady self-organized-critical (SOC) state were obtained in Q4 for the first 
time through simulation. These results provide invaluable insight into numerous experiments significant 
to the design of the ITER.   

The performance result for XGC1 is outstanding. In Q4, the software computed 4 times as many 
physical time steps with 4 times the number of processes in less time than the Q2 simulation. Indeed the 
execution time in Q4 was 0.875 times the execution time in Q2. The enhancements made between Q2 and 
Q4 focused on improving several of the particle computations by employing light weight processes and 
eliminating essentially one-fourth of the communications in these phases. Precomputing spline 
coefficients and performing a table lookup (instead of repeatedly recomputing the coefficients), for 
example, were major contributors in the optimization of the particle interpolation scheme. Also, better use 
was made of partial derivatives required in the interpolation scheme. XGC1 therefore met its target Joule 
metric as measured by both “grind time” (simulation time per step) and particle push rate. 
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2.2.4 RAPTOR 

The purpose of the RAPTOR benchmarks is to study the effects of large-eddy simulation (LES) grid 
resolution on scalar mixing processes, to try and understand the relationship between the grid spacing and 
the measured turbulence length scales using a companion set of experimental data, and to study the 
effects of increasing jet Reynolds (Re) number on the dynamics of turbulent scalar mixing. The 
benchmark is performed using the experimental DLR-A configuration for validation (see details in the 
following sections), which is one of a series of internationally recognized datasets used by the combustion 
community. The computational domain includes the entire burner geometry (inside the jet nozzle and the 
outer co-flow) plus the downstream space around burner. The inner nozzle has a diameter of 8 mm with 
the outer nozzle surface tapered to a sharp edge at the burner exit. There are 110 inner jet diameters in the 
axial direction (88 cm length) and 40 jet diameters in the radial direction (32 cm length). In both Q2 and 
Q4 simulations, exactly the same physical apparatus and flame were modeled for 50 physical time steps 
but at different grid resolutions and Re numbers (starting at 15,200). 

In Q2, 10,285,056 cells were used to partition the computational domain. The simulation was 
executed in 1,425.761 s on 47,616 cores of the target Jaguar/XT5 architecture. The time integration 
routines (which integrate the Navier-Stokes equations) dominated the cost of RAPTOR computations. In 
Q2, time integration required 1,034 s. In total, the computation retired 2.059456803 × 1017 total 
instructions, while executing 3.780249864 × 1014 floating point operations. 

In Q4, 24,261,120 cells were used to partition the domain. The simulation completed execution in 
1,972.397426 s on 112,320 cores of Jaguar/XT5. Time integration required 444 s. The Q4 computation 
retired 6.633655878 × 1017 instructions, while executing 8.928138372 × 1014 floating point operations.  

The performance results obtained in Q2 and Q4 for RAPTOR can be interpreted as follows. First, the 
principal phase of the computation that requires scalability is the cost of an integation time step. The cost 
of the initialization phase (problem input and setup) is amortized over the time evolution phase; hence the 
initialization time is not included in exercising the Joule metric. Second, the cost to integrate multiple (50) 
time steps reveals a remarkable result, namely that the RAPTOR performance metric increases by a factor 
of 2.34 beyond the required 1.0 necessary for meeting its Joule metric. The Q4 metric problem requires 
2.3617 times more floating point operations on a domain having a factor of 2.3588 more cells on 2.3588 
times more PEs than the Q2 benchmark. In particular, the compute time per number of grid cells per 
number of time steps (the “grind time”) is a generic measure of performance for RAPTOR.  In Q2, the 
grind time is  

(1, 034 s × 47, 616 cores) / 10, 285, 056 cells / 50 time steps = 0.096 .   

In Q4, the grind time is  

(444 s × 112,320 cores) / 24,261,120 cells / 50 time steps = 0.041 .   

The ratio between Q4 and Q2 is 2.3414—a truly outstanding weak scaling result. RAPTOR therefore met 
its target Joule metric by virtue of a remarkable 2.34 factor reduction in grind time on a weak scaling 
problem. The enhancements after the Q2 benchmark that led to this remarkable result are discussed in the 
detailed description of RAPTOR. 

2.3 CONCLUSIONS 

The aggregated machine event information collected while executing the Q2 baseline and Q4 metric 
problems is presented in Table 1. This approximates the total computational complexity executed for the 
FY09 Joule computational science capabilities measure (all on Jaguar/XT5).  

Some of the applications were also improved for efficiency or simply performed better from the 
machine perspective when executing a larger problem. 
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Table 1. FY09 Joule software summary of Q2 baseline and Q4 metric performance simulations and data 

Application VisIt CAM XGC1 RAPTOR 

Metric 
Image construction/display 
time 

Image construction/display 
time 

Simulation time 

Grind time and particle 
rate 
Time per time step 
Particles pushed per 
second 

Grind time 
Time per cell per time 
    step 

Problem 

Isosurface 
• 1,024 × 1,024 pixels 
• Iso @ 0.001, 0.01, 0.1, 1.0, 

10.0, 100.0 
• Q2 dataset: 103.7M cells, 

4,096 cores, 27 groups 
• Q4 dataset: 321.1M cells, 

12,720 cores, 27 groups 

Volume render 
• 1,024 × 1,024 pixels 
• 2,000 samples per ray 
• Q2 dataset: 103.7M cells, 

4,096 cores, 27 groups 
• Q4 dataset: 321.1M cells, 

12,720 cores, 27 groups 

1 simulated month 
• T341 mesh 
• 150 sec time step 
• 26 vertical levels 
• Spectral Eulerian 

core 

DIII-D experimental 
    tokamak 
• 13.5B particles 
• Q2: 4,000 time steps 
• Q4: 16,000 time steps  

DLR-A configuration 
• 50 time steps 
• 110 × 40 jet diam in 

axial and radial 
directions 

• Q2: 10,285,056 cells 
• Q4: 24,261,120 cells 

Hardware (cores) 
   Q2 
   Q4 

 
  4,096 
12,720 

 
  4,096 
12,720 

 
8,192 
8,192 

 
  29,952 
119,808 

 
  47,616 
112,320 

Time (seconds) 
   Q2 
   Q4 

 
0.01778 per contour 
0.01686 per contour 

 
28.729 
  6.378 

 
6,481.724 
3,241.144 

 
86,400 
75,600 

 
1,034.0 
   444.0 

Metric target Q2:Q4 contour time ≥ 1.0 Q2:Q4 time ≥ 3.10 Q2:Q4 time ≥ 2.0 
Q2:Q4 grind time ≥ 1.0 
Q2:Q4 particle rate ≥ 4.0 

Q2:Q4 grind time ≥ 1.0 

Metric result 1.05 4.50 2.10 
1.14 
4.57 

2.34 
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3. OVERVIEW OF COMPUTATIONAL SCIENCE CAPABILITIES  
AND ANALYSIS OF METRIC RESULTS 

3.1 VisIt 

3.1.1 Introduction 

VisIt is an open source interactive parallel analysis and visualization tool for scientific data. It can be 
used to visualize scalar, vector, and tensor fields defined on 2D and 3D structured and unstructured 
meshes. VisIt was designed to handle very large data set sizes in the petascale range and yet can also 
handle small data sets in the kilobyte range. It is widely used throughout the scientific community, 
including government laboratories, universities, and industry. VisIt won an R&D 100 award in 2005 and 
has been downloaded over 100,000 times. Computer scientists at a number of DOE laboratories and 
universities have invested approximately 50 person-years of development in VisIt. VisIt is intended for 
more than just visualization and is built around five primary use cases: data exploration, quantitative 
analysis, comparative analysis, visual debugging, and communication of results. VisIt has a client-server 
design for remote visualization, with the server operating in a fully data parallel manner and in a 
distributed memory setting. VisIt has been deployed on a variety of computing platforms, including 
Linux, Mac OS, Windows, and on a diverse set of high performance computing platforms, including 
Cray, Sun, and IBM. 

VisIt is built on top of a number of well-established third-party libraries and applications. These 
include the Qt widget library for user interface, the Python programming language for a command line 
interpreter and scripting capability, and the Visualization ToolKit (VTK) for the data model and many of 
the analysis algorithms. 

3.1.2 Background and Motivation 

As supercomputers become increasingly powerful, the size, scope, and complexity of the simulations 
continue to increase. This results in increasingly larger quantities of output data that need to be analyzed 
and understood. Effectively and efficiently understanding the results has been a long-standing challenge. 
To meet this challenge, postprocessing analysis and visualization tools have been developed which read 
in the simulation data, perform various operations, and present the results using visual or quantitative 
techniques. A great diversity of quantitative and visual techniques has been developed to give insight 
about the data, including isosurface extraction (Fig. 1(a)), volume rendering (Fig. 1(b,c)) and streamline 
generation (Figure 1(c)). 

 

     

Fig. 1. (a) An isosurface of a Raleigh-Taylor instability problem. (b) A volume rendering of a 
turbulence problem. (c) Volume rendering and streamlines of a core collapse supernova collapse 
simulation. 
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As the size, scope, and complexity of the simulations increase, the capability of the postprocessing 
analysis and visualization tools must be able to similarly scale. The failure of these tools to scale will 
place unacceptable restrictions on their use, such as operating only on portions or downsampled versions 
of the data or taking an inordinate amount of time to complete. These restrictions have enormous negative 
impacts on a scientist’s ability to understand and reason about a simulation. 

3.1.3 Capability Overview 

VisIt's basic execution model is to employ “data flow networks,” a standard model used by 
visualization systems for approximately two decades. Data flow networks consist of relatively 
independent filters, with each filter corresponding to an analysis algorithm. Filters can have one or more 
inputs and one or more outputs. Connecting filters together, attaching sources (file readers), and 
connecting the network's final outputs to a rendering algorithm creates data flow networks. An example 
of a dataflow network that renders isocontours of a dataset is shown in Fig. 2. 

 

 

Fig. 2. Data flow network-processing model.  
Data flows from the network source to the network sink. 

 
VisIt's large data strategy is to use distributed memory data parallelism. To create a given rendering, 

each processor creates an identical data flow network, and the networks are differentiated by the input 
data they process, very much in the multiple instruction, multiple data stream (MIMD) model. The input 
data set is partitioned across the processors, with each processor owning a different portion. Sometimes 
“ghost data” is replicated along the boundaries of the partitions to prevent interpolation artifacts and other 
problems. Once each processor is assigned its portion of the larger data set, it reads its portion and 
executes its data flow network. The reading and the data flow network execution can take place with 
communication between the processors or entirely independently, depending on the specifics of the input 
data and the algorithms being executed. Once the data flow network is executed, an image is rendered. 
This rendering is typically parallelized for large data, which consists of every processor rendering the 
geometry for its portion independently, followed by a large communication phase where the individual 
images produced by each processor are composited into a final image. More complex rendering strategies 
are employed for transparent rendering, shadows, etc. 

3.1.4 Science Driver for Metric Problem 

In Q2, VisIt was used to perform two important and very common visualization tasks; namely, 
isosurface extraction and volume rendering of the output of an important radiation transport code, 
Denovo. In Q4, the same visualization tasks were performed on a radiation transport simulation 3 times 
the size of the Q2 simulation. 

In the baseline and metric problems, VisIt processes datasets from the Denovo simulation code. 
Denovo is a new, state-of-the-art, 3D radiation transport code being developed at ORNL. It is currently 
being used to study and analyze radiation dose levels in a variety of engineering environments. The 
particular problem used for this benchmark involves the reactor core, containment vessel, turbines, and 
surrounding buildings in a nuclear power generating plant (a pressurized water reactor [PWR] facility). 
The code is currently being used to study the radiation dose levels under normal operating conditions, 
with future plans to study doses following terrorist attack scenarios. Accurate, high-fidelity understanding 
of the dose contours around the core and in the surrounding buildings is critical for health and safety 
assessment and cleanup, as well as new plant design and remodeling. 

Scalability of this code is critical due to the enormous memory requirements of this type of transport 
calculation. High-fidelity 3D calculations using 1,000 energy groups results, for example, with 288,000 

File Reader 
(Source) 

Isocontour 
Filter 

Render 
(Sink) 



 

10 

degrees of freedom (DoF) per cell. With a limited amount of memory available per core, massive 
parallelism is mandatory for this type of calculation. As codes such as Denovo scale to higher degrees of 
parallelism and larger numbers of computational domains, the number and size of the resulting output 
files will similarly increase. It is therefore critical that the capability of the analysis and visualization tool 
similarly scale to handle increasingly larger numbers of computational domains. 

The example used in the baseline and metric problem 
is a steady-state transport calculation of radiation dose in a 
PWR facility, as shown in Fig. 3.  The model consists of 
material components consisting of concrete, reactor fuel, 
steel, reduced density steel, and air decomposed over 
many spatial domains. 

Denovo is a 3D, discrete ordinates (SN) transport code 
that utilizes state-of-the-art solution methods to obtain 
accurate solutions to the Boltzmann transport equation. 
Denovo uses the Koch-Baker-Alcouffe (KBA) parallel 
sweep algorithm to obtain high parallel efficiency on 
hundreds of processors on block-structured Cartesian 
(orthogonal) meshes. As opposed to traditional SN codes 
that employ source iteration, Denovo uses nonstationary 
Krylov methods to solve the within-group equations. 
Krylov methods are far more efficient than stationary 
schemes. Additionally, classic acceleration schemes 
(Diffusion Synthetic Acceleration) do not suffer from 
stability problems when used as a preconditioner to a Krylov solver. Denovo’s generic programming 
framework allows multiple spatial discretization schemes and solution methodologies. Denovo currently 
provides diamond-difference, theta-weighted diamond difference, linear-discontinuous finite element, 
trilinear-discontinuous finite element, and step characteristics spatial differencing schemes. Also, users 
have the option of running traditional source iteration instead of Krylov iteration. Multigroup upscatter 
problems can be solved using Gauss-Seidel iteration with transport, two-grid acceleration. A parallel first-
collision source is also available. Denovo has been verified against a number of problems, including 
several from the Kobayashi benchmark set. Initial parallel performance tests exhibit excellent strong 
scaling up to 100 processors and good scaling to 1,000 processors for high-fidelity problems. 

3.1.5 The Model and Algorithm 

For the analysis and visualization scaling study, two common algorithms were used, isosurfacing and 
volume rendering. An isosurface is the 3D analog of a level set (or “contour”). Given a scalar-valued 
function, the level set is defined as the set where a function has a specific value, as follows: 

 

In the visualization community, a number of different techniques have been developed for computing 
the solution to the level set equation, the most common being the Marching Cubes algorithm [1], which 
computes a polygonal approximation to the level set. Isosurface extraction is a very useful visualization 
technique, as it clearly illustrates interface boundaries of a scalar variable. This is particularly useful in 
the numerical quantification of radiation dose level (obtained from Denovo solutions) because it clearly 
delineates areas within the computational domain that experience a given dose. 

Volume rendering is a technique that produces an image directly from a scalar field in a 3D data set 
without producing intermediate geometry. Each value in the scalar field is assigned a color and opacity, as 
defined by a user-specified transfer function. After the transfer function has been applied to the scalar 
values in the mesh, the resulting color and opacity values are composited in front-to-back order (as 
defined by the viewing direction) to form the final image.  

Fig. 3.  Nuclear power plant, a PWR 
facility, set up for the Denovo simulation. 
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There are a number of techniques that have been used to composite color and opacity from scalar 
fields, including splatting, texture mapping, and ray casting. Generally, ray-casting techniques are the 
most accurate and produce the highest quality images. For the problem set chosen, the ray-casting volume 
rendering algorithm in VisIt was used.  

In volume rendering, the amount of work is primarily determined by three factors: the size of the 
computational domain (mesh), the size of the final image, and the number of sample points extracted 
along each ray. The ray-casting volume renderer in VisIt consists of two fundamental stages. In the first 
stage, the algorithm takes as input a large data set that has been partitioned over its processors. The 
second input to the algorithm is the definition of the rays, which are determined by the view frustum and 
image size, with one ray per image pixel. Then, in parallel, each processor calculates intersections of each 
of the rays with its portion of the larger data set. At this point, no processor has enough data to composite 
the values along the rays into the final color for the pixel, since the intersections for a given ray will be 
spread over many processors. VisIt solves this problem by creating a second parallel partition, which is 
over all pixels. It then redistributes the partial ray data from the intersections so that they honor this new 
partition. This redistribution phase sends data points using numerous parallel point-to-point 
communications. Once the data from the intersections are repartitioned, compositing is trivial, because all 
of the data for a given ray is on a single processor. Each processor composites the set of rays, then the 
resulting image is collected to processor 0 where it can be displayed to the user.  

3.1.6 Q2 Baseline Problem Results 

For the Q2 baseline problem, we have selected two common analysis and visualization techniques, 
isosurface extraction and volume rendering.  These two algorithms are exercised on the output of a 
Denovo solution of the radiation dose concentrations around a reactor core in a nuclear power generating 
plant.  The intent is to demonstrate weak scaling in the analysis and visualization of the radiation dose 
transport using two different algorithms, isosurface extraction and ray-casted volume rendering.  

The Q2 benchmark consists of a Denovo simulation of 4,096 spatial domains run on 4,096 processor 
cores of Jaguar/XT5. The computational mesh contains 103,716,288 cells with scalar flux values for 
27 energy groups computed within each zone. The simulation outputs each computational domain to a 
separate file (hence 4,096 files) in the binary Silo/HDF5 format using double-precision floating point 
values. The cumulative size of all output files is 83.457 GB. 

Isosurface Baseline. In this benchmark, contours at dose isovalues of 0.001, 0.01, 0.1, 1.0, 10.0, and 
100.0 are computed, extracted, and rendered at a resolution of 1,024 × 1,024 pixels using VisIt running on 
4,096 cores. The radiation dose is computed as part of the data flow network using the expression engine 
inside VisIt.  VisIt reads in the 27 energy level flux values from the simulation output files and, using a 
set of user-defined weights defined through its expression engine, linearly combines them to create the 
dose variable that is ultimately presented to the analyst. 

In postproduction analysis and visualization tools such as VisIt, the most important productivity 
(hence benchmarking) metric is the time it takes to render a frame to a user display.  Under normal use 
cases, the user loads the simulation data from disk into memory and then repeatedly interacts with the 
data, successively modifying isovalues and observing the results.  The metric focus is therefore on the 
scalability of the isosurface extraction algorithms and not on the scalability of the one-time expense of 
reading simulation data from disk.  The data in Tables 2 and 3 summarize the results for the Q2 baseline 
run. Pipeline is the execution time for the entire isosurfacing data flow network, excluding I/O. The 
timing value for Pipeline includes the following major components: Isosurface, the time to extract the 
isosurface geometry; Render, the time to render the geometry; Comp, the time required to composite and 
display the resulting image; and Expr, the time required to create the radiation dose variable using the 
expression engine. The minimum, maximum, and average times of the 4,096 core timings are reported. 
Since the result image is not displayed until all cores are finished, the maximum and average pipeline 
times determine how quickly results are displayed to the user. 
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Table 2. Per core timings for the Q2 isosurfacing benchmark 

 Minimum Maximum Average 

Pipeline    

Isosurface 0.0140 0.0270 0.01768 

Render 0.0200 0.0650 0.02245 

Comp 0.0480 0.0870 0.05193 

Expr 0.1810 0.2450 0.21097 

 
 

Table 3. PAPI hardware counter data for the 
Q2 isosurfacing benchmark 

PAPI hardware counters Counter value 

Total instructions 9.48E+14 

FP instructions 1.73E+11 

L2 Cache misses 33.83E+10 

Real cycles 5.69E+11 

Real (µs) 2.47E+08 

User cycles 2.63E+11 

User (µs) 1.14E+08 

 
Volume Rendering Baseline. In this benchmark, a 1,024 × 1,024 pixel volume-rendered image of 

the radiation dose variable is computed. As in the isosurface benchmark, this variable is computed using 
VisIt’s expression engine from the 27 energy group flux values stored in the simulation output files. In 
ray-casted volume rendering, the viewpoint has a direct impact on the amount of computational work to 
be performed prior to rendering the image. For this reason, the viewpoint is set so that the data is centered 
and fills the entire image. This maximizes the amount of work required during pipeline execution. 

 As in isosurface extraction, the time to render frames once the data is loaded from disk is the most 
relevant metric to the end user. The focus is therefore on the scalability of the volume rendering 
algorithms and not on the scalability of the one-time expense of reading simulation data from disk.  

Table 4 summarizes the timing data for the Q2 baseline run. Pipeline is the execution time for all 
stages in the volume rendering data flow network, excluding I/O. Vol Render is the execution time for the 
volume rendering filter, which consists of three major components: S Extract, sample point extraction; 
S Comm, sample point communication; and Expr, which is the time required to create the radiation dose 
variable using the expression engine. The minimum, maximum, and average times of the 4,096 core 
timings are reported. Since the resultant image is not displayed until all cores are finished, the maximum 
and average pipeline times determine how quickly results are displayed to the user. The per core timings 
and hardware counter results for 500, 1,000, 2,000, and 4,000 samples per ray are given in Tables 4 and 5. 
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Table 4. Per core timings for the Q2 volume rendering baseline 

 
500 1,000 2,000 4,000 

Min Max Avg Min Max Avg Min Max Avg Min Max Avg 

Pipeline 38.9050  38.98100 38.91322 34.51800 34.74800 34.67289 28.91100  29.01800 28.92484 31.47800 31.62200 31.49796 

Vol Render 38.7050  38.73800 38.71340 34.31200 34.36000 34.32562 28.71600  28.78000 28.72930 31.27700 31.41100 31.29756 

S Extract 0.05900   0.14200 0.11783 0.09900  0.23600 0.19002 0.10000  0.33200 0.25329 0.13400  0.51000 0.40080 

S Comm 38.5090  38.56600 38.54388 34.03100 34.11200 34.07852 28.33500  28.46500 28.41073 30.69500 30.90200 30.81717 

I Comm 0.00000   0.08800 0.00301 0.00000   0.13000 0.00444 0.00000   0.21500 0.00741 0.00000  0.36800 0.01221 

Expr 0.156 0.205 0.16285 0.156 0.199 0.16283 0.156 0.199 0.16275 0.155 0.199 0.16281 

 
 
 

Table 5. PAPI hardware counter data collected for the Q2 volume rendering 
baseline 

 500 1,000 2,000 4,000 

Total instructions 1.10E+15 1.18E+15 1.038E+15 1.068E+15 

FP instructions 1.33E+11 1.50E+11 1.79E+11 2.01E+11 

L2 cache misses 7.11E+10 7.11E+10 6.70E+10 7.20E+10 

Real cycles 3.78E+11 4.08E+11 4.47E+11 4.57E+11 

Real (µs) 1.64E+08 1.78E+08 1.95E+08 1.99E+08 

User cycles 2.31E+11 1.81E+11 2.10E+11 2.16E+11 

User (µs) 1.01E+08 7.86E+07 9.14E+07 9.38E+07 
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3.1.7 Computational Performance Gains 

The isosurfacing pipeline exhibited excellent weak scaling as implemented and no modifications were 
required. However, while performing this work, the volume rendering pipeline was run on more 
processors than had previously been attempted. In experimental volume rendering studies, it was 
discovered that good scalability was observed up to 1,024 processors, but performance thereafter 
dramatically dropped off at 2,048 processors and beyond. Investigation led to the discovery of two 
bottlenecks to scalability, one major and one minor. 

The major bottleneck was discovered in an O(n2) algorithm (n is the number of processors) that 
performed an optimization step to minimize communication between processors.  Ray-casted volume 
rendering is an image space-rendering technique. At each pixel in the output image, a ray located at a 
pixel and parallel to the viewing direction is created. This ray is intersected with the data, and a specified 
number of samples are extracted along the ray. Each sample along the ray is assigned a color and 
transparency according to the user-specified transfer function. To produce a final color at each pixel, 
these samples must be combined in a front-to-back compositing step. Performing this operation efficiently 
in a parallel, distributed memory setting is very complicated, as described in [2].    

The VisIt volume-rendering algorithm executes in two major phases, the first parallelizing across the 
mesh and the second parallelizing across the pixels in the final image. In the first phase, the cells in the 
mesh are evenly distributed across the processor set, and then each processor generates samples from the 
cells it owns from each ray. At the end of this phase, all of the samples along a given ray can be located 
on many different processors, so it is not yet possible to calculate the final pixel color. To solve this, the 
algorithm enters a second phase, where the data is partitioned such that all of the samples along a given 
ray are located on a single processor. Redistributing the sample points requires substantial point-to-point 
(arbitrary processor to arbitrary processor) communication. It is in this part of the algorithm where a 
barrier to scalability was discovered. There is the potential for a tremendous amount of communication 
when the sample points are redistributed. To try and minimize this communication, this phase of the 
algorithm examines the distribution of the sample points to processors and then attempts to create an 
assignment of pixels to processors in a manner that “minimizes” redistribution communication. That is, if 
a processor p already has many of the sample points for pixel q, the algorithm attempts to assign pixel q 
to processor p. This is implemented with an all-to-all communication primitive that requires an O(n2) 
amount of memory. This optimization is effective for small processor counts, but it was found that the 
coordination overhead does not scale and, at large enough processor counts, causes VisIt to run out of 
memory and fail.  The solution is to skip the optimization and simply assign pixels to processors without 
concern for the distribution of the sample points.  This enables the avoidance of O(n2) and even O(n) 
buffers.  It is possible to revisit this algorithm in an effort to minimize overall communication, but this is 
likely to cause the presence of, at a minimum, O(n) buffers and hence would not be cost effective.  
Finally, because the data is being partitioned to a finer and finer degree with such a large processor count, 
the amount of communication saved becomes progressively smaller as the number of processors rises. 

The minor problem encountered is in the VisIt tiling algorithm. When volume rendering a 1,024 × 
1,024 pixel image with 1,000 samples per pixel, the algorithm must manage over one billion (1,024 × 
1,024 × 1,000) samples.  In a serial setting, or with a small number of processors, these samples are more 
than can be contained in primary memory.  VisIt solves this problem by taking advantage of the fact that 
ray-casted volume rendering occurs in image space. Specifically, the image can be tiled into a sequence of 
smaller images. Each tiled image can be treated as an independent volume rendering, and the resulting 
tiles can be reassembled to form the final image. In doing this, the memory requirements are reduced. 
However, in a parallel setting, this tiling strategy has a very negative side effect.  The cells owned by a 
given processor are fixed before the volume rendering begins, so it is quite possible for a processor to 
have no work to perform on a given tile. And so the processor will wait until the next tile is ready to 
volume render, decreasing the parallel efficiency of the algorithm. In effect, the tiling strategy serializes 
the volume rendering over tiles, with the benefit of ensuring a lower memory footprint.  However, this 



 

15 

adaptation is not necessary when running in parallel on many processors. Each processor will own a 
portion of the samples, and as the number of cores grows large, the number of samples each core owns 
(which is essentially fixed) decreases.  After a certain number of processors, the memory requirement of 
the sample points is small enough to fit into main memory. At this point, the tiling strategy can be 
removed and the volume rendering can be effectively unserialized.  The solution was to simply disable 
the tiling strategy when running in parallel. 

3.1.8 Q4 Metric Problem Results 

For the Q4 metric problem, the same isosurface and volume rendering algorithms were run on an 
identical Denovo simulation 3 times the size of the Q2 simulation. Specifically, the Q4 benchmark 
simulation contained 12,720 spatial domains run on 12,720 processor cores of Jaguar/XT5. The 
computational mesh contains 321,117,360 cells with scalar flux values for 27 energy groups computed at 
each cell. The simulation outputs each computational domain to a separate file, making 12,720 files, 
output in the binary Silo format using double-precision floating points values. The cumulative size of all 
output files is 258.391 GB.  

The timing results of the isosurface 
extraction on the Q4 metric problem are 
shown in Table 6 and the PAPI hardware 
counting data in Table 7. Weak scaling 
results for isosurfacing timings are shown in 
Table 8. 

The timing results of the ray-casted 
volume rendering on the Q4 metric problem 
are shown in Table 9 and the PAPI hardware 
counting data in Table 10.  Weak scaling 
results for volume rendering timings are 
shown in Table 11. 

 
 

 

 
 

Table 6. Per core timings for the Q4 isosurfacing 
benchmark 

 Minimum Maximum Average 

Pipeline    

Isosurface 0.01411 0.02654 0.01686 

Render 0.02079 0.06907 0.02319 

SR 0.050 0.0912 0.05274 

Expr 0.1933 0.2501 0.22390 

    

Table 7. PAPI hardware counter data  
for the Q4 isosurfacing benchmark 

PAPI hardware 
counters 

Counter value 

Total instructions 9.12E+14 

FP instructions 5.23E+11 

L2 cache misses 2.31E+11 

Real cycles 1.08E+11 

Real (µs) 4.70E+07 

User cycles 7.42E+10 

User (µs) 3.23E+07 

Table 8. Weak scaling results of the Q4 benchmark 

 Minimum Maximum Average 

Pipeline    

Isosurface 0.992 1.0550 1.05456 

Render 0.9620 0.95555 0.97187 

SR 0.95865 0.95394 0.98483 

Expr 0.93636 0.97960 0.94225 
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Table 9. Per core timing results for the Q4 volume rendering 

 500 1,000 2,000 4,000 

Min Max Avg Min Max Avg Min Max Avg Min Max Avg 

Pipeline 7.47642 7.57774 7.4826 6.51973 6.63473 6.52798 6.5838 6.73839 6.60026 6.8265 7.04683 6.84922 

Vol Render 7.24796 7.30064 7.25474 6.29565 6.36192 6.30441 6.36193 6.46614 6.37796 6.60335 6.77199 6.62592 

S Extract 0.01855 0.0453 0.03042 0.02316 0.06854 0.04253 0.0282 0.1014 0.06169 0.03697 0.14928 0.0858 

S Comm 7.1393 7.16601 7.15538 6.16343 6.20998 6.19064 6.19944 6.28523 6.24175 6.39171 6.53656 6.46006 

Expr 0.1494 0.18839 0.16432 0.14966 0.18698 0.16435 0.14966 0.18803 0.16432 0.14956 0.18697 0.16440 

 
 

Table 10. PAPI hardware counter data collected for the Q4  
volume rendering benchmark 

 PAPI Hardware Counters 

 500 1,000 2,000 4,000 

Total instructions 1.10E+15 1.18E+15 1.038E+15 1.06E+15 

FP instructions 1.33E+11 1.50E+11 1.79E+11 2.01E+11 

L2 cache Misses 7.11E+10 7.11E+10 6.70E+10 7.20E+10 

Real cycles 3.78E+11 4.08E+11 4.47E+11 4.57E+11 

Real (µs) 1.64E+08 1.78E+08 1.95E+08 1.99E+08 

User cycles 2.31E+11 1.81E+11 2.10E+11 2.16E+11 

User (µs) 1.01E+08 7.86E+07 9.14E+07 9.38E+07 

 
 

Table 11. Weak scaling results of the volume rendering benchmark timings 

 500 1,000 2,000 4,000 

Min Max Avg Min Max Avg Min Max Avg Min Max Avg 

Pipeline 5.20 5.14 5.20 5.29 5.24 5.31 4.39 4.31 4.38 4.61 4.49 4.60 

Vol Render 5.34 5.31 5.34 5.45 5.40 5.44 4.51 4.45 4.50 4.74 4.64 4.72 

S Extract 3.18 3.13 3.87 4.27 3.44 4.47 3.55 3.27 4.11 3.62 3.42 4.67 

S Comm 5.39 5.38 5.39 5.52 5.49 5.50 4.57 4.53 4.55 4.80 4.73 4.77 

Expr 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
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3.1.9 Interpretation of Results 

The Q4 metric problem was run on a Denovo simulation using the identical setup but using a 
computational mesh that was roughly 3 times larger than the baseline problem. The simulation was run 
with a total of 321,117,696 computational zones across 12,720 spatial domains with scalar flux values for 
27 energy groups in each zone. Each spatial domain was output to a separate file, resulting in a total input 
file size of 258.391 GB. A comparison of the Q2 and Q4 problems sizes is shown in Table 12. 

For the Q4 metric problem, the same isosurface extraction and volume rendering operations were 
performed using VisIt running on 12,720 cores. 

 
Table 12. Q2 and Q4 simulation sizes 

Problem metric Q2 Problem Q4 Problem 
Q2–Q4 

Comparison 

Number of zones 103,716,288 321,117,696 3.096 

Number of domains 4,096 12,720 3.105 

Total file size 83.457 GB 258.391 GB 3.105 

 
The isosurface extraction algorithms are a fairly well understood, and scalability was expected. It was 

therefore gratifying to find that the framework in VisIt that manages and executes the isosurface 
extraction and rendering was able to exhibit very good weak scaling, satisfying the Joule criterion. 

3.1.10 Summary and Conclusions 

We have run two benchmarks using VisIt, isosurfacing and volume rendering, on two radiation dose 
transport simulations from Denovo. The resulting images from the Q2 baseline and the Q4 metric 
problem are shown in Figs. 4 and 5, respectively. The isosurfacing metric was shown to exhibit ideal 
weak scaling.  The Joule metric proved to be particularly useful to the volume rendering as two barriers to 
scalability were identified and addressed. The modifications to the volume-rendering algorithm resulting 
in significant performance improvements will benefit the entire analysis and visualization community as 
simulations continue to grow in size and scope. 

The output produced from the VisIt analysis and simulation runs produced expected results that have 
been verified with the code developer and are deemed acceptable. We have therefore accepted the results 
for the Q2 benchmark runs. 
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(a) (b) 

Fig.  4. (a) Extraction of radiation dose contours and (b) a volume rendering from the nuclear 
power plant simulation from the Denovo code. Q2 
 
 
 

(a) (b) 

Fig.  5. (a) Extraction of radiation dose contours and (b) a volume rendering from the nuclear 
power plant simulation from the Denovo code. Q4 
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3.2 CAM 

3.2.1 Introduction 

The Community Atmosphere Model (CAM) [3–5] is the latest in a series of global atmosphere 
models developed at the National Center for Atmospheric Research (NCAR) for the weather and climate 
research communities. CAM also serves as the atmospheric component of the Community Climate 
System Model (CCSM). The latest version of CAM (in its fifth generation) has been designed through a 
collaborative effort that includes NCAR, university, and laboratory users and developers, and its contents 
are defined by the CCSM Atmospheric Model Working Group (AMWG). Some of the key features in 
CAM include updated parameterizations for prognostic cloud water, cloud ice, precipitation, and cloud 
fraction; the radiative treatment of atmospheric aerosols (sulfate, dust, sea salt, carbon, and volcanic), the 
optional prognostic treatment of sulfate aerosols; improved energy conservation; improvements to the 
long-wave radiation interaction with water vapor; updates to the shortwave radiative transfer scheme to 
more accurately model trace gas absorption; and an atmosphere-land interface that now supports rain and 
snow phases. CAM also includes an optional slab ocean model and incorporates an International Satellite 
Cloud Climatology Project (ISCCP) cloud simulator to emulate ISCCP statistical cloud diagnostics.  

3.2.2 Background and Motivation 

Over the last two decades, NCAR has provided a comprehensive, 3D global atmospheric model to 
scientists all over the world for use in the analysis and understanding of global climate. Because of its 
widespread use, the model was designated a community tool and given the name Community Climate 
Model (CCM). The original versions of the NCAR CCM, CCM0A [6] and CCM0B [7], were based on 
the Australian spectral model [8] and an adiabatic, inviscid version of the European Centre for Medium-
Range Weather Forecasts (ECMWF) spectral model [9]. The CCM0B implementation matched the earlier 
CCM0A model to within natural variability, but in addition provided a more flexible infrastructure for 
conducting medium- and long-range global forecast studies. All aspects of the model in the CCM0B 
effort were described in a series of technical notes [10] and a detailed code and algorithm description 
[11]. The most recent version of CAM (CAM 3.0) incorporates significant improvements to the physics 
package (e.g., generalized cloud overlap for radiation calculations), new capabilities such as the 
incorporation of thermodynamic sea ice, and a number of enhancements to the implementation (e.g., clean 
separation between physics and dynamics).  

3.2.3 Capability Overview 

Physical Model. The model implementation is characterized by two computational phases: the 
resolved dynamics, which advances the evolution equations for atmospheric flow, and the physics, which 
treats subgrid-scale phenomena such as precipitation processes, clouds, long-wave and short-wave 
radiation transfer, and turbulent mixing. Control moves between the dynamics and the physics twice 
during each model simulation time step. A dynamics–physics coupler moves information between data 
structures representing the dynamics state and the physics state. 

Numerical Model. CAM includes multiple options for the dynamics, referred to as dynamical cores: 
a spectral Eulerian, a spectral semi-Lagrangian, finite volume, and cubed sphere. The spectral and semi-
Lagrangian dynamical cores use the same computational grids. Finite volume and cubed-sphere grids both 
differ from these grids due to differences in the mathematical formulations. An explicit interface exists 
between the dynamics and the physics, and the physics data structures and parallelization strategies are 
independent from those in the dynamics. 

Software Implementation. The software design of the CAM model includes a hybrid 
(OpenMP/MPI) approach in order to efficiently map to the multiple symmetric multiprocessor (SMP) 
node nature of many modern supercomputers, including the Cray XT-series machines at ORNL. The 
strategy for parallel decomposition is different in the physical parameterizations vs. the dynamical cores, 
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so a data transpose is necessary twice each model time step: once from the physics grid to the dynamics 
grid, and once from the dynamics grid to the physics grid. 

Data dependence in the physical parameterizations is only in the z (vertical) dimension. Physical 
parameterization data in this dimension is always on-processor in parallel OpenMP threads as well as 
Message Passing Interface Standard (MPI) processes, so the parameterizations themselves do no 
communication. Data are arranged in sets of (x,y) points called chunks. Each chunk can be thought of as a 
set of independent vertical “pencils,” where the computations on each pencil are independent of each 
other. A given MPI process is assigned some number of chunks, with per-task parallelism achieved by an 
OpenMP loop over the number of chunks. The size of a chunk is a compile-time setting. Most of the 
physical parameterizations have an inner loop over the chunk size, which provides opportunities for 
vectorization on machines that provide it. 

Since no communication is required in the parameterizations, their performance scales well with 
increasing thread and process count. The scaling is not perfect, however. There are two key reasons for 
this. First, as additional threads are added, the requirements on the memory subsystem increase. CAM is a 
memory-intensive code, so memory performance degrades when the nodes are fully populated (8 threads 
per node on the current XT5 system at ORNL). 

The second reason that the parameterizations do not scale linearly is that there is an inherent load 
imbalance imposed by the physics being modeled. As an example of load imbalance, consider that the sun 
is above the horizon on only half of the (global) model grid points at any particular time. There is a 
shortwave radiation calculation required at sunlit points, which is not done for points that fall below the 
terminator. This can cause a substantial load imbalance since the shortwave radiation calculation is 
relatively expensive, and the set of points that require it constantly changes as the simulated time of day 
changes. An attempt is made to statically load-balance the distribution of points to processors. The 
approach involves including points near the North Pole with points near the South Pole in the same 
chunk. Therefore, in northern hemisphere winter, for example, a given polar chunk should contain 
roughly half southern hemisphere points which are sunlit, and half northern hemisphere points which are 
not. 

Data decomposition for parallelization of the spectral Eulerian dynamical core is across latitude 
bands. Each MPI task is assigned some number of latitudes in the part of the spectral transform that 
begins in grid-point space and applies a Fourier transform. If more that a single latitude band is assigned 
to a particular MPI task, OpenMP parallelism is applied via a loop over the number of assigned latitudes. 
Once in spectral (wave number) space, parallelization is across Fourier wave numbers. To transform back 
to grid-point space, a data transpose is applied within the dynamical core to rearrange the data such that 
all Fourier wave numbers are contiguous in order to apply a reverse Fourier transform. 

The data decomposition in the spectral Eulerian dynamical core is only one dimensional (y direction). 
Prior to the advent of massively parallel computational platforms, this did not pose any bottleneck. Also, 
at the lower spatial resolutions of earlier simulations, the cost of the spectral dynamics relative to the 
physical parameterizations is much less (see next section). Our intent is to address overall performance 
and scaling issues mainly related to the spectral Eulerian dynamical core at high resolution. 
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3.2.4 Science Driver for Metric Problem 

A current focus area of climate change research is predictability on decadal timescales. These studies 
require a numerical model with very high spatial resolution (e.g., on the order of 30 km resolution in 
longitude and latitude). Until recently such simulations were not feasible due to the concomitant 
computational requirements. Only now with petascale-level platforms possessing adequate per-processor 
performance do such studies become tractable. 
Specifically, an ongoing atmospheric science 
research focus at ORNL involves the use of a 
high-resolution global atmospheric general 
circulation model (AGCM) to hindcast the 
climatic impact of volcanic eruptions (Fig. 6). 

An important design aspect of this work 
calls for the configuration of a global 
atmospheric model and associated land 
surface model with forcing datasets that 
enable us to address specific science questions 
about the response of the climate system to 
natural and anthropogenic aerosol forcing. 
These forcing datasets employ best estimates 
of observed solar variability and greenhouse 
gas mixing ratios during the experimental 
period. The atmospheric model is configured 
at a resolution of approximately 30 km to 
ensure adequate representation of regional 
features such as the orographic signal of 
precipitation. Such high resolution is also 
essential for the land model to develop a 
realistic soil moisture pattern. Another benefit 
from this high-resolution configuration is a 
more realistic representation of both extra-
tropical and tropical storms. 

The atmospheric model and land model 
chosen for this study, along with the spatial 
resolution, form the basis of the climate 
component of the FY09 Joule exercise. A 
description of the models, parallel 
decomposition, boundary datasets, and initial 
Q2 results are described in the following 
sections. 

3.2.5 The Model and Algorithm 

The Community Atmosphere Model (CAM) version 3.0 is the fifth generation of the National Center 
for Atmospheric Research (NCAR) AGCM used in climate studies. The name of the model series was 
changed from Community Climate Model to Community Atmosphere Model (CAM) to reflect the role of 
CAM 3.0 in the fully coupled Community Climate System Model (CCSM). The CCSM couples CAM 
and active land, ocean, and sea ice components together to form a fully interactive climate system model. 
CAM is designed through a collaborative process with users and developers in the Atmospheric Model 
Working Group (AMWG). The AMWG includes scientists from NCAR, the university community, and 
government laboratories and agencies such as ORNL. 

Fig. 6. Global average surface temperature in 
observations, modeled with and without anthropogenic 
forcing. Volcanic eruptions are clearly visible in their rapid 
cooling effect. Source: Fourth Assessment Report of the 
United Nations Intergovernmental Panel on Climate Change. 



 

22 

The CAM configuration for this study runs in uncoupled (stand-alone) mode. This configuration 
includes a fully active land model (Common Land Model or CLM), with sea surface temperatures (SSTs) 
and sea ice concentrations provided by external forcing datasets. The term “uncoupled” refers to the fact 
that there is only one executable image, with communication between component models via a subroutine 
interface. In “coupled” mode, boundary flux information is passed between individual models and a 
coupler using separate executables that communicate with one another via MPI. CAM can be configured 
to use any of four dynamical cores: spectral Eulerian, finite volume, semi-Lagrangian, or cubed sphere. 
The spectral Eulerian dynamical core is used for this study because its characteristics and behavior are 
well understood. The horizontal model resolution is T341 (see http://vets.ucar.edu/vg/T341), which 
results in a transform grid (latitude/longitude) of 1,024 × 512 points. This represents approximately 0.35° 
of latitude and longitude. There are 26 vertical levels. 

The CAM model version used in this study is 3.5. CAM 3.5 contains some modifications to the 
physical parameterizations beyond CAM 3.0. Details of the mathematical formulations are available in 
ref. [5].  Further details on the Eulerian dynamical core and physical parameterizations can also be found 
in this section. 

A key element in the design and implementation of the numerical methods for the CAM model is the 
coupling between the physical parameterizations and the dynamical core (this physics–dynamics coupling 
is not the same as the inter-model coupling just described). There are important performance 
ramifications of this coupling process as implemented on a parallel architecture.  The mathematical 
formulation of the coupling is described in Chapter 2 of ref. [5]. 

3.2.6 Q2 Baseline Problem Results 

Since the AGCM used in this study is a global model, traditional application of a weak-scaling 
approach to increasing the problem size is not possible given the science needs. This is because increasing 
the number of model grid points for a constant physical size domain necessarily shortens the distance 
between them. Numerical stability considerations (e.g., CFL constraint) dictate a shorter dynamics time 
step as grid points become more tightly spaced. This results in a substantial increase in the amount of 
floating-point work performed per core for a given model time integration. The computational cost of the 
dynamics part of the calculation as a result of doubling the resolution in both x and y dimensions goes as 
the cube of the resolution increase rather than the square. Computational cost of the physics part of the 
calculation resulting from this same increase in resolution only goes as the square of the resolution 
increase. As a consequence, the cost of the dynamics part of the calculation begins to dominate the cost of 
running the entire model as the horizontal resolution is increased. 

Scientific demands from climate models do not at this time justify moving to a much finer mesh than 
outlined above. Therefore, the CAM Joule metric applied for this exercise is model run time for a T341 
configuration at high process count. The model was run for one simulated month.  This is the minimal run 
time required to accurately represent the relative time taken by various model components for an 
arbitrarily long run, including the impact of model I/O. 

A total of 8,192 processor cores were used for the model run. On the Jaguar/XT5 system this is 
distributed as 1,024 MPI tasks, with 8 OpenMP threads per task. This means one MPI task per eight-
processor node on the system. For the final (Q4) simulation, improvements to the computational 
algorithms were devised and implemented to enhance the performance of the model. The algorithms 
themselves were not changed in a wholesale manner, but allowance was given for potential numerical 
differences at the round-off level in the improved implementation. This approach simplifies the process of 
assuring that the model is generating the "right" answers. “Correct” answers are defined by the answers 
generated in the baseline (Q2) simulation. The same initial and boundary condition files were used in both 
the Q2 and the Q4 runs. 

The CAM model can be configured to periodically write a snapshot file of prognostic data that can be 
used as an initial conditions file for subsequent runs. This is useful because the model requires a number 
of years of simulation time before it settles to a balanced (quasi-equilibrium) state. Fortunately, a run 
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performed with an earlier version of the model produced a number of these files. We chose one of these 
as an initial conditions file for this exercise. 

SST and sea ice concentration data are prescribed by monthly boundary datasets. These data are read 
in each simulated month and then interpolated in time. Monthly ozone and aerosol concentration 
bounding data are also prescribed, input to the model and interpolated to current model time as the model 
runs. 

The CLM requires specification of surface type and characteristics. These are provided by boundary 
datasets. Like the atmospheric model, CLM can start from an initial dataset. Although such a dataset is 
currently not available at the resolution of this study, the model instead provides the facility to start from 
an internally specified initial state. Spinning up to an equilibrium state requires a number of years of 
simulation. However, the computational characteristics between a spun-up state and this so-called 
"arbitrary" initialization are nearly identical. 

The benchmark results reported here are for a one-month simulation on 8,192 processor cores of the 
Jaguar/XT5 platform.* A constant time step of 150 s was used, with the total integration being 17,856 
time steps. The cost of the dynamical core itself was 4,247 s, which represents approximately two-thirds 
of the total simulation time of 6,482 s. The CLM cost was only 112 s. The cost of writing CAM history 
files was similarly small (115 s). This is because in default mode, the model only writes history files once 
per simulated month. In the Q2 runs a substantial performance gain was not realized by increasing the 
processor count from 4,096 to 8,192. This is primarily due to unexploited opportunities for parallelism in 
the dynamical core, and the fact that the relative computational cost of the dynamical core is quite high at 
a horizontal resolution of T341. In contrast to the dynamical core, the physical parameterizations in CAM 
take full advantage of the 2D (x–y) opportunities for parallelism. Performance data of the benchmark 
computation are shown in Table 13. The General Purpose Timing Library (GPTL) [12] was used in 
conjunction with the Performance Application Programming Interface (PAPI) to extract the performance 
data. 

 
Table 13. CAM performance data for the Q2 benchmark run* 

 Atmosphere CLM I/O Total 

Time (s) 5,916.475 112.048 115.024 6,481.724 

FP instructions 2.13 × 1015 3.89 × 1013  2.17 × 1015 

*The 8192-core simulation on Jaguar/XT5 consisted of a 17,856 time step integration 
(one month at 150 s per step) on a T341 grid (1024 latitude × 512 longitude × 26 vertical). 

 
A few items are worth noting for the CAM benchmark problem and associated collection of 

performance data. First, timing for the run is the same across all OpenMP threads and MPI tasks. This is 
because of barriers and synchronization necessary for the algorithms. Second, floating-point instruction 
data is collected from an equivalent MPI-only simulation (one MPI task per core) in order to avoid having 
to aggregate over all OpenMP regions. The MPI-only and hybrid OpenMP/MPI runs yield the exact same 
numerical results, so at present the floating-point instruction mix (number and order) for the two runs is 
the same although this is not necessarily true in general. Total instruction count data must be interpreted 
carefully because extraneous integer instructions executed by a given task can signify a load imbalance 
(e.g., spinning in user space waiting for any kind of barrier) rather than actual computational work. 

3.2.7 Computational Performance Gains 

Modifications implemented to achieve a greater than 2 times speedup for the CAM portion of a one-
month CAM+CLM T341 model run fall in four categories: source code modifications, compiler flags and 
improvements, run time configuration flags, and modifications to the I/O subsystem. 

                                                 
* http://www.nccs.gov/jaguar/ 
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We devised numerous source code modifications to the spectral Eulerian dynamical core in CAM. 
The impact was to obtain substantial speedups when run at particularly high resolution. The main theme 
of these modifications was to exploit embedded opportunities for parallelism at the OpenMP (threading) 
level that did not exist in the standard code base. At T341 resolution, the granularity of the new regions 
parallelized was sufficient to overcome the overhead of the threading itself and produce substantial 
performance gains. Good performance gains were also the result of the fact that existing MPI parallelism 
in the spectral Eulerian dynamics peaks at 512 processes, so additional opportunities (in this case 
OpenMP parallelism in the dynamics) needed to be pursued to push the parallelism to 8,192 cores. In 
addition, the fact that the cost of the spectral dynamics scales roughly as the cube of the horizontal 
resolution, while almost all of the physics scales as the square, meant that the modifications to the spectral 
dynamics would have a particularly significant impact at high resolution. Finally, since the XT5 system at 
ORNL was upgraded in the past year from four cores per SMP node to eight, this provided an additional 
performance boost since these OpenMP code modifications all apply at the node level. 

In the category of compiler flags and improvements, we note that the PGI compiler used for all runs 
went through two major revision upgrades between the Q2 and Q4 runs, from 7.2.3 to 9.0.1. This change 
alone had a beneficial impact of approximately 10% on overall model run time. PGI is the default 
compiler on the ORNL Jaguar machines. 

One change to default compiler flag settings from that used in the Q2 benchmark runs was to remove 
the flag "-Kieee" (the Q2 runs used exactly the same settings as the Jaguar-based Makefile maintained by 
NCAR). The impact of this flag was to force strict conformance with the IEEE 754 standard. By 
removing it, the compiler was able to utilize certain optimizations to its internal numerics that it would 
not otherwise have been able to do. The impact of turning off this flag sped up the CAM execution 
somewhat, without a significant impact on the generated solution. The original need for the flag was 
historical and it is no longer required. 

The flag -Mvect=nosse was changed to -Mvect=sse. The default CAM model Makefile specifies 
-Mvect=nosse, which disables vector instructions. Enabling vector instructions increases the theoretical 
peak speed of the AMD processor by a factor of 2. The speedup realized by the CAM model when vector 
instructions were enabled was more like 20%, which is still a significant number. The reason 
-Mvect=nosse was in the original Makefile was for numerical reproducibility across all thread counts 
used in OpenMP or hybrid OpenMP/MPI runs. The effect on model answers by enabling this flag was at 
roundoff. 

Flags -fast and -fastsse were also added to the Makefile. These are general optimization flags that had 
a minor impact on performance (though -fast implies an optimization level of at least -O2). 

Various compile-time and run-time Fortran name-list settings were tested as modified from their 
default values between the Q2 and Q4 runs. These had no impact on model answers but did affect model 
performance. The run-time and name-list settings exist to address issues such as cache blocking in the 
physical parameterizations, and to optimize the use of MPI primitives as used mostly in the dynamics. 
The settings had never been optimized for a T341 resolution, or specifically T341 on the XT5 
architecture, so some experimentation was necessary to achieve optimal results. Since there is some 
variability in model run time from one execution to the next simply due to issues such as operating 
system noise and overall load on the system, multiple runs had to be done to determine the best settings. 
This was particularly true of settings that had only a small impact on performance. 

Compile-time C-preprocessor variable PCOLS is essentially a cache-blocking parameter. It is the 
number columns (or vertical "pencils" using the nomenclature from earlier in this document) in a 
“chunk.” Recall that the columns defining a chunk need not necessarily be contiguous in physical space, 
though many inner loops in the physics do index over this variable. Generally, the best setting is 
independent of horizontal resolution. Since cache line sizes generally involve a power of 2, a PCOLS 
setting that is likewise a power of 2 is normally the best choice. And indeed it turned out that the default 
setting of PCOLS=16 gave the best results. PCOLS=8 was nearly as efficient. 

The value of name-list parameter phys_loadbalance was changed from its default value of 0 to 3 
between Q2 and Q4 runs. “0” says not to do any load balancing within the physical parameterizations. 
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“3” says to find one process to exchange data with when balancing the physics load. For the usual latitude 
decomposition, this translates to finding the process with the "mirrored" latitude in the other hemisphere, 
and the load balance is usually very good. “2” says to do the optimal remapping, which is essentially an 
all-to-all communication. Physics load imbalances typically are not very large, so it is difficult to 
amortize the communication cost of option 2. “3” gave the best performance for the Q4 runs. 

Name-list parameter dyn_alltoall has possible settings of 0 or 1. If set to “0,” MPI_Alltoall is used for 
the transposes within certain routines in the dynamical core. Otherwise a point-to-point implementation is 
used. Run-time variability swamped any signal from varying this setting. Therefore, the default setting of 
0 was used in the final runs. 

Time taken to write the CAM history file was only a small fraction of the total model integration time 
in both the Q2 and Q4 runs (less than 2% of the total). However, we found it remarkable that some 
combination of current system load, upgrades to the underlying Lustre software, and migration to a new 
center-wide external Lustre file server resulted in more than a 2 times improvement in time to perform 
this physical I/O. We checked to be certain that exactly the same amount of data were written in both the 
Q2 and Q4 runs. Restart (checkpoint) files were not written in order to obtain an accurate measurement of 
the relative fraction of time taken to do I/O in both the Q2 and Q4 runs. 

3.2.8 Q4 Metric Problem Results 

A wide variety of performance analysis tools are available on the Cray XT5 architecture. Our original 
intent was to use CrayPat to gather timings and underlying performance statistics such as total floating 
point operations. Unfortunately, we could not get believable numbers from this tool when applying it to 
hybrid OpenMP/MPI codes such as CAM. So instead we manually instrumented the code utilizing the 
GPTL timing library [12]. This library gives consistent, reliable performance data for hybrid 
OpenMP/MPI codes and also provides an optional interface to the PAPI library. PAPI provides detailed 
low-level hardware performance counter data such as floating point operation count. We double-checked 
correct behavior of GPTL+PAPI by constructing a test OpenMP/MPI code with a known floating point 
operation count. The floating-point operations (FP_OPS) measured by GPTL/PAPI were extremely 
accurate. This GPTL-based approach was very useful for diagnosing fine-grained performance 
improvements between Q2 and Q4. As a convenience in generating total floating point operation and 
instruction counts across all cores for the full model, we performed an additional simulation in MPI-only 
(unthreaded) mode. This allowed us to easily instrument a single code region across all MPI tasks, then 
gather the results with a simple post-processing script. Otherwise we would have had to manually 
instrument all OpenMP threaded regions (CAM and CLM contain many of these), then sum the results 
across all processes and threads. The numerical results in hybrid OpenMP/MPI mode identically match 
those of the MPI-only run, so we are confident that the PAPI results reported here are accurate. 

Wall-clock times reported in results here were for thread 0 of MPI task 0. Since there are numerous 
synchronization points as the model integrates, the total wall-clock time of all MPI tasks will always be 
nearly identical. Floating-point operations and instruction counts are summed across all processes in an 
MPI-only run (as described above), with a single grand total reported. 

For the Q4 run, the wall-clock time for the atmospheric component of the simulation on 8,192 cores 
using 1,024 MPI tasks and 8-way threading was 2,823.365 s (Table 14). This excludes initialization time. 
To aggregate statistics for instruction count and floating point operations, a Perl script was used to sum 
these statistics across the output timing data for all threads and tasks. Q4 comparison results are for the 
same region specified in the timing output files (“DRIVER_ATM_RUN”). 

The simulation done for Q4 matches that done for Q2 both in problem size (T341) and processor 
count (8,192). The distribution of MPI tasks (1,024) and OpenMP threads per task (8) was also the same. 
As such, the CAM configuration chosen for this Joule exercise was strictly a strong-scaling problem. The 
performance results shown in Table 14 below demonstrate a greater than 2 times speedup in the Q4 CAM 
run as compared with the Q2 benchmark run (see Table 13). Comparing the time taken for the column 
labeled “Atmosphere” defines a speedup factor of approximately 2.1.  
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Table 14. CAM performance data for the Q4 modified run* 

 Atmosphere CLM I/O Total 

Time (s) 2,823.365 101.310 41.302 3,241.144 

FP instructions 2.31 × 1015 6.09 × 1013  2.38 × 1015 

*The 8,192-core simulation on Jaguar/XT5 consisted of a 17,856 time step integration 
(one month at 150 s per step) on a T341 grid (1,024 latitude × 512 longitude × 26 vertical). 

 
The count of floating point instructions executed by CAM differs slightly between the Q2 and Q4 

runs (2.13 × 1,015 vs. 2.31 × 1,015). This is to be expected and is due to a number of factors, including 
compiler upgrades and additional round-off differences introduced as a result of code modifications. The 
CLM portion of the simulation was unchanged vs. the Q2 simulation. Thus the 12% speedup observed in 
that part of the calculation can be attributed to compiler upgrades and whatever system noise may have 
been present. The floating point operation count for CLM is more than an order of magnitude smaller that 
that for CAM. As such it does not represent a significant fraction of the total, but it is curious that the 
value increased by nearly 50% from the Q2 run to the Q4 run, all without any code changes. 

Time spent doing history file I/O decreased dramatically between the Q2 run and the Q4 run. This 
result is unrelated to code changes (there were no modifications to the I/O portion of the calculation) but 
rather the installation of a new system-wide Luster file system at ORNL. While the time spent writing 
history files was not a significant portion of total model time even in the Q2 run, the speedup of more 
than 250% observed in writing the same amount of history data is impressive. 

The reasons behind these observed results are described in the next section. 

3.2.9 Interpretation of Results 

The CAM model at T341 scales reasonably well to about 4,096 processor cores. Attempting to 
execute this problem across additional cores rapidly reaches a point of diminishing returns. This is 
depicted in Fig. 7, where total CAM performance is broken down into dynamics and physics components. 
The physics scales well to 8,192 cores, but the performance of the dynamics flattens beyond about 
2,000 cores. Since the current climate science goals that are driving the higher resolution CAM runs at 
ORNL demand reasonable turnaround (at least 2 simulated years per wall-clock day), there is a clear 
benefit realized by improving the strong-scale performance of the model. Figure 7 clearly shows that the 
performance of the dynamical core is the primary culprit in limiting scalability.  

The definition of metric success with the modified CAM software and run-time environment was to 
achieve at least a 2 times speedup between Q2 and Q4. We succeeded in meeting this goal. Comparing 
the time taken by the CAM model in Q2 vs. Q4 (5,916.475 s vs. 2,823.365 s), results in a speedup factor 
of 2.095. Thus it is now possible to simulate more than 2 years per wall-clock day with the high 
resolution Eulerian spectral version of CAM, but in Q2 it was only possible to simulate 1 year per wall-
clock day. 
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Fig. 7. Current CAM strong scaling performance for the T341 mesh on the Jaguar/XT5 platform. 
 

3.2.10 Summary and Conclusions 

The Q2 benchmark results translate to an ability to simulate a bit more than one year of model time in 
one day of wall-clock time on the XT5 machine at ORNL. Including all the modifications to code, name 
lists, and compiler flags described above, as well as upgrades to the compiler and I/O subsystem, the 
amount of simulation time increased by more than a factor of 2 for the Q4 runs (or the ability to simulate 
more than 2 model years per wall-clock day). The many weeks of computer time required to complete 
multi-decadal high-resolution simulations with the spectral Eulerian dynamical core in CAM has now 
been reduced to just a few weeks. This increased turnaround efficiency can have a dramatic effect on 
scientific productivity. 
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3.3 XGC1 

3.3.1 Introduction 

Prediction of the plasma transport property in ITER is one of the most urgent research topics in the 
thermonuclear fusion program.   Hot and dense plasma fuel in the central core must be adequately 
confined to produce much higher fusion energy output than the energy input required to operate the 
device, and at the same time the plasma in the edge must be cold enough to prevent costly damage to the 
material wall.  

By utilizing the fundamental property that the charged particles mostly flow along the magnetic field 
lines, magnetic field lines in the vicinity of the material wall are designed to intersect special target plates 
(diverter plates) in order to prevent the main material wall from damage. At the boundary between the 
closed and open magnetic field line regions, magnetic field separatrix surface exists (see Fig. 9 in Sect. 
3.3.4). Since the plasma on the open field lines is unconfined, it is naturally cold. The plasma temperature 
difference between the hot burning central core radii and the cold open field radii is not a free parameter 
for external control but self-determined by radial profile of thermal transport profile, which is mostly 
controlled by turbulence phenomena abundantly driven and supported by the temperature difference. If 
more heat is injected to the central plasma in an effort to increase the central temperature, greater 
temperature difference with the edge plasma drives stronger turbulent transport, hence opposing the rise 
of central temperature against the edge temperature.  Rise of the central temperature will need to be 
accompanied by the rise of the edge temperature, which is, however, not allowed by the heat tolerance 
limit of the material wall.  One of the formidable early efforts of the fusion plasma physicists was in the 
reduction of turbulence transport by an external mean, thus to raise the difference between the edge and 
core temperatures. Without such a mean, an economical production of fusion energy was expected to be 
difficult. 

It was then discovered by experimentalists over a quarter of a century ago that adequately heated 
tokamak plasmas can form a thermal barrier in the plasma edge just inside the magnetic separatrix surface 
[13], which separates the hot plasma inside the magnetic separatrix surface from the cold plasma outside 
it within a thin radial shell (a few centimeters in a DIII-D tokamak).  This transport barrier makes the 
plasma form a steep pressure pedestal just inside the separatrix surface. Turbulence level within this high 
confinement layer (H-mode layer) is reduced to an almost undetectable level. When this happens, the 
transport level of the core plasma is improved simultaneously.  Thus, the plasma temperature of the 
central core is now allowed to rise regardless of the temperature in the open field line region. As a matter 
of fact, H-mode plasma allows the central temperature to increase by as much as the incremental ampunt 
of the edge pedestal temperature.   This H-mode phenomenon occurs spontaneously by self-organization 
of plasma in the whole torus, in response to sufficient heat input in the core. Possibility of successful 
fusion reactor and ITER were escalated by this self-organization capability of toroidal plasma. 

The central core temperature of ITER needs to be predicted for the efficient design of the device and 
the systematic planning of the experiments. However, after a quarter century of endeavor, we still do not 
have a community understanding of the spontaneous H-mode transition phenomenon in the edge and its 
relation to the plasma transport in the core.  To get to the bottom of the physics understanding with 
predictive capability, a first principles kinetic simulation of the edge plasma has been requested to the 
Center for Plasma Edge Simulation (CPES), a SciDac Fusion Simulation Prototype Center.  The edge 
simulation then needs to be coupled or extended to the core to understand the core temperature behavior 
in relation to the edge plasma behavior. The key new capability here is the nonlocal self-organization of 
the whole toroidal plasma.  Once we obtain such a capability in the near future, the first principles 
simulation tool can be used to optimize the fusion yield, engineering requirement, and economy of future 
fusion reactors.  Such a simulation capability can also help guide the development of the reduced-model 
transport codes in the proper direction, which can be used for experimental timescale simulation. 
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3.3.2 Background and Motivation 

A preferable simulation method for such a first principles code is the 5D full-function gyrokinetic 
scheme without using the delta-f perturbation approximation. This method has been difficult to develop 
due to the embedded multiscale interaction between the small-scale turbulence dynamics and the large-
scale background relaxation and evolution, and the necessity of high performance computing. The large-
scale equilibrium drives small-scale turbulence. In return, the small-scale turbulence evolves the large-
scale equilibrium, closing the loop.  The experimentally observed plasma is the end result of such self-
organization.  Reduced model codes, such as gyrofluid or fluid, are computationally less demanding but 
lack the fundamental closure information required to describe such a multiscale self-organization. Delta-f 
simulation is efficient when the background is assumed fixed without participating into the multiscale 
self-organization dynamics and is virtually impossible in the open magnetic field line region in the edge. 

With the availability of petascale computing, it is now possible to attack the most robust and baseline 
ion-temperature-gradient turbulence together with the background neoclassical dynamics in the whole-
volume tokamak plasma in full-function gyrokinetic formalism.  As the HPC capability grows, the 
simulation can be extended to include many other relevant turbulence and heating physics calculation for 
first principles prediction of ITER plasma performance. 

3.3.3 Capability Overview 

XGC1 is a new 5D gyrokinetic particle-in-cell (PIC) code designed to model the whole plasma 
dynamics in experimentally realistic device geometry [14].  The main new features in XGC1 are the full-
function (full-f) description of the marker particles, as opposed to the previous perturbative delta-f 
description; the inclusion of the magnetic separatrix, magnetic X-point and the conducting material wall; 
and the particle/momentum/energy conserving Coulomb collisions. XGC1 allows the background profile 
to evolve to a self-organized state.  To model more realistic plasma, XGC1 uses a heat source in the core 
plasma. The heat then flows to the material wall by a plasma transport process in the code. XGC1 is 
presently used to study the electrostatic turbulence, transport, and background plasma profile with full-f 
ions and adiabatic electrons. XGC1 will soon be upgraded to simulate electromagnetic turbulence. 

XGC1, together with a simplified model version XGC0 [15], is the principal code for the existing 
SciDAC CPES project. The main purpose of the XGC1 code development has been to understand and 
predict the plasma transport and profile in the edge pedestal around the magnetic separatrix.  Edge 
pedestal formation is an essential required feature for the success of ITER.* The code also computes 
scrape-off and wall loss physics. Due to the unknown nonlocal nature of the plasma turbulence and 
transport, XGC1 runs preferably in the full-f mode on the whole-volume toroidal plasma, ranging from 
the magnetic axis to the material wall. At the present time, there is no other code in the world fusion 
community with this advanced capability. 

Marker particles are initiated in the entire toroidal volume in accordance with the initial density and 
temperature profiles.  A random number generator has been used in the Maxwellian envelope.  The 
plasma density profile is adjusted by the marker particle weights, while the marker particle density is 
spatially uniform. This technique improves the particle noise problem at the low plasma density region. 
For PIC executions, fixed grid cells are predesigned for a fixed experimental magnetic equilibrium. Due 
to the complexity of geometry in a diverted magnetic field, XGC1 uses an unstructured rectangular grid.  
To take advantage of the highly elongated neoclassical and turbulent electric potential structures along the 
magnetic field lines, the grid nodes follow the equilibrium magnetic field lines approximately. 

                                                 
* www.iter.org 
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Marker particles are time advanced according to the following Lagrangian equation of motion: 

  

These equations of motion are solved using a 4th or 5th order Predictor-Corrector scheme in a weakly 
collisional case, and a mixed 2nd–4th order Runge-Kutta scheme in a strongly collisional case.  In the 
Runge-Kutta scheme, the new turbulent field is solved in 2nd order and the particle position is solved in 
4th order.

 

At each time advance step, charges are interpolated to the grid node points.  The following 
gyrokinetic Poisson equation is solved on the grid nodes. 

 

 

 

The electric field information is interpolated back to the particle positions to execute another time 
advance of the particles in accordance with the above Lagrangian equation of motion. The equilibrium 
magnetic field data from the experimental g-eqdsk file is stored on a rectangular mesh.  At each particle 
position, the magnetic field is evaluated by spatial spline while conserving Div B = 0 [16]. In some 
specified time intervals, a linear Monte Carlo collision operation routine is called to execute the Coulomb 
collisions in the velocity space.  After each collision process, total momentum and energy of the particles 
are adjusted to ensure conservation within the colliding particles. 

The gyrokinetic Poisson equation is solved by PETSc [17]. The conjugate gradient method is used 
with various preconditioners available in PETSc, such as (1) an algebraic mutligrid preconditioner 
(HYPRE) for the (elliptic) equilibrium solver and (2) a diagonal preconditioner for the  (parabolic) 
turbulence solve.Even though the solver is a global operation (hence there are limits to the amount of 
parallelism available in the preconditioners), the amount of work by equation solver in XGC1 is fairly 
small relatively. In a typical XGC1 run, about 10% of the time is spent in the solver, which includes 
global reductions and scatters to assemble the charge vectors and to communicate the potential solution. 
One alternative to consider in getting ready for the future extreme-scale parallel machines is to form an 
explicit inverse of the matrix. 

The ion density at the node point is determined by summation of particle weights located on the 
triangles that contain the node point with linear interpolation. A triangle search operation is required to 
determine the triangle that contains a given particle and the interpolation coefficient. At the initialization 
phase, XGC1 prepares a table of rectangular grid which stores an index of every triangle overlapped. The 
triangle search routine uses the particle coordinates to perform geometric hashing into the rectangular grid 
to locate the target triangle. An optional preprocessing phase reorders the triangle and vertex labels using 
a Hilbert space-filling curve to improve spatial locality and cache performance. 

To properly manage the simulation data used for the Joule report, we are using the CPES EFFIS 
framework (End-to-End Framework for Fusion Integrated Simulation). This framework consists of the 
ADIOS componentized I/O system, the Kepler workflow for monitoring the simulation, and the eSimmon 
dashboard system. Each piece of the software stack that we have used is highly flexible and allows us a 
framework that makes running XGC1 simulations similar to the concept of running in an end-station.  
Researchers from the MIT System Design and Management Program, CPES, Georgia Tech, and ORNL 
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carried out this work. Adaptable I/O System, or ADIOS, is a componentization of the I/O layer. It 
provides an easy-to-use programming interface, which can be as simple as Fortran file I/O statements. 
ADIOS has been shown to get over 50% of the maximal I/O performance on the Crays when run 
properly. ADIOS will be tuned for XGC1 code to the optimal capacity for Q4 petascale computing. The 
scientific and performance results will be analyzed using the CPES dashboard for efficient collaboration 
among scientists, and with the applied mathematics and computer science collaborators. 

3.3.4 Science Driver for Metric Problem 

To meet the fusion energy yield goal of 
Q = 10, the plasma fuel ions in the central 
core of the ITER tokamak (Fig. 8) must 
maintain a sufficiently high temperature 
(≥15 keV). At the same time, plasma 
temperature near the wall must remain 
sufficiently cold (<<1 keV) to avoid 
premature plasma damage to the material 
wall.  Since the global slope of the plasma 
temperature is upper bounded by the turbulent 
transport in a normal situation, the only way 
to increase the core temperature to a burning 
level seems to be by making the plasma size 
large enough.  However, this leads to 
utilization of only a small fraction of plasma 
volume for fusion and, thus, to an 
uneconomical fusion device which cannot 
meet the ITER goal.  One way to remedy this 
problem is to find or invent plasma facing material that can withstand plasma bombardment at 
temperature much above 1 keV, which has not been a viable option to date. 

Fortunately, experiments in the present-day tokamak devices consistently find that, with sufficient 
core heating above a threshold power, plasma bifurcates into a state in which the edge temperature (and 
density) abruptly rises from ~100 eV in the open magnetic field region in front of the material wall to 
~keV just inside the last closed magnetic surface (separatrix) region.  Thus, in such a bifurcated state, the 
core plasma temperature can rise on an “edge pedestal” without the high temperature plasma contacting 
the material wall.  In this pedestal layer, which occurs just inside the magnetic separatrix, experiments 
find that the turbulence level is dramatically lower than the ambient level and that a deep well structure 
forms in the radial electric field profile. The density pedestal width is observed to be even narrower than 
the ion temperature pedestal width. Mysteriously, the reduction in the turbulence amplitude and the 
increase in the ion temperature in the core plasma appear to respond to the edge bifurcation in a much 
faster timescale than the radial plasma energy transport timescale.  The core ion temperature increases in 
proportion to the edge pedestal temperature with its radial slope being “stiff,” independent of the core 
heating power and, thus, the edge pedestal temperature (Fig. 9). This type of operation mode is called 
“H-mode,” meaning a high confinement mode.  As observations from other areas of nonlinear science 
have shown (e.g., oceanography, climate, economy, sociology, planetary science), the experiments 
indicate that there is a strong nonlocal component in the tokamak plasma turbulence dynamics. 

Fig.  8. Schematic of the ITER tokamak, where the 
first wall of the innermost structure of the device is 
shown, with the divertor chamber at the bottom. For more 
information, see www.iter.org. 
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Fig.  9. (left) Nonlocal nature of the ion temperature (Ti) profile. As the edge Ti 
increases, the core Ti increases together in a stiff shape. (right) The cross section of 
DIII-D magnetic surface inside the first wall. Open and closed magnetic surfaces are 
shown, with the magnetic separatrix surface in between.  For more information on the 
DIII-D device see http://web.gat.com/global/DIII-D. 

 
ITER’s performance goal to achieve the fusion yield ratio Q = 10 is based upon the assumption that a 

good H-mode operation is to be sustained.  However, the reasons why the edge pedestal forms in such a 
shape, why a strong core heating is necessary, why there is an instantaneous central Ti and turbulence 
improvement after the H-mode bifurcation, why the radial Ti profile is stiff, etc. are yet unknown after 
over 25 years of H-mode research. Due to the nonlocal, nonlinear, and multiscale nature of the H-mode 
physics, a large-scale first-principles gyrokinetic simulation of the turbulence and background plasma 
dynamics in the whole device volume has been a necessary component of the H-mode research.  
However, such HPC power has not been available so far and is just beginning to be realized in the United 
States.  With the aggressive planning of HPC development in the United States, Japan, and possibly 
elsewhere, the future of the large-scale H-mode simulation looks brighter.   

The whole-volume gyrokinetic simulation must be performed using the full distribution function 
(full-f) method, before simplifying it to the popular perturbed distribution function method (delta-f).  It 
needs to be done in a realistic tokamak geometry since the geometry effect appears to be important in the 
experiments, including the open and closed magnetic field regions with the magnetic separatrix surface in 
between.  It must deal with the heat source in the core and the particle loss to the material wall. 

We hope that the Joule metric exercise performed here not only improves our numerical code 
capability to scale but also sheds light on the H-mode physics at the first principles level so that it can 
help predict the performance of ITER and DEMO reactors. 

The science metric of this simulation exercise is to use the full-f gyrokinetic code XGC1 on the 
almost full capacity Jaguar/XT5 to study the most robust and large physical scale turbulence, which is 
driven by the free energy in the ion temperature gradient (ITG), self-consistently with the neoclassical 
equilibrium dynamics in a realistic DIII-D tokamak geometry (Fig. 9(right)). This simulation represents 
the first attempt in fusion research to study the nonlocal H-mode coupling physics between the edge and 
core turbulences in a realistic tokamak geometry.  Smaller physical scale turbulences will be added later 
as HPC capability grows in the near future. 

The goal is to obtain the physics results in 24 hours or less of Jaguarpf wall-clock time.  The Q2 
version was not optimized to scale well on much more than 30,000 Jaguarpf XT5 cores.  We thus used 
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29,952 XT5 cores (which is 1/5 of the Jaguar capacity). The Q2 XGC1 could take 4,000 time steps in 
24 hours.  The science we observed in Q2 is the development of the global full-f ITG turbulence to the 
nonlinear stage in the whole volume of realistic DIII-D geometry.  From the Q2 simulation, we only 
observe turbulence intensity propagation from edge to core, which is a sure sign of nonlocal interaction 
between edge and core. Initial turbulence intensity is strong and bursty.  Interaction of turbulence 
intensity bursts with the local E×B shearing rate and temperature gradient is clearly demonstrated.  The 
number of cores is insufficient to reach the quasi-steady self-organized state, which is more relevant to 
the experimental observations.  In Q4, we used the improved XGC1 to scale up to the maximal number of 
XT5 cores and ran the same simulation on 4 × 29,952 = 119,808 cores, which is about 4/5 of the maximal 
available Jaguarpf capacity.  In 16,000 time steps (which took about 20 wall-clock hours), the peta-scale 
Q4 simulation reached a quasi-steady self-organized state, after a long bursty nonlinear turbulent transport 
stage.  The Q4 simulation results shed light on the key unexplained experimental H-mode phenomena, 
including the reasons why strong core heating is necessary, why there is an instantaneous central Ti and 
turbulence improvement with the H-mode bifurcation, and why the radial Ti profile is stiff.  The Joule 
metric provided a significant scientific advance in XGC1. 

3.3.5 Q2 Baseline Problem Results 

The metric baseline here is the particle processing counts per second. We choose an actual 
experimental device for the Q2 benchmark exercise so as to contribute to the progress of a real scientific 
program. The experimental device size and the physics grid size (= ion gyro radius ρi) determine the total 
marker particle number used in the simulation. Marker particle number per grid node is set by particle 
noise level in the physical observables.  For the strong scaling metric between Q2 and Q4, we chose an 
ITG turbulence transport study within a day of wall-clock time in the whole-volume DIII-D tokamak at 
General Atomics, in realistic physical size and diverted geometry including material wall. The total 
number of marker particles thus determined for this problem size is 13.5 billion.  

Figure 10 shows our model for the initial plasma density and ion temperature profiles, with the 
electron temperature assumed to be equal to the ion temperature. Notice here that the ion temperature 
pedestal knee is located at a somewhat smaller minor radius than the density pedestal knee, making the 
relative temperature slope high between the two knees.  We assume that this is a common feature in 
H-mode operation.  To date, all the machines, which have adequate ion temperature profile diagnostics in 
H-mode, reported this feature.  Figure 11 shows the relative ion temperature gradient ηi ≡ R0/LT = R0|∂ log 
Ti/∂r|, where R0 is the major radius of the torus.  Shown together in the plot is the nonlinear stability 
criterion of ITG mode evaluated in the core plasma [18].  It can be seen that the plasma is supposed to be 
stable to ITG turbulence at ψN ≤ 0.5 if the turbulence is a local phenomenon.  As can be seen from the 
relation between the real minor radius in meters and ψN in Fig. 12(left), ψN ≤ 0.5 constitutes a significant 
portion of the core plasma since the half minor radius corresponds to about 0.37ψN. The temperature 
pedestal top is at about 0.8ψN, and the density pedestal top is at about 0.85ψN.  The right-hand side of 
Fig. 12 shows the radial profile of the magnetic safety factor q, which represents the toroidal windings of 
the equilibrium magnetic field relative to a poloidal winding.  It is shown here because q is an important 
indicator of plasma stability.  These model initial profiles are common to Q2 and Q4 benchmark runs. 

A total of 4.5 MW of heat is added to the ions around the magnetic axis (ψN ≤ 0.04 ≈0–10 cm) to 
force a heat flux into the turbulence region. The heating is achieved by raising the particle energy 
uniformly in the heating region by a small fraction of kinetic energy while keeping the pitch angle 
invariant. 
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Fig. 10. Early-time plasma density and temperature profiles. Electron temperature is assumed to be 

equal to ion temperature. Notice that the temperature pedestal knee is located at a somewhat smaller minor 
radius than the density pedestal knee, making the relative temperature slope high between the two knees. 
 

 
Fig. 11. Initial profile of R0/LT = R0|∂ log Ti/∂r|. The horizontal dashed line is the nonlinear stability 

criterion of a core plasma. 
 
 

 

Fig. 12. (a) Relationship between the normalized poloidal flux ψN and real distance in meters 
from the magnetic axis (Raxis = Ro) to the flux surface (R) along the midplane. (b) Radial profile of 
the safety factor q. 



 

35 

 
The Q2 baseline benchmark was run on 29,952 XT5 cores on Jaguarpf, which is about 1/5 of the 

maximal available Jaguarpf configuration at the present time.  Much above this number of cores, the 
XGC1 version at the time of Q2 execution 
does not scale well. Eight MPI processes 
were used per node.  The Q2 run was 
performed in two parts. An initial run was 
made for 2,000 time steps without saving 
the performance data to separate out the 
initialization cost. The simulation was 
then continued using a checkpoint file for 
another 2,000 time steps, and the 
performance data was recorded.  The 
second run gets into the nonlinear 
turbulence stage in the DIII-D benchmark 
plasma. The total wall-clock time spent was about 24 hours. Table 15 shows operation counts during the 
second run from the hardware performance counters, obtained using the PAPI performance data 
collection interface. 

Figure 13 shows the nonlinear turbulent eddies of the electrostatic potential over the whole poloidal 
cross section. The image at left is at an earlier time, showing turbulence generation in the edge.  The 
image at right is at the end of the Q2 run, showing that the edge turbulence has propagated to core. At the 
central core, the heat-source enhanced ITG turbulence can be seen, while the rest of the plasma is 
occupied with turbulent activities propagated from the edge.  Stronger turbulence eddies are observed at 
the weaker magnetic field side due to the toroidal ballooning effect. Figure 14 shows the inward 
propagation of turbulence intensity in the initial nonlinear period Q2 simulation.  We note again here that 
the nonlinear turbulence and plasma in Q2 are not in a quasi-steady state yet. Our Q4 goal was to obtain 
the quasi-steady self-organized nonlinear stage in 4 times more time steps as in Q2 by increasing the 
number of processor cores by factor of 4.  

 

 

Fig. 13. Turbulent eddies on the whole poloidal cross-sectional plane at (left) an 
earlier time and (right) a later time. The nonliear turbulence and the plasma are not in a 
quasi-steady state, yet. 

 

Table 15. XGC1 performance data collected on the Q2  
benchmark with PAPI hardware counters 

Number of processing elements 29,952 

Cycles per second per processor 2,255.35 × 106 

Instructions executed per second per processor 2,293.69 × 106 

Instructions per cycle 1.02 

Floating point operations executed per second  
   per processor 

222.65 × 106  

Particles pushed per second 0.628 × 109  
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Fig. 14. Inward propagation of the square root of 
turbulence intensity Sqrt(I) during the bursty nonlinear 
period, where I = < (δφ)2 >. Each plot is drawn in 0.08 ms 
interval, and the total propagation time is only 0.4 ms. 

 
The simulation result is rejected when the particle noise dominates the simulation, which can be 

detected by comparing the effective turbulent ion thermal conductivity with a noise-driven thermal 
conductivity level (0.05 m2/s). We have also investigated the convergence of the solution in particle 
numbers.  The simulation is also rejected when a numerical oscillation dominates the turbulent 
fluctuation. We have observed that this could happen if the ion temperature in the open magnetic field 
region (scrape-off plasma) is much higher than that observed experimentally.  

3.3.6 Computational Performance Gains 

There is sufficient work in processing the particles in this experiment to use hundreds of thousands of 
processors, even when holding the problem size fixed while increasing the number of processors (strong 
scaling).  The primary inhibitor to scaling is the MPI communication overhead arising in the solution of 
the Poisson problem and in the reassignment of particles to processes as the result of the time advance.   

Studies in the fall of 2008 indicated that OpenMP parallelization might improve the scalability by 
allowing us to decrease the number of MPI processes used for a fixed number of processors, thereby 
decreasing some of the MPI communication overhead.  In particular, on the Cray XT5, up to four 
OpenMP threads could be used efficiently to parallelize the processing of the particles. Using more than 
four is not useful currently due to the nonuniform memory access characteristics in the XT5 compute 
node. Beginning in 2009, OpenMP parallelism was implemented in XGC1, allowing the use of 1/4 as 
many MPI processes as would otherwise be required in the Q4 simulations. This not only contributed to 
achieving the Joule performance metric but is also a critical capability for scaling to even larger processor 
counts.  

The other major performance enhancement that occurred between the Q2 and Q4 experiments was the 
optimization of the interpolation scheme used in the evaluation of the magnetic field (and elsewhere).  By 
precomputing many of the spline coefficients and by taking advantage of common partial results in the 
computation of derivatives, the number of required floating operations is decreased, resulting in 
significant reductions in run time. As described in the next section, this has the seemingly anomalous 
effect of decreasing the achieved computation rate, but it decreased the amount of computation even 
more, improving throughput by approximately 30% in addition to the improvement achieved through 
OpenMP parallelism. 
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There are also other improvements made in XGC1, which include higher parallelization of particle 
operations, increased cache efficiency, and I/O speed improvement in ADIOS. 

3.3.7 Q4 Metric Problem Results 

In Q4 the number of XT5 processor cores was increased by 4 times to 119,808, which is about 4/5 of 
the maximal allowed number of cores in Jaguarpf.  The total number of time steps was also increased to 
4 times longer (16,000 steps), in proportion to the number of processors.  As in Q2, the Q4 runs were 
performed in two consecutive runs using restart file, and the performance data were obtained during the 
second run to avoid the initialization counts. 

Two performance enhancements described in the previous section (OpenMP parallelism and 
interpolation scheme optimization) enabled the performance to improve by a factor of 4.6 between the Q2 
and Q4 experiments, reducing the execution time per model time step from 21.6 s to 4.7 s. The Q4 
experiment used 4 times as many processors, so this reflects superlinear speedup compared to the Q2 
experiment. To reiterate, the OpenMP parallelism enhanced the ability to use efficiently 4 times as many 
processors, while the interpolation scheme optimization decreased the amount of work required in the Q4 
experiment. It is this latter performance enhancement that led to the more than ideal linear speedup for 
this fixed-size problem.  Due to the superlinear speedup, the total wall-clock time has decreased from 
24 hours to about 21 hours. 

Table 16 shows Q4 operation counts during the second run from the hardware performance counters, 
obtained using the PAPI performance data collection interface.  Q2 operation counts are shown together 
for a direct comparison. 

 
Table 16. XGC1 performance data collected on the Q4 benchmark  

with PAPI hardware counters 

 Q2 Q4 

Number of processing elements 29,952 119,808 

Cycles per second per processor 2,255.35 × 106 1,622.65 × 106  

Instructions executed per second per processor 2,293.69 × 106 1,399.46 × 106  

Instructions per cycle 1.02 0.86 

Floating point operations executed per second  
   per processor 

222.65 × 106  151.23 × 106 

Particles pushed per second 0.628 × 109  2.87 × 109  

 
Increasing the number of processor cores by 4 times to 119,808 enabled the improved XGC1 to 

execute the simulation to 4 times longer physical time steps within a day from the 29,952 core Q2 
simulation. As a result, while the Q2 simulation went only into the initial bursty nonlinear turbulence 
phase, the Q4 simulation was carried to the self-organized quasi-steady phase where the real experimental 
plasmas stay. Valuable information on the overall picture of the nonlocal turbulence propagation and the 
settling down of the turbulence and the plasma profile to the quasi-steady SOC state was thus obtained.   
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Figure 15 is an enlarged image 

of the turbulence intensity <|δΦ|2> 
contour in the radius-time space in 
the pedestal area.  It can be clearly 
seen that the turbulence starts around 
the temperature pedestal knee (ψN ≈ 
0.83) and propagates inward 
(outward propagation is much 
weaker).  A localized simulation in 
the small radial domain can distort 
the propagating turbulence dynamics 
due to the artificial inner boundary 
condition. A global simulation is 
needed to study the nonlocal 
turbulence dynamics. Figure 16 is 
the result of the localized simulation 
with a simulation boundary at 
r = 0.5 m and indeed shows a highly 
different result from the global 
simulation result of Fig. 15. A minor 
radius of 0.52 m in Fig. 16 
corresponds to about ψN = 0.89 in 
Fig. 15. 

 
 
 
 
 

  

Fig. 15. An enlarged image of the turbulence intensity < |δφ|2> 
contour in the radius-time space in the pedestal area. 

 

Fig. 16. The same simulation as in Fig. 15 in the localized 
radial domain, with the usual particle simulation boundary at 
r = 0.5. 
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Figure 17 is the heat flux contour in the 
global space-time space, which indeed shows 
that the out-to-in propagation of the 
turbulence front is all the way to the plasma 
core. As the turbulence front arrives (solid 
arrow), heat bursts appear radially outward 
(dotted arrows).  The inward propagation 
stops when the edge-originated turbulence 
meets the strongly sheared central turbulence 
at t ≈ 150 R/vi (≈0.6 ms). In the pedestal 
region, both the turbulence intensity and the 
heat flux remain small, which is 
characteristic of H-mode plasma.  Turbulence 
in the edge pedestal may be better described 
by electromagnetic effect.  However, the 
weak turbulence intensity and heat flux of the 
electrostatic ITG turbulence in the pedestal 
area suffice the present purpose of 
investigating the nonlocal edge-core relation. 

Another remarkable observation made 
from the simulation is the self-organizing 
modification of the background temperature 
profile by the incoming turbulence, as can be 
seen in Fig. 18.  Before the arrival of the 
edge originated turbulence, the ion 
temperature gradient was below the nonlinear 
ITG criticality (dotted horizontal line) [18].  
However, arrival of the edge-generated 
turbulence raises the local temperature 
gradient above the nonlinear criticality. The 
ion thermal conductivity is then self-
regulated to a new criticality by the self-
generated E×B shearing.  In other words, the 
turbulence criticality is nonlocally self-
organized by the edge turbulence source.  
This state is maintained by the out-flowing 
heat flux.  Combination of the low heat 
thermal conductivity near the magnetic 
separatrix surface and the large heat flux 
from the core keeps the ηi value at the Ti knee well above the nonlinear criticality, continuously supplying 
the ITG turbulence energy to maintain the new self-organized criticality.  Without the strong heat flux 
from the core, the ηi value at the Ti knee would collapse and the driver for the new SOC state would be 
lost.  In other words, the heat flux from the core is a “fuel” to the edge turbulence energy source.  The 
present simulation reveals that this is how the global ITG turbulence maintains an H-mode profile, if ITG 
is the strongest global turbulence transport mechanism. We have examined a few different heating power 
levels and have found that the ηi profile shown here is “stiff” with respect to the change of heating power, 
which is consistent with the experimental findings. 

 
 
 

Fig. 17. Heat flux contour in the global space-time 
space, exhibiting the out-to-in propagation of the 
turbulence front. 

 

Fig. 18. Self-organizing modification of the 
background temperature profile by the incoming 
turbulence. The horizontal line represents the 
nonlinear criticality in the core plasma. 
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Figure 19 is the time behavior of 
effective ion thermal conductivity (thermal 
flux divided by local Ti gradient) from the 
start of the simulation across ψN = 0.64, 
which corresponds to r = 42 cm on the 
outside midplane.  The short initial jittering 
of high frequency is the large amplitude 
GAM oscillations during the self-
organization of the toroidal plasma in the 
initial local Maxwellian loading and is 
subdued at about 30 ~ vi/R. At about 60 vi/R, 
ITG modes start to grow. It is well known 
that unless the jittering from the initial GAM 
activities is subdued, ITG turbulence does not 
grow in a full-f simulation [19]. The total 
simulation time is about twice the ion 90o 
collision time.  The Q2 run corresponds to 
1/4 of the time length. 

In Fig. 19, after the arrival of the 
turbulence front at the radial location, there is 
a distinctive bursty type of heat flux behavior 
in the initial stage of nonlinear turbulent 
transport until about t = 240 R/vi. This 
behavior corresponds to the heat bursts in 
Fig. 17. The inter-burst period is much 
greater than the initial GAM period. The 
radial speed of the ballistic motion of heat 
burst is about Vr ≈ (1/5) ρi vi/R ≈ (1/30) ρi 
vi/LT, which is similar to the analytic 
intensity burst estimates reported in refs. [20] 
through [22].  

Figure 20 shows interplay between the 
temperature gradient, heat flux, and the E×B 
shearing dynamics during the bursty heat flux 
at a radial location r = 42 cm. Arrival of the 
turbulence front is first noticed by the 
steepening of local temperature gradient and 
increase in heat flux (∝ turbulence intensity), followed by time delayed increase in the local E×B shearing 
rate.  Increase of the local E×B shearing rate then suppresses turbulence until the turbulence-driven 
sheared flow is reduced.  The burst cycle continues until a steady turbulence is reached at the end, where 
the turbulence shows a 1/f avalanche type of power law.  This is a textbook demonstration on the 
interplay between E×B shearing, turbulence intensity, and local temperature gradient, which is possible 
only in a full-f simulation. 

Fig. 19. Time behavior of effective ion thermal 
conductivity (thermal flux divided by local Ti gradient) 
from the start of the simulation across ψN = 0.64, which 
corresponds to r = 42 cm on the outside midplane. The 
self-organizing process is bursty. 
 

Fig. 20. Phase relation between the temperature 
gradient, heat flux, and E×B shearing dynamics at a 
radial location. 
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Energy conservation has been investigated 
within the volume 0.3 ≤ ψN ≤ 0.7. Between the 
total energy flowing into the volume across 
the inner surface ψN = 0.3, the sum of the 
particle energy change, the field energy 
created, and the out-flowing energy across the 
outer surface ψN = 0.7 shows about 2% error 
in the total energy conservation (Fig. 21).  The 
energy conservation error in a full-f code does 
not grow unless numerical errors grow. 

3.3.8 Interpretation of Results 

A fusion experiment measures its 
performance in quasi-steady-state operation. 
Study of the transient behavior is important 
for physics understanding.  However, a 
simulation will have to reach a quasi-steady 
state for an eventual understanding and 
prediction of the experimental performance.  
The goal of this metric is designed to obtain 
the initial transient nonlinear turbulence 
behavior in the realistic whole-volume DIII-D geometry in Q2, and to achieve the quasi-steady self-
organized turbulent state in Q4 within a day of wall-clock time. The original XGC1 did not scale too well 
much above 30,000 processor cores.  We thus chose 29,952 Jaguar/XT5 cores for the Q2 metric base.  
The improved XGC1 (OpenMP parallelism and interpolation scheme optimization) scales super-linearly 
to the Q4 metric base of 199,808 cores, which is 4 times the Q2 number of cores, and enabled the 
performance of XGC1 to improve by a factor of 4.5 between the Q2 and Q4 experiments, reducing the 
execution time per model time step from 21 s to 4.7 s. 

Improvement of the physics capability as a result of the above Joule metric exercise is significant. In 
Q2 the propagation of the nonlinear edge turbulence into the core was observed within a day of wall-
clock time, which provides an exciting evidence for nonlocal edge effect on the core turbulence and 
confinement in realistic DIII-D geometry.  However, in order to produce an experimentally relevant 
result, the nonlinear simulation has to be carried through the quasi-steady self-organized stage, while 
keeping the multiscale dynamics self-consistently.  The improved XGC1 performance in Q4 is good 
enough to reach to the quasi-steady self-organized stage within a day of wall-clock time.  As a result, 
many new physics results have been obtained to shed light on the over 25 year old H-mode plasma 
physics mysteries, which ITER is heavily relying upon for its success. 

As the computing power increases, we will be able to include more physics into XGC1 code, en route 
to the whole-physics modeling in first principles. 

OpenMP parallelism was implemented in XGC1, allowing the use of 1/4 as many MPI processes as 
would otherwise be required in the Q4 simulations. This not only contributed to achieving the Joule 
performance metric but is also a critical capability for scaling to even larger processor counts.  

The other major performance enhancement that occurred between the Q2 and Q4 experiments was the 
optimization of the interpolation scheme used in the evaluation of the magnetic field (and elsewhere).  By 
precomputing many of the spline coefficients and by taking advantage of common partial results in the 
computation of derivatives, the number of required floating operations is decreased, resulting in 
significant reductions in run time. This has the seemingly anomalous effect of decreasing the achieved 
computation rate, but it decreased the amount of computation even more, improving throughput by 
approximately 30% in addition to the improvement achieved through OpenMP parallelism. 

Fig. 21. Energy accounting within 0.3 ≤ ψN ≤ 0.7 
between the total influx across the inner boundary 
(black curve) and the sum of the consumed energy (blue 
curve) to the particles, the electric field, and across the 
outer boundary. Red line shows sum of black and blue 
curves. About 2% error is noticed. 
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Other improvements have also contributed, to lesser degrees, to Q4 enhancements of the 
performance, which include higher parallelization of particle operations, increased cache efficiency, and 
I/O speed improvement in ADIOS. 

3.3.9 Summary and Conclusions 

A fusion experiment measures its performance in quasi-steady state operation. Study of the transient 
behavior is important for physics understanding.  However, a simulation will have to reach a quasi-steady 
state for an eventual understanding and prediction of the experimental performance.  The goal of this 
metric is designed to obtain the initial transient nonlinear turbulence behavior in the realistic whole-
volume DIII-D geometry in Q2, and to achieve the quasi-steady self-organized turbulent state in Q4 
within a day of wall-clock time. The original XGC1 did not scale too well much above 30,000 processor 
cores.  We thus chose 29,952 Jaguar/XT5 cores for the Q2 metric base.  The improved XGC1 (OpenMP 
parallelism and interpolation scheme optimization) scales super-linearly to the Q4 metric base of 
199,808 cores, which is 4 times the Q2 number of cores, and enabled the performance of XGC1 to 
improve by a factor of 4.5 between the Q2 and Q4 experiments, reducing the execution time per model 
time step from 21 s to 4.7 s. 

Improvement of the physics capability as a result of the above Joule metric exercise is significant. In 
Q2 the propagation of the nonlinear edge turbulence into the core was observed within a day of wall-
clock time, which provides an exciting evidence for nonlocal edge effect on the core turbulence and 
confinement in realistic DIII-D geometry.  However, in order to produce an experimentally relevant 
result, the nonlinear simulation has to be carried through the quasi-steady self-organized stage, while 
keeping the multiscale dynamics self-consistently.  The improved XGC1 performance in Q4 was good 
enough to reach to the quasi-steady self-organized stage within a day of wall-clock time.  As a result, 
many new physics results have been obtained to shed light on the over 25 year old H-mode plasma 
physics mysteries, which ITER is heavily relying upon for its success. 

As the computing power increases, we will be able to include more physics into XGC1 code, en route 
to the whole-physics modeling in first principles. 
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3.4 RAPTOR 

3.4.1 Introduction 

Turbulent combustion processes are prevalent in a wide variety of propulsion and power systems, 
including internal combustion engines, gas turbines, and liquid rockets. As such, development and 
rigorous validation of science-based predictive models for turbulent combustion have long been 
recognized as important priorities in research, and there are a variety of challenges. Turbulent flows 
involving heterogeneous chemically reacting and/or multiphase mixtures (as is the case for all propulsion 
and power systems) have a variety of complicating factors, including highly nonlinear chemical kinetics, 
small-scale velocity and scalar mixing, turbulence–chemistry interactions, compressibility effects 
(volumetric changes induced by changes in pressure), and variable inertia effects (volumetric changes 
induced by variable composition or heat addition). Coupling between processes occurs over a wide range 
of time and length scales, many being smaller than can be resolved in a numerically feasible manner. 
Further complications arise when multiple phases are present due to the introduction of dynamically 
evolving interface boundaries and the complex exchange processes that occur as a consequence. At the 
device level, high performance, dynamic stability, low pollutant emissions, and low soot formation must 
be achieved simultaneously in highly confined geometries that generate extremely complex flow and 
acoustic patterns. Flow and combustion processes are highly turbulent (i.e., integral-scale Reynolds 
numbers of O(105) or greater), and geometry or various operating transients inherently dominate the 
turbulence dynamics. In many cases operating pressures approach or exceed the thermodynamic critical 
pressure of the fuel or oxidizer. Operation at elevated pressures significantly increases the system 
Reynolds number(s) and inherently broaden the range of spatial and temporal turbulence scales over 
which interactions occur. 

No one experimental or numerical technique is capable of providing a complete description of the 
processes described above. The highest quality experimental diagnostics provide only partial information 
from highly idealized flows relative to a given application. Modeling and simulation of these processes 
has historically been limited by computational power. Even with peta-scale computing (and beyond), 
Direct Numerical Simulation (DNS) of the fully coupled equations of fluid motion, transport, and 
chemical reaction can only be applied over a limited range of turbulence scales, in the high wave number, 
low Reynolds number, diffusive regime of turbulence. Thus, simulating these phenomena almost always 
begins with some form of formal filtering of the governing conservation equations. The Reynolds-
Averaged Navier-Stokes (RANS) approximation, for example, employs filtering in time to derive the 
governing conservation equations for the mean state. For this approach all dynamic degrees of freedom 
smaller than the largest energy-containing eddies in a flow are averaged, and no information exists to 
describe interactions between the small scales. The Large Eddy Simulation (LES) technique, on the other 
hand, has historically employed spatial filtering to split the field variables into time-dependent resolved-
scale and subgrid-scale (SGS) components. For this approach the large energetic scales are resolved and 
SGS quantities are modeled to provide a complete, time-accurate representation of dynamic processes 
over the full range of multidimensional scales in a turbulent reacting flow. RAPTOR is a massively 
parallel flow solver that has been optimized for application of LES to turbulent, chemically reacting 
and/or multiphase flows in complex geometries, with emphasis placed on propulsion and power systems. 

3.4.2 Background and Motivation 

The limitations and challenges associated with turbulent combustion research require that a hierarchy 
of approaches be taken to fully understand key processes and work toward predictive models. The 
primary challenge is to bridge the gap between basic research and the conditions of interest in typical 
applications. As part of the Reacting Flow Research and Advanced Engine Combustion programs at 
Sandia National Laboratories’ Combustion Research Facility (CRF), two complementary projects have 
been established to achieve this goal. The first is funded under the DOE SC Basic Energy Sciences (BES) 
program and focuses on the LES of turbulence–chemistry interactions in reacting multiphase flows. The 
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second is funded under the DOE Office of Energy Efficiency and Renewable Energy (EERE), Office of 
Vehicle Technologies (OVT) program and focuses on the application of LES to combustion research on 
high-pressure, low-temperature internal combustion engines. Figure 22 shows the key experiments 
currently being studied under these two projects using RAPTOR. A subset of experiments associated with 
the Reacting Flow Research Program is shown on the left. A subset of experiments associated with the 
Advanced Engine Combustion Program is shown on the right. Objectives and milestones for both projects 
are aimed at establishing high-fidelity computational benchmarks that identically match the geometry and 
operating conditions of key target experiments using a single unified theoretical-numerical framework 
(i.e., RAPTOR). The projects are complementary in that the DOE SC BES activity provides the basic 
science foundation for detailed model development and that the EERE-OVT activity provides the applied 
component for advanced engine research. 

 

 
Fig. 22. Key experiments currently being studied using RAPTOR. (left) A subset of 

experiments associated with the Reacting Flow Research program (a,b: simple jet flames; c,d: 
piloted jet flames; e: bluff-body; f: bluff-body with swirl). (right) A subset of experiments 
associated with the Advanced Engine Combustion program (g: Constant-Volume Diesel 
combustion facility; h: typical single-cylinder optically accessible internal combustion engine). 

 
Flames studied under Reacting Flow Research (see a–f in Fig. 22, for example) are internationally 

recognized benchmarks that provide some of the most detailed experimental data available for model 
validation. Using these data, significant collaborations with key modeling groups worldwide have been 
established as part of the International Workshop on Measurement and Computation of Turbulent 
Nonpremixed Flames (see Barlow et al. [23] for details). The TNF Workshop is an ongoing collaboration 
among experimental and computational researchers. A central theme of the series has been to use detailed 
comparisons of results from experiments and multiple modeling approaches to quantify state-of-the-art 
modeling capabilities and identify future research needs toward a predictive capability. As part of this 
activity, RAPTOR has been used to provide benchmark simulations that reach beyond the capabilities and 
resources of most universities and industry in a manner consistent with a national laboratory’s role of 
using high-performance computing. We have two primary objectives. The first is to establish a set of 
high-fidelity computational benchmarks that identically match the geometry and operating conditions of 
selected experimental target flames. The second is to establish a scientific foundation for advanced model 
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development. The benchmark simulations provide a direct one-to-one correspondence between measured 
and modeled results at conditions unattainable using DNS by performing simulations that represent the 
fully coupled dynamic behavior of a reacting flow with detailed chemistry and realistic levels of 
turbulence. After achieving an adequate level of validation, results from these simulations provide 
fundamental information not measurable directly that is imperative for model development and provides a 
strong link between theory, canonical studies, experiments, and critical applications. 

In contrast to the TNF Workshop, research activities related to Advanced Engine Combustion are 
focused on internal combustion engines. Needs and milestones related to RAPTOR have been established 
in three critical areas: (1) perform a progression of LES studies focused on the CRF optically accessible 
hydrogen-fueled internal combustion engine (see h in Fig. 22), (2) establish a parallel task focused on 
homogeneous charge compression ignition (HCCI) engines, and (3) perform a series of supporting studies 
focused on the development and validation of multiphase injection and combustion models with emphasis 
placed on direct-injection processes in IC-engines (see g in Fig. 22). The integrated set of research 
includes an optimal combination of in-cylinder and canonical (out-of-engine) studies to validate and 
understand key phenomenological processes that are present in internal combustion engine flow 
environments. These milestones are being facilitated in collaboration with ORNL as part of the 2009 
INCITE project entitled “High-Fidelity Simulations for Clean and Efficient Combustion for Alternative 
Fuels.” RAPTOR is being used to provide benchmark simulations in a manner identical to that described 
above for the TNF Workshop. However, there are two key distinctions that must be made. Compared to 
the TNF Workshop, the phenomenological and geometric complexities of device scale systems (such as 
internal combustion engines) reduce the level and fidelity of the experimental diagnostic techniques that 
can be applied. They also preclude the use of canonical DNS studies since appropriate initial and 
boundary conditions for such studies are largely unknown and unverified. Operating pressures are much 
greater, system Reynolds numbers are orders of magnitude higher, the flow fields associated with these 
devices are extremely complex, and a much broader range of dynamically evolving time and length scales 
need to be considered. To maximize the benefits of our fundamental and research efforts under these 
types of conditions, there is a clear need to understand what changes phenomenologically in various 
systems when one scales from laboratory conditions at atmospheric pressure (or equivalently lower 
Reynolds numbers) to application-relevant conditions at high pressures and Reynolds numbers. 

Given the importance of Reynolds number scaling and its relation to combustion modeling and the 
INCITE calculations, our focal point for the Joule metric using RAPTOR will be the flames studied under 
the Reacting Flow Research program. A related set of experiments focused on passive scalar mixing will 
also be considered. Figure 23 shows a photograph of the baseline flame (known as DLR-A) along with an 
instantaneous image from LES. This flame corresponds to that shown in Fig. 22(left, b). The photograph 
was taken in the Turbulent Combustion Laboratory at the CRF. The corresponding LES was performed 
using RAPTOR. In general, the integral-scale Reynolds numbers for the TNF Workshop (which 
correspond to the jet Reynolds number here) are of O(104), whereas those associated with internal 
combustion engines and related injection processes are of O(105) or greater. The jet Reynolds number for 
this case is 15,200. Quantifying the effects of increasing Reynolds number on turbulent flame dynamics 
and the related scalar-mixing processes requires significant increases in CPU resources and is directly 
aligned with the need for weak scaling. Here, we will simultaneously study the related issues of Reynolds 
number scaling and resolution requirements for LES by successively increasing the problem size. A range 
of jet Reynolds numbers, starting from 15,200, will be considered. We will perform a series of weak 
scaling studies to demonstrate the effects of increasing Reynolds number on the dynamics of scalar 
mixing. Initial benchmark runs will be performed using 47,616 cores. Subsequent runs will be performed 
by systematically increasing the total CPU time required (i.e., total number of floating point operations 
per case) by factors of 2 as a function of increasing jet Reynolds number. The Joule metric will be 
accomplished by demonstrating we can simulate successively larger problems in the same amount of 
time. 
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Fig. 23. Photograph and corresponding LES of the DLR-A flame (corresponds to b in Fig. 22). 
 

3.4.3 Capability Overview 

Physical Model. RAPTOR is a massively parallel flow solver designed specifically for application of 
the LES technique to turbulent, chemically reacting, multiphase flows. It solves the fully coupled 
conservation equations of mass, momentum, total energy, and species for a chemically reacting flow 
system (gas or liquid) in complex geometries. It also accounts for detailed chemistry, thermodynamics, 
and transport processes at the molecular level and uses detailed chemical mechanisms. The code is 
sophisticated in its ability to handle complex geometries and a generalized subgrid-scale model 
framework. It is capable of treating spray combustion processes and multiphase flows using a 
Lagrangian-Eulerian formulation. The numerical formulation treats the compressible form of the 
conservation equations but can be evaluated in the incompressible limit. The theoretical framework 
handles both multicomponent and mixture-averaged systems. The baseline formulation also employs a 
general treatment of the equation of state, thermodynamics, and transport properties that accommodates 
real gas or liquids with detailed chemistry (i.e., not constrained to ideal gas applications). Details are 
given by Oefelein [24]. 

Numerical Method. The temporal integration scheme employs an all Mach number formulation 
using the dual time stepping technique with generalized preconditioning. The approach is fourth-order 
accurate in time and provides a fully implicit solution using a fully explicit (highly scalable) multistage 
scheme in “pseudo time.” Preconditioning is applied in the inner pseudo time loop and coupled to local 
time-stepping techniques to minimize convective, diffusive, geometric, and source term anomalies (i.e., 
stiffness) in an optimal manner. This maximizes convergence rates as the system is advanced in time. The 
formulation is A-stable, which allows one to set the physical time step based solely on accuracy 
considerations. This attribute typically provides a 2 to 3 order-of-magnitude increase in the allowable 
integration time step compared to compressible flow solvers in the incompressible, low Mach number 
limit.  

The spatial scheme is designed using nondissipative, discretely conservative, staggered, finite volume 
differencing stencils. The discretization is formulated in generalized curvilinear (i.e., body-fitted) 
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coordinates and employs a general R-refinement adaptive mesh (AMR) capability. This allows us to 
account for the inherent effects of geometry on turbulence over the full range of relevant scales while 
significantly reducing the total number of grid cells required in the computational domain. Treating the 
full range of scales is a critical requirement since turbulence–chemistry interactions are inherently 
coupled through a cascade of nonlinear interactions between the largest and smallest scales of the flow. 

The differencing methodology has been specifically designed for LES. In particular, the second-order 
accurate staggered grid formulation, where we store scalar values at cell centers and velocity components 
at respective cell faces, fulfills two key accuracy requirements. First, it is spatially nondissipative, which 
eliminates numerical contamination of the subgrid-scale models due to artificial dissipation. Second, the 
stencils provide discrete conservation of mass, momentum, total energy, and species, which is an 
imperative requirement for LES. This eliminates the artificial buildup of velocity and scalar energy at the 
high wave numbers, which causes both accuracy problems and numerical instabilities in turbulent flow 
calculations. The algorithm includes appropriate switches to handle shocks, detonations, flame fronts, and 
contact discontinuities. It has also been designed using a generalized treatment for boundary conditions 
based on the method of characteristics. 

Software Implementation. The RAPTOR code framework is massively parallel and has been 
optimized to provide excellent parallel scalability attributes using a distributed multiblock domain 
decomposition with a generalized connectivity scheme. Distributed memory message passing is 
performed using MPI and the Single Program–Multiple Data (SPMD) model. It accommodates complex 
geometric features and time varying meshes with generalized hexahedral cells while maintaining the high 
accuracy attributes of structured spatial stencils. The numerical framework has been ported to all major 
platforms and provides highly efficient coarse- and fine-grain (i.e., weak and strong) scalability attributes. 
The code is fully vectorized and has been optimized for both vector and commodity architectures. Further 
optimization is currently in progress to account for new issues associated with state-of-the-art multicore 
technology. The complete package is fully modular, self-contained, and written in ANSI standard Fortran 
90. The complete theoretical–numerical framework (i.e., governing equations, physical submodels, 
numerics, and parallel efficiency) has been extensively validated over the course of the last 16 years. 
Representative results can be found in refs. [25] through [30]. 

3.4.4 Science Driver for Metric Problem 

Given the importance of Reynolds number scaling and its relation to combustion modeling, our focal 
point for the Joule metric using RAPTOR are the flames studied under the Reacting Flow Research 
program at Sandia National Laboratories. A related set of experiments focused on passive scalar mixing 
will also be used. Figure 24 shows a photograph of the baseline flame (known as DLR-A) along with an 
instantaneous image from LES. The photograph was taken in the Turbulent Combustion Laboratory at the 
CRF. The corresponding LES was performed using RAPTOR. In general, the integral-scale Reynolds 
numbers for the TNF Workshop (which correspond to the jet Reynolds number here) are of O(104), 
whereas those associated with internal combustion engines and related injection processes are of O(105) 
or greater. The jet Reynolds number for this case is 15,200. Quantifying the effects of increasing 
Reynolds number on turbulent flame dynamics and the related scalar-mixing processes requires 
significant increases in CPU resources. Here, we will study the related issues of Reynolds number scaling 
and resolution requirements for LES by successively increasing the problem size. A range of jet Reynolds 
numbers, starting from 15,200, will be considered. We will perform a series of weak scaling studies to 
demonstrate the effects of increasing Reynolds number on the dynamics of scalar mixing. Initial 
benchmark runs will be performed using 47,616 cores. Subsequent runs will be performed by 
systematically increasing the total CPU time required (i.e., total number of floating point operations per 
case) by factors of approximately 2 as a function of increasing jet Reynolds number. The Joule metric will 
be accomplished by demonstrating we can simulate successively larger problems in the same amount of 
time. 



 

48 

 

Fig. 24. Baseline flame used for problem scaling. (left) Photograph and (center) corresponding LES  
of the DLR-A flame. (right) Representative comparisons between experimentally measured (symbols) and 
modeled (lines) results showing acceptable agreement. 

3.4.5 Q2 Baseline Problem Results 

Our Q2 benchmark established the initial baseline for a series of weak scaling studies that 
demonstrate the combined computational effectiveness of the ORNL NCCS Jaguar/XT5 platform and 
RAPTOR. We simultaneously studied the related issues of Reynolds number scaling and resolution 
requirements for LES by successively refining the grid and temporal resolution of the DLR-A 
configuration shown in Fig. 23. A range of jet Reynolds numbers, starting from 15,200, were considered. 
The three primary objectives were to (1) study the effects of LES grid resolution on scalar-mixing 
processes, (2) understand the relationship between the grid spacing and the measured turbulence length 
scales from a companion set of experimental data, and (3) study the effects of increasing jet Reynolds 
number on the dynamics of turbulent scalar mixing. The initial benchmark was run using 47,616 cores. 
Subsequent runs were performed by systematically increasing the total CPU time required (i.e., total 
number of floating point operations per case) by factors of approximately 2 as a function of increasing jet 
Reynolds number. 

Figure 25 shows a cross section of the computational domain that highlights key features of the 
optimized curvilinear grid topology. To eliminate ambiguities associated with boundary conditions, the 
computational domain includes the entire burner geometry (inside the jet nozzle and the outer co-flow) 
and extends downstream over a span that covers the same dimensions as the experimental test section. 
The nozzle geometry corresponds to that shown in Fig. 23. The inner nozzle diameter is 8.0 mm. The 
outer nozzle surface is tapered to a sharp edge at the burner exit. The overall dimensions of the 
computational domain are 110 inner jet diameters in the axial direction and 40 jet diameters in the radial 
direction (88 cm by 32 cm, respectively). Flow inside the jet nozzle is simulated by assuming that the 
turbulent flow dynamics far upstream are fully developed. Using this assumption we impose a time-
dependent inflow condition 10 jet diameters upstream of the nozzle exit (i.e., at the base of the image 
shown in Fig. 23) and allow it to evolve in a time accurate manner to the nozzle exit. The outer co-flow is 
imposed in a similar manner. A far field force-free pressure condition is applied at the downstream and 
transverse boundaries.  
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Fig. 25. Cross section of the computational domain showing key features of the 
grid topology. The domain includes the entire burner geometry, as shown in Fig. 23. To 
the right are single-shot measurements of mixture fraction and scalar dissipation. The jet 
Reynolds number is 15,200. 

 
A novel feature of our approach is to design respective grids using the dissipation spectrum cutoff 

length scales measured from the companion experiments. These scales represent the average thickness of 
the scalar mixing layers (i.e., the structural dimensions of the turbulent scalar eddies). Example images of 
both mixture fraction and the scalar dissipation layers are shown in Fig. 25. The white boxes on the grid 
indicate the experimental interrogation windows at x/d = 5, 10, and 20. Elongated filaments of high 
dissipation reveal the convoluted inhomogeneous structure of the fine-scale scalar mixing processes. Data 
similar to that shown in Fig. 25 were used to design a set of optimally stretched curvilinear grids that 
provided a consistent level of resolution in all three coordinate directions relative to the local physical 
mixing layers in the flow. A representative set of grid sizes are listed in Table 17. Grid 3 was established 
as an initial arbitrary baseline by sizing cells such that the local spacing throughout the domain was 
nominally the same size as the cutoff length scales. Grids 2 and 1 were obtained by successively 
coarsening Grid 3 by a factor of 2 in each coordinate direction while maintaining the curvilinear topology 
shown in Fig. 25. Using these three grids, we have performed an initial series of calculations that 
identically match the experimental flow conditions. Calculations were carried out on Grid 1 first to 
determine what the appropriate time step was. For the case considered, a time step of 1 μs was found to 
give an appropriate level of time accuracy. The Q2 benchmark case was performed using Grid 2 with a 
corresponding time step of 0.5 μs. Other relevant run parameters are listed in Figs. 24 and 25.  
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Table 17. Baseline grid sizes for Joule benchmark runs* 

Grid Number Total Cells ∆t (Red = 15,200) 

1 1,285,632 1.00 µs 

2 10,285,056 0.50 µs 

3 82,280,448 0.25 µs 

*Respective grids are successively refined by a factor of 2 in 
each coordinate direction while maintaining the curvilinear 
topology shown in Fig. 23. The corresponding integration time 
steps (∆t) are incremented by factors of 2 in a manner consistent 
with the spatial refinement. 

 
To acquire the appropriate performance statistics, the DLR-A configuration described above was run 

for 50 physical time steps. The physical results were validated using the experimental data provided by 
Barlow et al. [23]. A representative set of results are given in Fig. 26, which shows comparisons between 
numerical results via RAPTOR (lines) and measured Raman/Rayleigh/CO-LIF line image data (symbols). 
Here we show mean and RMS profiles. These results, coupled with similar comparisons performed 
throughout the domain, provide a validated level of confidence in the accuracy of the solution. The 
computational performance was simultaneously evaluated by using the CrayPAT instrumented executable 
in place of the original executable. The program was instrumented to provide hardware performance 
counter information from start to finish. The simulation was performed using 47,616 processor cores on 
the Cray XT5 system. The CrayPAT output was postprocessed using pat report, as shown in Table 18. On 
average, each processor core performed 7.94 billion floating point operations, leading to an aggregate of 
378 trillion floating-point operations being performed by the 47,616 cores. We measure the computational 
performance of RAPTOR for a given problem using the metric  

 

 

Fig. 26. Comparison of experimentally measured (symbols) and modeled (lines) results showing 
acceptable agreement. 
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Performance = CPU time / number of grid cells / number of time steps , 

where CPU time is the product of two quantities: (1) wall-clock time taken from start to finish of the time 
integrator portion of the solver and (2) the number of processor cores occupied by the job while the 
program was executing. 

For the benchmark run, the code’s internal timers reported that the time integration through 50 time 
steps took 1,034 s. The remaining time (approximately 300 s) was consumed by the initialization step 
when the computational mesh and initial condition information were read from the disk and the software 
prepared itself for the simulation. Therefore, the performance of RAPTOR during the benchmark 
simulation was 

(1, 034 s × 47, 616 cores) / 10, 285, 056 cells / 50 time steps = 0.096 . 

This indicates that it cost 96 ms of processor time per cell per time step to simulate the problem on 
47,616 cores. Subsequent runs will be performed by systematically increasing the total CPU time required 
(i.e., total number of floating point operations per case) by approximate factors of 2 as a function of 
increasing jet Reynolds number. The Joule metric will be accomplished by demonstrating we can 
simulate successively larger problems in the same amount of time. 

 
Table 18. Counter data acquired from CrayPAT 4.2 for Q2  

benchmark run using RAPTOR 

Time% 100.0% 
Time 1425.761880 secs 
Imb.Time -- secs 
Imb.Time% -- 
Calls 0.0 /sec 4.0 calls 
PAPI_L1_DCM 20.674M/sec 26457314029 misses 
PAPI_TOT_INS 3379.668M/sec 4325136094614 instr 
PAPI_L1_DCA 1348.943M/sec 1726311709236 refs 
PAPI_FP_OPS 6.204M/sec 7939032813 ops 
User time (approx) 1279.752 secs 2943428628772 cycles 89.8%Time 
Average Time per Call 356.440470 sec 
CrayPat Overhead : Time 0.0% 
HW FP Ops / User time 6.204M/sec 7939032813 ops 0.1%peak(DP) 
HW FP Ops / WCT 5.568M/sec 
HW FP Ops / Inst 0.2% 
Computational intensity 0.00 ops/cycle 0.00 ops/ref 
Instr per cycle 1.47 inst/cycle 
MIPS 160926295.28M/sec 
MFLOPS (aggregate) 295389.35M/sec 
Instructions per LD & ST 39.9% refs 2.51 inst/ref 
D1 cache hit,miss ratios 98.5% hits 1.5% misses 
D1 cache utilization (M) 65.25 refs/miss 8.156 avg uses 

 

3.4.6 Computational Performance Gains 

During Q3 the performance of RAPTOR on the model problem was studied and the software was 
revised to obtain better computational performance. To obtain a quick turn-around time in the queues and 
for easier postprocessing of CrayPAT output, the Q2 model problem was resized to run on 5,952 cores. 
The performance profiles obtained on 5,952 cores were then used to guide the tuning. The results of code 
changes were tested by measuring the execution time on 5,952 and 47,616 cores.  

CrayPAT was used to obtain a performance profile of the 10.3 million cell Q2 model problem on 
5,952 cores. Figure 27 shows a budget of the time spent in the code. Given the inherent fine-grain nature 
of the problem, a significant amount of time was being spent in MPI calls for this case and only 20% of 
the time was being spent in the Fortran routines.  
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Fig. 27. Performance profile of the original code on 5,952 XT5 cores. 
 
It was found that the largest amount of time was being spent in MPI_Barrier and MPI_Allreduce. 

MPI_Barrier was being called from the user routine dbsh, which provides the time-dependent inflow 
boundary condition for the case. The inflow boundary condition is read as a function of time (i.e., at the 
beginning of each time step in the integrator) from a file, and when the end of file is reached, the file is 
rewound and the boundary condition was recycled at the inlet. One of the tasks performed by subroutine 
dbsh was to check the end of the inlet boundary condition and rewind the file accordingly. This portion of 
the routine was rewritten such that it calls a MPI_barrier only when a file rewind was necessary.  

MPI_Allreduce was being called from the subroutine norm, which is used to monitor convergence 
rates of respective residuals in the dual-time integrator. This routine provides the convergence of the 
solution vector using either a L_2 or L_infinite (max) norm. The computed norm was then compared 
against the error criterion to determine when to terminate the inner pseudo time step iteration and proceed 
to the next physical time step. A global MPI_allreduce was necessary for computing the error norm. Since 
MPI_allreduce affects the scalability of the software, the convergence test was modified taking into 
account the fact that the number of pseudo time iterations necessary to obtain convergence will not vary 
drastically between consecutive time steps. In the revised routine, the last pseudo time step in which 
convergence was achieved in the previous physical time step is saved in a static variable, say Nc. In the 
next physical time step, the convergence check is deferred until Nc  – 1 pseudo time steps. This way the 
solver would perform a few extra iterations occasionally while avoiding the expensive convergence check 
after each iteration.  

A profile of the revised code after the above-mentioned changes to global MPI operations is shown in 
Fig. 28. It is seen that the MPI barrier and allreduce costs have decreased. However, a significant amount 
of time is still being spent in the MPI communication routines, especially point-to-point send/receives and 
related waits.  

54%

14%

5%
5%

2%

20%

MPI_Barrier

MPI_Waitall

MPI_Recv

MPI_Allreduce

Other MPI

Fortran routines



 

53 

 

Fig. 28. Performance profile of RAPTOR on 5,952 cores after reducing global MPI operations. 
 
RAPTOR uses halo communications to build a ghost zone around the problem domain in each MPI 

rank. The halo communications are performed between the nearest neighbors within the 3D grid topology. 
The MPI cost in performing the nearest neighbor communication was reduced through a rewrite of three 
main halo exchange routines—halo, halo_dqv, and halo_flx. The MPI communications in these routines 
were rearranged with the following principles: (1) prepost all receives as the first operation in the routine, 
(2) post the sends as soon as the data is available, and (3) postpone the waits on send operations until the 
end of the routine. Nonblocking sends and receives are used throughout, both before and after these 
modifications.  

A last set of modifications was aimed at reducing wait times due to load imbalances induced at the 
boundaries and grid centerline. It was also noticed that any load imbalance in routines prior to halo 
exchanges led to increased MPI wait times. The main source of this imbalance was due to treatment of the 
boundaries and centerline where only the MPI ranks at these respective locations were assigned work and 
the remaining ranks did not perform any computation. A prime candidate for tuning in this respect was 
subroutine pole, which handles the singularity associated with the swept grid design. This routine was 
tuned by creating separate subcommunicators consisting of the centerline ranks at various axial planes. 
Then the required velocity averaging was implemented using MPI_allreduce on the subcommunicator 
instead of send/receive operations. This was found to reduce the time taken by this routine and thereby 
lead to better load balance and lower MPI wait times.  

The current performance profile of the code with all revisions made to date is shown in Fig. 29. 
Table 19 shows the net reductions in time to solution on 5,952 and 47,616 cores as a result of the code 
changes.  
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Fig. 29. Performance profile of RAPTOR after software revisions. 
 

 
 

Table 19. Summary of measured timings (in seconds) after each set  
of code revisions using the 10.3 million cell Q2 test problem  

and 200 time steps 

 5,952 cores 47,616 cores 

Original Q2 software 1,414 4,136 

After revising dbsh (less barrier) 555 315 

After revising norm (less allreduce) 510 242 

Revised halo and pole (better point to point) 450 192 

 

3.4.7 Q4 Metric Problem Results 

RAPTOR was compiled using the default PGI Fortran compiler. Output from the compilation is 
included in the Appendix and is identical for both the Q2 benchmark and Q4 metric. Here we show only 
the skeletal output, which includes the options used for optimization of the code. Note that the complete 
output, which includes all information related to the optimization, is also available but spans 21,807 lines 
and has thus been omitted in the interest of space. In all cases the code was profiled using CrayPAT 4.2 
using the following recipe to build the executable 

module load xt-craypat 
make 
pat_build -w -Drtenv=PAT_RT_HWPC=0 DTMS.out DTMS_pat.out . 

The instrumented executable (DTMS pat.out) was run using the batch script listed in the Appendix. 
Here we show the script used for Q2.  The corresponding run time environment is also listed and 
essentially identical for both the Q2 and Q4 cases except for the different number of cores used for each. 
Performance data was generated by issuing the commands 

module load xt-craypat 
pat_report DTMS_pat.out+xxxyyy > report.out , 
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where DTMS pat.out+xxxyyy is the name of the directory created by CrayPAT after the run completed. 
Table 20 lists the resultant set of data. 

To acquire the appropriate performance statistics, the DLR-A configuration described above was run 
for 50 physical time steps. The physical results were validated using the experimental data provided by 
Barlow et al. [23], where a representative set of results is given in Fig. 4, which shows comparisons 
between numerical results via RAPTOR (lines) and measured Raman/Rayleigh/CO-LIF line image data 
(symbols). Here we show mean and RMS profiles. These results, coupled with similar comparisons 
performed throughout the domain, provide a validated level of confidence in the accuracy of the solution. 
The computational performance was simultaneously evaluated by using the CrayPAT instrumented 
executable in place of the original executable. The program was instrumented to provide hardware 
performance counter information from start to finish. The simulation was performed using 47,616 
processor cores on the Cray XT5 system. The CrayPAT output was post processed using pat report, as 
shown in Table 20. On average, each processor core performed 7.94 billion floating point operations, 
leading to an aggregate of 378 trillion floating point operations being performed by the 47,616 cores. We 
measure the computational performance of RAPTOR for a given problem using the metric  

Performance = CPU time / number of grid cells / number of time steps , 

where CPU time is the product of two quantities: (1) wall-clock time taken from start to finish of the time 
integrator portion of the solver, and (2) the number of processor cores occupied by the job while the 
program was executing. 

For the Q2 benchmark run, the code’s internal timers reported that the time integration through 
50 time steps took 1,034 s. The remaining time (approximately 300 s) was consumed by the initialization 
step for CrayPAT and when the computational mesh and initial condition information were read from the 
disk. Therefore, the performance of RAPTOR during the benchmark simulation was 

(1, 034 s × 47, 616 cores) / 10, 285, 056 cells / 50 time steps = 0.096 . 

It cost 96 ms of processor time per cell per time step to simulate the problem on 47,616 cores. Using 
this benchmark, our Q4 metric was performed by increasing the total CPU time required (i.e., total 
number of floating point operations per case) by factors of approximately 2 as a function of increasing jet 
Reynolds number. The Joule goal metric was accomplished by demonstrating we can simulate 
successively larger problems in the same amount of time. 

 
Table 20. Counter data acquired from CrayPAT 4.2 for the Q2 benchmark run using RAPTOR 

Time% 100.0% 
Time 1425.761880 secs 
Imb.Time -- secs 
Imb.Time% -- 
Calls 0.0 /sec 4.0 calls 
PAPI_L1_DCM 20.674M/sec 26457314029 misses 
PAPI_TOT_INS 3379.668M/sec 4325136094614 instr 
PAPI_L1_DCA 1348.943M/sec 1726311709236 refs 
PAPI_FP_OPS 6.204M/sec 7939032813 ops 
User time (approx) 1279.752 secs 2943428628772 cycles 89.8%Time 
Average Time per Call 356.440470 sec 
CrayPat Overhead : Time 0.0% 
HW FP Ops / User time 6.204M/sec 7939032813 ops 0.1%peak(DP) 
HW FP Ops / WCT 5.568M/sec 
HW FP Ops / Inst 0.2% 
Computational intensity 0.00 ops/cycle 0.00 ops/ref 
Instr per cycle 1.47 inst/cycle 
MIPS 160926295.28M/sec 
MFLOPS (aggregate) 295389.35M/sec 
Instructions per LD & ST 39.9% refs 2.51 inst/ref 
D1 cache hit,miss ratios 98.5% hits 1.5% misses 
D1 cache utilization (M) 65.25 refs/miss 8.156 avg uses 
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For the Q4 benchmark, we modified the DLR-A model problem run in Q2 by systematically 

increasing the jet Reynolds number. Increasing the Reynolds number induces a reduction in the smallest 
turbulence scales in the flow and thus increases the range of scales that must be considered in the 
calculation. To account for this increase, both the grid resolution and physical time step must be refined 
appropriately (i.e., linear scaling in the weak sense must be achieved to keep the total time required for 
the calculation the same as Q2). To demonstrate the performance of RAPTOR, we increased the total 
CPU time required (i.e., the total number of floating point operations per case) and total number of cores 
used by a factor of 2.359. The final Q4 case used 24,261,120 grid cells and 112,320 cores (compared to 
10,285,056 cells and 47,616 cores for Q2). The resultant run was analyzed in a manner identical to the Q2 
run. The final results are shown in Table 21. Weak scaling from Q2 to Q4 was near linear. In addition to 
scaling linearly, we were able to achieve an additional net improvement in the overall code performance 
of 2.329 beyond the linear metric due to the above-mentioned code improvements. 

 
Table 21. Summary of results from the Q4 run compared to the Q2 baseline 

 Q2 Q4 

Grid size 10.3 million 24.3 million 

Number of XT5 cores 47,616 112,320 

Time taken for integrating 50 time steps 1,034 s 444 s 

Number of floating point operations 378 × 1012 893 × 1012 

Flop rate sustained by the unsteady solver 0.36 TF/s 2.0 TF/s 

Cost per grid point per time step 0.096 s 0.041 s 

 
Performance statistics summarized in Table 21 were acquired in a manner identical to the Q2 run. The 

DLR-A configuration was run for 50 physical time steps at a higher Reynolds number to study issues 
related to scalar mixing and the related structural dynamics of the flow. The computational performance 
was evaluated by using a CrayPAT instrumented executable in place of the original executable and 
configured to give hardware performance counter information from start to finish. The CrayPAT output 
was postprocessed using pat report and is given in Table 22. 

 
Table 22.  Counter data acquired from CrayPAT 4.2 for the Q4 run using RAPTOR 

Time% 100.0% 
Time  1972.397426 secs 
Imb.Time secs 
Imb.Time% -- 
Calls 0.0 /sec 4.0 calls 
PAPI_L1_DCM 17.939M/sec    30225838071 misses 
PAPI_TOT_INS 3505.170M/sec  5906032655453 instr 
PAPI_L1_DCA  1400.128M/sec  2359144379197 refs 
PAPI_FP_OPS  4.718M/sec     7948841143 ops 
User time (approx) 1684.949 secs  3875382374683 cycles  85.4%Time 
Average Time per Call 493.099356 sec 
CrayPat Overhead : Time 0.0% 
HW FP Ops / User time 4.718M/sec     7948841143 ops  0.1%peak(DP) 
HW FP Ops / WCT 4.030M/sec 
HW FP Ops / Inst 0.1% 
Computational intensity 0.00 ops/cycle      0.00 ops/ref 
Instr per cycle 1.52 inst/cycle 
MIPS 393700725.39M/sec 
MFLOPS (aggregate) 529875.93M/sec 
Instructions per LD & ST  39.9% refs 2.50 inst/ref 
D1 cache hit,miss ratios  98.7% hits 1.3% misses 
D1 cache utilization (M)  78.05 refs/miss 9.756 avg uses 
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In running the Q4 case, we observed an anomaly associated with the time required for the 

initialization stage of the calculation (which is not compute intensive) compared to the integration stage 
(which is compute intensive). This anomaly was traced to CrayPAT. In all cases, our executables that 
were instrumented with CrayPAT exhibited a wide range of initialization times compared to those that 
were not. In the results for Q2, for example, the total run time reported by CrayPAT was 1,423 s. 
However, the time spent in the integration part of the calculation was only 1,034 s. Similarly, the Q4 
calculation took a total of 1,972 s for both initialization and integration; however, only 444 s were spent 
in the integration part. To verify this we performed several additional tests. First, we reran the Q2 case 
with the integration loop bypassed to isolate the time associated with initialization. Results from this run 
are provided in Appendix E, Sect. E.5 and compared to the original Q2 counter data shown in Fig. 27. 
These data verify that a negligible amount of floating point operations occur during initialization, and also 
that the internal clock used to measure the amount of time spent in the integrator was accurate, as reported 
in Table 21 above. As a second test, we ran both cases without CrayPAT installed and verified that the 
initialization times for both became negligible (i.e., less than 10 percent of the total integration time). The 
combined set of tests confirms that the integration times and estimated floating point operation rates 
reported are accurate.  

For the Q4 run, the code’s internal timers reported that the time integration through 50 time steps took 
444 s. Here the code performed 7.94 billion floating point operations on each core (as in Q2), leading to 
an aggregate of 893 trillion floating point operations being performed by the 112,320 cores. The 
remaining time was consumed by the initialization step required for CrayPAT and when the 
computational mesh and initial condition information were read from the disk. Thus, the performance of 
RAPTOR for Q4, which includes the performance enhancements described in the last section, was 

(444 s × 112,320 cores) / 24,261,120 cells / 50 time steps = 0.041 ,  

which is a factor of 2.3 improvement in speed beyond the linear weak-scaling metric specified as our 
target.  

3.4.8 Interpretation of Results 

The selected Joule goal metric described here has established an initial baseline for a series of weak 
scaling studies aimed at demonstrating the combined computational effectiveness of the ORNL NCCS 
Jaguar/XT5 platform and RAPTOR. Given the importance of Reynolds number scaling and its relation to 
combustion modeling, our focal point for the Joule metric is the experimental flames studied under the 
Reacting Flow Research program at Sandia National Laboratories. These flames are internationally 
recognized as important benchmarks for model validation and provide a significant amount of high 
quality data for model development. A key issue, however, is that the integral-scale Reynolds number for 
these flames (which corresponds to the jet Reynolds number here) is of O(104), whereas those associated 
with several important applications are of O(105) or greater. Thus, it is necessary to understand the 
phenomenological changes that occur as a function of Reynolds number when one scales to device-level 
conditions. 

Quantifying the effects of increasing Reynolds number on turbulent flame dynamics and the related 
scalar mixing processes requires significant increases in CPU resources and is directly aligned with the 
need for highly efficient weak scaling attributes. Here our goal is to study the related issues of Reynolds 
number scaling and resolution requirements for LES by successively increasing the problem size. A range 
of jet Reynolds numbers, starting from 15,200, was considered. We will perform a series of weak scaling 
studies to demonstrate the effects of increasing Reynolds number on the dynamics of scalar mixing. Our 
initial Q2 benchmark runs were performed using 47,616 cores. Subsequent runs were performed by 
systematically increasing the total CPU time required (i.e., total number of floating point operations per 
case) by factors of approximately 2 as a function of increasing jet Reynolds number. The Joule metric was 
accomplished by demonstrating we can simulate successively larger problems in the same amount of 
time. 
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Our initial Q2 benchmark run was performed using 47,616 cores on the Cray XT5 system. On 
average, each processor core performed 7.94 billion floating point operations, leading to an aggregate of 
378 trillion floating point operations. We measured the computational performance of RAPTOR using the 
metric  

Performance = CPU time / number of grid cells / number of time steps , 

where CPU time is the product of two quantities: (1) wall-clock time taken from start to finish of the time 
integrator portion of the solver and (2) the number of processor cores occupied by the job while the 
program was executing (i.e., the “grind time”). For the benchmark run, the code’s internal timers reported 
that the time integration through 50 time steps took 1,034 s. Therefore, the benchmark performance of 
RAPTOR was calculated as 0.096 (i.e., it cost 96 ms of processor time per cell per time step to simulate 
the problem on 47,616 cores). 

During Q3 the performance of RAPTOR on the model problem was studied and the software was 
revised to obtain better computational performance. To obtain a quick turn-around time in the queues and 
for easier postprocessing of CrayPAT output, the Q2 model problem was resized to run on 5,952 cores. 
The performance profiles obtained on 5,952 cores were then used to guide the tuning. The results of code 
changes were tested by measuring the execution time on 5,952 and 47,616 cores. The collective efforts 
led to a net increase in the time spent by the Fortran routines from 20 percent to 63 percent (i.e., latency 
due to fine-grain communication overhead was reduced from 80 percent to 37 percent for the selected 
model problem), which provided a significant net speedup in the performance of RAPTOR. 

For the Q4 benchmark, we modified the DLR-A configuration run in Q2 by systematically increasing 
the jet Reynolds number. Increasing the Reynolds number induces a reduction in the smallest turbulence 
scales in the flow and thus increases the range of scales that must be considered in the calculation. To 
account for this increase, both the grid resolution and physical time step must be refined appropriately 
(i.e., linear scaling in the weak sense must be achieved to keep the total time required for the calculation 
the same as Q2). To demonstrate the performance of RAPTOR, we increased the total CPU time required 
(i.e., the total number of floating point operations per case) and total number of cores used by a factor of 
2.359. The final Q4 case used 24,261,120 grid cell and 112,320 cores. The resultant run was analyzed in a 
manner identical to the Q2 run. The code’s internal timers reported that the time integration through 
50 time steps took 444 s. The remaining time was consumed by both the initialization step when the 
computational mesh and initial condition information were read from the disk and the CrayPAT 
instrumentation in the software. Thus, the performance of RAPTOR for Q4 (which includes the 
performance enhancements performed as part of Q3 activities) was calculated to be 0.041 (compared to 
0.096 for Q2), which is a factor of 2.3 improvement in speed beyond the linear weak-scaling metric 
specified as our target.  

3.4.9 Summary and Conclusions 

The Joule metric selected here was designed to establish a baseline for a series of weak scaling 
studies aimed at demonstrating the combined computational effectiveness of the ORNL NCCS 
Jaguar/XT5 platform and RAPTOR. Given the importance of Reynolds number scaling and its relation to 
combustion modeling, our focal point for the Joule metric is the experimental flames studied under the 
Reacting Flow Research program at Sandia National Laboratories. These flames are internationally 
recognized as important benchmarks for model validation and provide a significant amount of high 
quality data for model development. A key issue, however, is that the integral-scale Reynolds number for 
these flames (which corresponds to the jet Reynolds number here) is of O(104), whereas those associated 
with several important applications are of O(105) or greater. Thus, it is necessary to understand the 
phenomenological changes that occur as a function of Reynolds number when one scales to device-level 
conditions. 

Quantifying the effects of increasing Reynolds number on turbulent flame dynamics and the related 
scalar mixing processes requires significant increases in CPU resources and is directly aligned with the 
need for highly efficient weak scaling attributes. Here our goal is to study the related issues of Reynolds 
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number scaling and resolution requirements for LES by successively increasing the problem size. A range 
of jet Reynolds numbers, starting from 15,200, was considered. We performed a series of weak scaling 
studies to demonstrate the effects of increasing Reynolds number on the dynamics of scalar mixing. Our 
initial Q2 benchmark was performed using 47,616 cores on the Cray XT5 system. On average, each 
processor core performed 7.94 billion floating point operations, leading to an aggregate of 378 trillion 
floating point operations. We measured the computational performance of RAPTOR using the metric  

Performance = CPU time / number of grid cells / number of time steps , 

where CPU time is the product of two quantities: (1) wall-clock time taken from start to finish of the time 
integrator portion of the solver and (2) the number of processor cores occupied by the job while the 
program was executing (i.e., the “grind time”). For the benchmark run, the code’s internal clock reported 
that the time integration through 50 time steps took 1,034 s. Therefore, the benchmark performance of 
RAPTOR was calculated as 0.096 (i.e., it costs 96 ms of processor time per cell per time step to simulate 
the problem on 47,616 cores). 

During Q3 the performance of RAPTOR on the DLR-A model problem was studied and the software 
was revised to obtain better computational performance. To obtain a quick turn-around time in the queues 
and for easier postprocessing of CrayPAT output, the Q2 model problem was resized to run on 5,952 
cores. The performance profiles were then used to guide the tuning. The changes were tested by 
measuring the execution time on 5,952 and 47,616 cores. The collective efforts led to a net increase in the 
time spent by the Fortran routines from 20 percent to 63 percent (i.e., latency due to fine-grain 
communication overhead was reduced from 80 percent to 37 percent for the selected model problem), 
which provided a significant net speedup in the performance of RAPTOR. 

For the Q4 benchmark, we modified the DLR-A case considered in Q2 by systematically increasing 
the jet Reynolds number. Increasing the Reynolds number induces a reduction in the smallest turbulence 
scales in the flow and thus increases the range of scales that must be considered in the calculation. To 
account for this increase, both the grid resolution and physical time step must be refined appropriately 
(i.e., linear scaling in the weak sense must be achieved to keep the total time required for the calculation 
the same as Q2). To demonstrate the performance of RAPTOR, we increased the total CPU time required 
(i.e., the total number of floating point operations per case) and total number of cores used by a factor of 
2.359. The final Q4 case used 24,261,120 grid cells and 112,320 cores.  

Results from the Q4 run were analyzed in a manner identical to the Q2 run. The code’s internal clocks 
reported that the time integration through 50 time steps took 444 s. The remaining time was consumed by 
the initialization routines for CrayPAT, reading the computational mesh from the disk and setting the 
initial conditions.  Thus, the performance of RAPTOR for the Q4 benchmark (which includes the 
performance enhancements made as part of the Q3 activities) was calculated to be 0.041 (compared to 
0.096 for Q2). This represents a factor of 2.3 improvement in speed beyond the linear weak scaling metric 
specified as our target.  
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APPENDIX A. OVERVIEW 
 
 
We present in this appendix detailed information about the build and run time environments for the 

various benchmarks executed in Q2 on the Cray XT5 system at ORNL’s NCCS. An example follows 
where the source code is presented as well as the build and execution process invoked to execute 
instrumented (direct or automated) code on the target machine. 

A.1 PARALLEL MATRIX MULTIPLY EXAMPLE 

The acceptability of computed results is defined by the problem. In ASCR’s Joule software exercises, 
the complexity of executing a problem is directly deduced according to machine events measured with 
supported system software on the target platform. The number of total instructions retired, the number of 
floating point instructions executed, the total number of processes (assuming a one-to-one relationship 
between processes and processor cores—not the case for various thread models), and the total execution 
time are the events we typically return in this report.  

The target architecture has a well-developed set of tools designed for tracing and sampling analysis of 
a variety of machine events of interest. The vendor tools have the capability to instrument a compiled 
binary via recompiling, and to postanalyze the performance data captured during execution (CrayPAT, 
Apprentice2 tools). The degree of granularity can be controlled by the user and ranges from exhaustive 
fine-grain tracing (which can introduce large wall-clock time overhead) to a small set of hardware events 
that introduce only noise in the execution time. Alternatively, the PAPI tool can be used to instrument the 
application source code (C, Fortran API exists) and enables the user to declare the events of interest and 
pinpoint specified regions of their codes. The consistency of the approaches has been checked for a 
handful of scenarios on the benchmarked platform with exceptional agreement on common test problems 
prior to the Q2 benchmarks.  

A detailed example may help here. Suppose our application problem is to have a computer program 
that executes (on Jaguar/XT5) the common math operation C ← αAB + βC where A,B,C are all rank two 
arrays of double precision, complex numbers with dimensions A ∈ [m,n], B ∈ [n,p], C ∈ [m,p], and α,β 
are double precision, complex numbers. The problem, P(m,n p), has complexity that is well described by 
the storage demands, mn + np + mp + 2 complex numbers, and floating point operation count, P(m,n,p) ~ 
8mpn + 13mp.This problem’s complexity (like all program instances) can be calibrated with machine 
capabilities (even if we did not have a theoretical estimate) by counting the instructions and specifically 
floating point instructions completed to execute an instance on Jaguar/XT5. 

To further simplify, let m = n = p. In this case the theoretical complexity of P(n) is ~3n2 + 2 complex 
numbers and ~8n3 + 13n2 floating point operations. (In the real number case, the problem floating point 
complexity for m = n = p is P(n ) ~ 2n3 + 2n2 and the storage becomes 3n2 + 2 real numbers.) 

For now, let’s check the quality of the counts returned by the approaches on the target hardware. 
First, consider P(n = 16,384). The theoretical complexity of this instance (within the significant digits 
offered by a handheld calculator) is P(16,384) = 35,187,861,750,000 floating point operations, the PAPI 
tool measured 36,560,640,672,864 floating point instructions as accumulated over 56 processes given the 
parallel implementation of the kernel. The relative difference is 3.9%. For the exact same problem 
parameters, the CrayPAT tool was used to automatically instrument the binary. Two different 
compilations were used for instrumentation with increased granularity. As an example of a low overhead 
glimpse into what happened, a floating point instruction count per process was sampled for a fraction of 
the processes from which we deduced the total floating point instruction count to be 
36,563,861,900,000—the relative difference computed against theory is here 3.91%. Since we do not 
investigate how the chipset actually computes the various complex algebraic terms in the implementation, 
the agreement to theory is very good. 
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Let us also report one other consistency check. Here we wish to understand if increasing the number 
of processes we throw at a fixed problem instance introduces a large error into the machine event data 
collection process. To this end, the kernel P(24,576) is executed first on 120 PEs and next on 256 PEs of 
the target system. The theoretical complexity for the complex representation is P(24,576) = 
113,555,757,096,871 floating point operations. The measured (PAPI in this example) count on 120 PEs 
was 123,390,048,340,380 floating point operations in 165.22 s, yielding a relative difference of 8.6% 
from the complexity model. The measured count on 256 PEs was 123,390,048,343,296 floating point 
operations in 81.33 s, yielding a relative difference of 8.6% from the complexity model. The results are 
essentially identical. As a last note, the speedup between runs was 2.03; ideally this number would be 
2.133.  The following is the source code used in the example. 

 
/* rochekj@ornl.gov */ 
#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include <complex.h> 
#include <mpi.h> 
#ifdef KRP 
#include <papi.h> 
 
/* 
PAPI 
  _TOT_IIS 
  _TOT_INS 
  _INT_INS 
  _FP_INS 
  _FMA_INS 
  _VEC_INS 
  _L2_DCM 
*/ 
 
#define NUM_PAPI_EVENTS 4 
#endif 
 
/* BLACS , ScaLAPACK */ 
/* 
void Cblacs_pinfo( int * , int * ) ; 
void Cblacs_setup( int * , int * ) ; 
void Cblacs_get( int , int , int * ) ; 
void Cblacs_gridinit( int * , char * , int , int ) ; 
void Cblacs_gridinfo( int , int * , int * , int * , int * ) ; 
void Cblacs_exit( int ) ; 
void Cdgesd2d( int , int , int , double * , int , int , int ) ; 
void Cdgerv2d( int , int , int , double * , int , int , int ) ; 
void Cigebs2d( int ictxt , char * scope , char * top , int m , int n , int 

* A , int lda ) ; 
void Cigebr2d( int ictxt , char * scope , char * top , int m , int n , int 

* A , int lda , int rsrc , int csrc ) ; 
void pzgemm_( char * , char * , int * , int * , int * , double complex * , 

double complex * , int * , int * , int * , double complex * 
, int * , int * , int * , double complex * , double complex * , int * , int 

* , int * ) ; 
*/ 
/* home spun support routines */ 
void get_num_rows( int iamprow , int nprows , int ma , int mblk , int * 

nrow ) 
{ 
  int mydist , nrows , np ; 
  int srcproc , extrarows ; 
  srcproc = 0 ; /* assume that the process(0,0) owns the first element(s) 

*/ 
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  mydist  = ( nprows + iamprow - srcproc ) % nprows ; 
  nrows = ma / mblk ; 
  np = ( nrows / nprows ) * mblk ; 
  extrarows = nrows % nprows ; 
  if ( mydist < extrarows ) np += mblk ; 
  else if ( mydist == extrarows ) np += ma % mblk ; 
  *nrow = np ; 
} 
 
void get_num_columns( int iampcol , int npcols , int na , int nblk , int * 

ncol ) 
{ 
  int mydist , ncols , np ; 
  int srcproc , extracols ; 
  srcproc = 0 ; /* assume that the process(0,0) owns the first element(s) 

*/ 
 
  mydist  = ( npcols + iampcol - srcproc ) % npcols ; 
  ncols = na / nblk ; 
  np = ( ncols / npcols ) * nblk ; 
  extracols = ncols % npcols ; 
  if ( mydist < extracols ) np += nblk ; 
  else if ( mydist == extracols ) np += na % nblk ; 
  *ncol = np ; 
} 
 
void get_mem_req_blk_cyc ( int ip , int iq , int np , int nq , int ma , int 

na , int mblk , int nblk , int * nip , int * niq ) 
{ 
  get_num_rows( ip , np , ma , mblk , nip ) ; 
  get_num_columns( iq , nq , na , nblk , niq ) ; 
} 
 
void get_mem_req_blk_cyc ( int ip , int iq , int np , int nq , int ma , int 

na , int mblk , int nblk , int * nip , int * niq ) ; 
int main( int argc , char ** argv ) 
{ 
#ifdef KRP 
  /* PAPI */ 
  int hw_counters ; 
  const PAPI_hw_info_t *hwinfo = NULL ; 
  int papi_events[ NUM_PAPI_EVENTS ] ; 
  long long int papi_values[ NUM_PAPI_EVENTS + 4 ] ; 
  long long int papi_real_cyc_0 , papi_virt_cyc_0 , papi_real_usec_0 , 

papi_virt_usec_0 ; 
  char * papi_event_name[] = { "PAPI_TOT_INS" , "PAPI_FP_INS" , 

"PAPI_FP_OPS" , "PAPI_L2_DCM" } ; 
  long long int * llbuf , llval ; 
#endif 
 
  /* for the kernel */ 
  int i , j ; 
  double complex * a , * b , * c ; 
  double complex zone = 1. + I * 1. ; double complex zmone = -1. + I * 1. ; 
  int np , p , q ; /* np ~ p q , np := number of processes , p := number of 

process rows , q := number of process columns */ 
  int ip , iq , nip , niq ; /* id (ip,iq) in (p,q) rectangular , virtual 

process grid owns (nip,niq) elements */ 
  int ma , na , nb , nblk ; /* matrix dimensions [ma,na][na,nb]+[ma,nb] , 

block size */ 
  int iam , npmpi ; 
  int DESCA[ 9 ] , DESCB[ 9 ] , DESCC[ 9 ]; /* array descriptors */ 
  int info , doneflag ; 
  char *b_order, *scope ; 
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  int b_val ; 
  int ione = 1 , mone = -1 , zero = 0 ; 
  int iam_blacs , ictxt , nprocs_blacs ; 
#ifdef VERBOSE 
  int namelen ; 
  char myname[ MPI_MAX_PROCESSOR_NAME ] ; 
#endif 
 
  /* blacs */ 
  b_val = zero ; 
  b_order = "R" ; 
  scope = "All" ; 
 
  /* initialize the MPI communicator MPI_COMM_WORLD */ 
  MPI_Init( &argc , &argv ) ; 
  MPI_Comm_size( MPI_COMM_WORLD , &npmpi ) ; 
  MPI_Comm_rank( MPI_COMM_WORLD , &iam ) ; 
 
  /* parse the command line */ 
  if ( argc != 7 ) { 
    printf( "usage: %s ma na nb nblk p q\n" , argv[ 0 ] ) ; 
    MPI_Finalize(); 
    return ( EXIT_SUCCESS ) ; 
  } 
 
  ma = atoi( argv[ 1 ] ) ; /* problem size data */ 
  na = atoi( argv[ 2 ] ) ; /* problem size data */ 
  nb = atoi( argv[ 3 ] ) ; /* problem size data */ 
  nblk = atoi( argv[ 4 ] ) ; /* block buffer data */ 
  p = atoi( argv[ 5 ] ) ; 
  q = atoi( argv[ 6 ] ) ; 
  np = p * q ; 
 
  /* initialize the BLACS grid */ 
#ifdef VERBOSE 
  printf( "[%d] prior to blacs_pinfo\n" , iam ) ; 
#endif 
 
  Cblacs_pinfo( &iam_blacs , &nprocs_blacs ) ; 
  if ( nprocs_blacs < 1 ) Cblacs_setup( &iam_blacs , &nprocs_blacs ) ; 
  Cblacs_get( mone , zero , &ictxt ) ; 
  Cblacs_gridinit( &ictxt , b_order , p , q ) ;  /* 'Row-Major' */ 
  Cblacs_gridinfo( ictxt , &p , &q , &ip , &iq ) ; /* ip,iq: the process 

row,column id */ 
 
  /* determine memory demands for the matrix A[ma,na] */ 
  get_mem_req_blk_cyc ( ip , iq , p , q , ma , na , nblk , nblk , &nip , 

&niq ) ; 
 
#ifdef VERBOSE 
  printf( "A\t[ip=%d , iq=%d] := elements := %d\t BYTES := %llu\n" , ip , 

iq , nip * niq , ( unsigned long long ) sizeof( double comple 
x ) * nip * niq ) ; 
#endif 
 
  if ( ( a = malloc( sizeof( double complex ) * nip * niq ) ) == NULL ) 
    { 
 
      fprintf( stderr , "[%d,%d]error: cannot malloc() a\n...exiting\n", ip 

, iq ) ; 
      MPI_Finalize() ; 
      return( EXIT_SUCCESS ) ; 
    } 
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  /* generate the matrix elements randomly */ 
  srand( iam + 1 ) ; /* seed the prng the for initial use */ 
  for ( i = 0 ; i < nip * niq ; i++ ) 
      a[ i ] = 0.5 - ( double ) rand() / ( double ) RAND_MAX + I * ( 0.5 - 

( double ) rand() / ( double ) RAND_MAX ) ; 
 
  /* the array descriptor for local_A */ 
  DESCA[ 0 ] = 1 ; /* descriptor type (1=global) */ 
  DESCA[ 1 ] = ictxt ; /* blacs process grid used for distribution */ 
  DESCA[ 2 ] = ma ; /* rows in global A */ 
  DESCA[ 3 ] = na ; /* columns in global A */ 
  DESCA[ 4 ] = nblk ; /* row block factor */ 
  DESCA[ 5 ] = nblk ; /* column block factor */ 
  DESCA[ 6 ] = 0 ; /* row source in the pgrid */ 
  DESCA[ 7 ] = 0 ; /* column source in the pgrid */ 
  DESCA[ 8 ] = nip ; /* local leading dimension of A */ 
 
  /* determine memory demands for the matrix B[na,nb] */ 
  get_mem_req_blk_cyc ( ip , iq , p , q , na , nb , nblk , nblk , &nip , 

&niq ) ; 
 
#ifdef VERBOSE 
  printf( "B\t[ip=%d , iq=%d] := elements := %d\t BYTES := %llu\n" , ip , 

iq , nip * niq , ( unsigned long long ) sizeof( double comple 
x ) * nip * niq ) ; 
#endif 
 
  if ( ( b = malloc( sizeof( double complex ) * nip * niq ) ) == NULL ) 
    { 
      fprintf( stderr , "[%d,%d]error: cannot malloc() b\n...exiting\n", ip 

, iq ) ; 
      MPI_Finalize() ; 
      return( EXIT_SUCCESS ) ; 
    } 
 
  for ( i = 0 ; i < nip * niq ; i++ ) b[ i ] = 0.5 - ( double ) rand() / ( 

double ) RAND_MAX + I * ( 0.5 - ( double ) rand() / ( double 
 ) RAND_MAX ) ; 
 
  /* the array descriptor for local_B */ 
  DESCB[ 0 ] = 1 ; /* descriptor type (1=global) */ 
  DESCB[ 1 ] = ictxt ; /* blacs process grid used for distribution */ 
  DESCB[ 2 ] = na ; /* rows in global B */ 
  DESCB[ 3 ] = nb ; /* columns in global B */ 
  DESCB[ 4 ] = nblk ; /* row block factor */ 
  DESCB[ 5 ] = nblk ; /* column block factor */ 
  DESCB[ 6 ] = 0 ; /* row source in the pgrid */ 
  DESCB[ 7 ] = 0 ; /* column source in the pgrid */ 
  DESCB[ 8 ] = nip ; /* local leading dimension of B */ 
 
  /* determine memory demands for the matrix C[ma,nb] */ 
  get_mem_req_blk_cyc ( ip , iq , p , q , ma , nb , nblk , nblk , &nip , 

&niq ) ; 
 
#ifdef VERBOSE 
  printf( "C\t[ip=%d , iq=%d] := elements := %d\t BYTES := %llu\n" , ip , 

iq , nip * niq , ( unsigned long long ) sizeof( double comple 
x ) * nip * niq ) ; 
#endif 
 
  if ( ( c = malloc( sizeof( double complex ) * nip * niq ) ) == NULL ) { 
    fprintf( stderr , "[%d,%d]error: cannot malloc() c\n...exiting\n", ip , 

iq ) ; 
    MPI_Finalize() ; 
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    return( EXIT_SUCCESS ) ; 
  } 
 
  for ( i = 0 ; i < nip * niq ; i++ ) c[ i ] = 0.5 - ( double ) rand() / ( 

double ) RAND_MAX + I * ( 0.5 - ( double ) rand() / ( double 
 ) RAND_MAX ) ; 
  /* the array descriptor for local_C */ 
  DESCC[ 0 ] = 1 ; /* descriptor type (1=global) */ 
  DESCC[ 1 ] = ictxt ; /* blacs process grid used for distribution */ 
  DESCC[ 2 ] = ma ; /* rows in global C */ 
  DESCC[ 3 ] = nb ; /* columns in global C */ 
  DESCC[ 4 ] = nblk ; /* row block factor */ 
  DESCC[ 5 ] = nblk ; /* column block factor */ 
  DESCC[ 6 ] = 0 ; /* row source in the pgrid */ 
  DESCC[ 7 ] = 0 ; /* column source in the pgrid */ 
  DESCC[ 8 ] = nip ; /* local leading dimension of C */ 
 
#ifdef VERBOSE 
  MPI_Get_processor_name( myname , &namelen ) ; 
  printf( "[ %d , %d ][%s] prior to pgemm \n" , ip , iq , myname ) ; 
#endif 
 
#ifdef VERBOSE 
  if ( ip == 0 ) { 
    printf( "a[1,1]= ( %f , %f )\n" , creal( a[ 0 ] ) , cimag( a[ 0 ] ) ) ; 
    printf( "b[1,1]= ( %f , %f )\n" , creal( b[ 0 ] ) , cimag( b[ 0 ] ) ) ; 
    printf( "c[1,1]= ( %f , %f )\n" , creal( c[ 0 ] ) , cimag( c[ 0 ] ) ) ; 
  } 
 
#endif 
  MPI_Barrier(MPI_COMM_WORLD); 
#ifdef KRP 
 
  /* learn something about the system here */ 
  if ( PAPI_library_init( PAPI_VER_CURRENT ) != PAPI_VER_CURRENT ) 
    exit( 1 ) ; 
  if ( ( hwinfo = PAPI_get_hardware_info() ) == NULL ) 
    exit( 1 ) ; 
  if ( iam == 0 ) 
    { 
      printf( "\t\tTotPEs(jagpf)[%d]\n" , hwinfo->totalcpus ) ;  
      printf( "\t\tMhz[%g]\n" , hwinfo->mhz ) ;  
      printf( "\t\tnCPU-SMPnode(jagpf)[%d]\n" , hwinfo->ncpu ); /* Number 

of CPU's in SMP Node */ 
      printf( "\t\tnSMPnodes(jagpf)[%d]\n" , hwinfo->nnodes );  
      printf( "\t\t\tvendor string cpu[%s}\n" , hwinfo->vendor_string ); 
      printf( "\t\t\tmodel string cpu[%s}\n" , hwinfo->model_string ); 
      printf( "\t\t\tmodel number[%d]\n\n" , hwinfo->model ); 
    } 
 
  char * eventname[] = { PAPI_FP_OPS , PAPI_FP_INS } ; 
  int eventcode ; 
  PAPI_event_info_t pinfo ; 
  if ( ip == 0 ) 
    { 
      for ( i = 0 ; i < 2 ; i++ ) 
        { 
          PAPI_event_name_to_code( eventname[ i ] , &eventcode ) ; 
          if ( PAPI_get_event_info( eventcode , &pinfo ) != PAPI_OK ) 
            { 
              fprintf( stderr , "error: papi event[%s]\n" , eventcode[ i ] 

) ; 
            } 
          printf( "papi event[%s]\n" , papi_event_name[ i ] ) ; 
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        } 
    } 
#endif 
 
  /* begin PAPI profiling here */ 
  hw_counters = PAPI_num_counters() ; 
  for ( i = 0 ; i < ( int ) NUM_PAPI_EVENTS ; i++ ) 
    { 
      if ( PAPI_event_name_to_code( papi_event_name[ i ] , &papi_events[ i 

] ) != PAPI_OK ) 
        { 
          fprintf( stderr , "papi error[%s]\n" , papi_event_name[ i ] ) ; 
          if ( hw_counters > i ) hw_counters = i ; 
        } 
    } 
  if( hw_counters > NUM_PAPI_EVENTS ) hw_counters = NUM_PAPI_EVENTS ; 
  papi_real_cyc_0 = PAPI_get_real_cyc() ; 
  papi_real_usec_0 = PAPI_get_real_usec() ; 
  papi_virt_cyc_0 = PAPI_get_virt_cyc() ; 
  papi_virt_usec_0 = PAPI_get_virt_usec() ; 
  PAPI_start_counters( papi_events , hw_counters ) ; 
#endif 
 
  /* 
    extern void p*gemm_( char *TRANSA, char *TRANSB, int * M, int * N, int 

* K, double * ALPHA, 
    double * A, int * IA, int * JA, int * DESCA, double * B, int * IB, int 

* JB, int * DESCB, 
    double * BETA, double * C, int * IC, int * JC, int * DESCC ); 
  */ 
  pzgemm_( "N" , "N" , &ma , &nb , &na , &zone , a , &ione , &ione , DESCA 

, b , &ione , &ione , DESCB , &zmone , c , &ione , &ione , D 
ESCC ) ; 
#ifdef VERBOSE 
  printf( "[ %d , %d ] return from pgemm \n" , ip , iq ) ; 
  if ( ip == 0 ) { 
    printf( "a[1,1]= ( %f , %f )\n" , creal( a[ 0 ] ) , cimag( a[ 0 ] ) ) ; 
    printf( "b[1,1]= ( %f , %f )\n" , creal( b[ 0 ] ) , cimag( b[ 0 ] ) ) ; 
    printf( "c[1,1]= ( %f , %f )\n" , creal( c[ 0 ] ) , cimag( c[ 0 ] ) ) ; 
  } 
#endif 
  free ( a ) ; free( b ) ; free( c ) ; 
#ifdef KRP 
 
  /* PAPI exit results */ 
  PAPI_stop_counters( papi_values , hw_counters ) ; 
  papi_values[ hw_counters ] = PAPI_get_real_cyc() - papi_real_cyc_0 ; 
  papi_values[ hw_counters + 1 ] = PAPI_get_real_usec() - papi_real_usec_0 

; 
  papi_values[ hw_counters + 2 ] = PAPI_get_virt_cyc() - papi_virt_cyc_0 ; 
  papi_values[ hw_counters + 3 ] = PAPI_get_virt_usec() - papi_virt_usec_0 

; 
  if ( iam == 0 ) 
    { 
      if ( ( llbuf = malloc( sizeof( long long int ) * npmpi ) ) == NULL ) 
        { 
          fprintf( stderr , "[%d,%d]error: cannot malloc() 

llbuf\n...exiting\n", ip , iq ) ; 
          MPI_Finalize() ; 
          return( EXIT_SUCCESS ) ; 
        } 
    } 
  for ( i = 0 ; i < hw_counters ; i++ ) 
    { 
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      llval = 0LL ; 
      MPI_Gather( &papi_values[ i ] , 1 , MPI_LONG_LONG , llbuf , 1 , 

MPI_LONG_LONG , 0 , MPI_COMM_WORLD ) ; 
      if ( iam == 0 ) 
        { /* report some profile information */ 
          for ( j = 0 ; j < npmpi ; j++ ) 
            llval += llbuf[ j ] ; 
          printf("%s :\tTot[ %lld ]\tRt[ %lld ]\n", papi_event_name[ i ] , 

llval , papi_values[ i ] ) ; 
        } 
      MPI_Barrier( MPI_COMM_WORLD ) ; 
    } 
  if ( iam == 0 ) 
    { 
      printf( "PAPI_real_cyc = %lld\n" , papi_values[ hw_counters ] ) ; 
      printf( "PAPI_real_usec = %lld\n" , papi_values[ hw_counters + 1 ] ) 

; 
      printf( "PAPI_user_cyc = %lld\n" , papi_values[ hw_counters + 2 ] ) ; 
      printf( "PAPI_user_usec = %lld\n" , papi_values[ hw_counters + 3 ] ) 

; 
      free ( llbuf ) ; 
    } 
#endif 
  MPI_Barrier( MPI_COMM_WORLD ) ; 
#ifdef VERBOSE 
  printf( "...[%d][%d]clean exit\n" , ip , iq ) ; 
#endif 
 
  MPI_Finalize( ) ; 
  return ( EXIT_SUCCESS ) ; 
} 

A.2 MODULES AVAILABLE ON THE TARGET ARCHITECTURE 

--------------------- /opt/cray/xt-asyncpe/2.0/modulefiles -------------- 
xtpe-quadcore      xtpe-target-native 
------------------------------- /opt/modulefiles ------------------------ 
Base-opts/2.1.27HD 
Base-opts/2.1.27HD.lusrelsave 
Base-opts/2.1.29HD 
Base-opts/2.1.29HD.lusrelsave 
Base-opts/2.1.41HD 
Base-opts/2.1.41HD.lusrelsave 
Base-opts/2.1.50HD(default) 
Base-opts/2.1.50HD.lusrelsave 
MySQL/5.0.45 
PrgEnv-cray/1.0.0(default) 
PrgEnv-gnu/2.1.27HD 
PrgEnv-gnu/2.1.29HD 
PrgEnv-gnu/2.1.41HD 
PrgEnv-gnu/2.1.50HD(default) 
PrgEnv-pathscale/2.1.27HD 
PrgEnv-pathscale/2.1.29HD 
PrgEnv-pathscale/2.1.41HD 
PrgEnv-pathscale/2.1.50HD(default) 
PrgEnv-pgi/2.1.27HD 
PrgEnv-pgi/2.1.29HD 
PrgEnv-pgi/2.1.41HD 
PrgEnv-pgi/2.1.50HD(default) 
acml/4.0.1a 
acml/4.1.0(default) 
acml/4.2.0 
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apprentice2/4.3.0 
apprentice2/4.4.0(default) 
apprentice2/4.4.0.1 
blcr/0.7.3 
cce/7.0.0(default) 
cce/7.0.1 
cce/7.0.2 
cray/audit/1.0.0-1.0000.15784.0 
dwarf/8.2.0 
dwarf/8.4.0 
dwarf/8.6.0 
dwarf/8.8.0(default) 
elf/0.8.10(default) 
fftw/2.1.5 
fftw/3.1.1(default) 
fftw/3.2.0 
gcc/4.1.2 
gcc/4.2.0.quadcore(default) 
gcc/4.2.3 
gcc/4.2.4 
gcc-catamount/3.3 
gnet/2.0.5 
iobuf/1.0.6(default) 
java/jdk1.6.0_05(default) 
java/jdk1.6.0_11 
libfast/1.0(default) 
libfast/1.0.2 
libscifft-pgi/1.0.0(default) 
moab/5.2.3 
moab/5.2.4(default) 
moab/5.3.0 
modules/3.1.6(default) 
pathscale/3.2(default) 
petsc/2.3.3a(default) 
petsc/3.0.0 
petsc-complex/2.3.3a(default) 
petsc-complex/3.0.0 
pgi/6.2.5 
pgi/7.0.7 
pgi/7.1.6 
pgi/7.2.3 
pgi/7.2.4 
pgi/7.2.5(default) 
pgi/8.0.1 
pgi/8.0.2 
pgi/8.0.3 
pkgconfig/0.15.0(default) 
torque/2.3.2-snap.200807092141(default) 
xt-asyncpe/1.0c 
xt-asyncpe/1.1 
xt-asyncpe/1.2 
xt-asyncpe/2.0(default) 
xt-asyncpe/2.0.34 
xt-asyncpe/2.1 
xt-boot/2.1.27HD 
xt-boot/2.1.29HD 
xt-boot/2.1.41HD 
xt-boot/2.1.50HD 
xt-catamount/2.1.27HD 
xt-catamount/2.1.29HD 
xt-catamount/2.1.41HD 
xt-catamount/2.1.50HD 
xt-craypat/4.3.1 
xt-craypat/4.3.3 
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xt-craypat/4.4.0 
xt-craypat/4.4.0.2 
xt-craypat/4.4.0.4(default) 
xt-craypat/4.4.1 
xt-libc/2.1.27HD 
xt-libc/2.1.29HD 
xt-libc/2.1.41HD 
xt-libc/2.1.50HD 
xt-libsci/10.2.1 
xt-libsci/10.3.0 
xt-libsci/10.3.1(default) 
xt-libsci/10.3.2 
xt-lustre-ss/2.1.27HD_1.6.5 
xt-lustre-ss/2.1.29.HD_ORNL.nic1_1.6.5 
xt-lustre-ss/2.1.29HD_1.6.5 
xt-lustre-ss/2.1.29HD_ORNL.nic10_1.6.5 
xt-lustre-ss/2.1.29HD_ORNL.nic11_1.6.5 
xt-lustre-ss/2.1.29HD_ORNL.nic12_1.6.5 
xt-lustre-ss/2.1.29HD_ORNL.nic2_1.6.5 
xt-lustre-ss/2.1.29HD_ORNL.nic5_1.6.5 
xt-lustre-ss/2.1.29HD_ORNL.nic6_1.6.5 
xt-lustre-ss/2.1.41HD_1.6.5 
xt-lustre-ss/2.1.50HD.PS04.lus.1.6.5.steve.8062_1.6.5 
xt-lustre-ss/2.1.50HD_1.6.5 
xt-lustre-ss/2.1.50HD_PS04_1.6.5 
xt-lustre-ss/2.1.UP00_ORNL.nic12_1.6.5 
xt-lustre-ss/2.1.UP00_ORNL.nic2_1.6.5 
xt-lustre-ss/2.1.UP00_ORNL.nic30_1.6.5 
xt-lustre-ss/2.1.UP00_ORNL.nic3_1.6.5 
xt-lustre-ss/2.1.UP00_ORNL.nic40_1.6.5 
xt-lustre-ss/2.1.UP00_ORNL.nic51_1.6.5 
xt-lustre-ss/2.1.UP00_ORNL.nic52_1.6.5 
xt-mpt/2.1.27HD 
xt-mpt/2.1.29HD 
xt-mpt/2.1.41HD 
xt-mpt/2.1.50HD 
xt-mpt/3.0.1 
xt-mpt/3.0.2 
xt-mpt/3.0.4 
xt-mpt/3.1.0(default) 
xt-mpt/3.1.0.4 
xt-mpt/3.1.0.6 
xt-mpt/3.1.0.7 
xt-mpt/3.1.1 
xt-os/2.1.27HD 
xt-os/2.1.29HD 
xt-os/2.1.41HD 
xt-os/2.1.50HD 
xt-papi/3.5.99c 
xt-papi/3.6 
xt-papi/3.6.1a 
xt-papi/3.6.2(default) 
xt-pe/2.1.27HD 
xt-pe/2.1.29HD 
xt-pe/2.1.41HD 
xt-pe/2.1.50HD 
xt-service/2.1.27HD 
xt-service/2.1.29HD 
xt-service/2.1.41HD 
xt-service/2.1.50HD 
xtgdb/1.0.0(default) 
xtpe-target-catamount 
xtpe-target-cnl 
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--------------------------- /opt/modules/3.1.6 --------------------------- 
modulefiles/modules/dot         modulefiles/modules/modules 
modulefiles/modules/module-cvs  modulefiles/modules/null 
modulefiles/modules/module-info modulefiles/modules/use.own 
 
----------------------------- /sw/xt5/modulefiles -------------------- 
DefApps                    lapack/3.1.1-dualcore 
MiscApps                   lapack/3.1.1-fPIC 
adios/0.9.8(default)       liblut/0.9.6 
arpack/2008.03.11          m4/1.4.11 
atlas/3.8.2                matlab/7.5 
atlas/3.8.2-fPIC-dualcore  mercurial/1.0.2 
autoconf/2.63              metis/4.0 
automake/1.10.1            mpe2/1.0.6 
aztec/2.1                  mpip/3.1.2 
blas/ref(default)          mumps/4.7.3_par 
blas/ref-dualcore          namd/2.6 
bugget/2.0                 ncl/5.0.0 
cmake/2.6.1(default)       nco/3.9.4 
cmake/2.6.2                ncview/1.93c 
cpmd/3.13.1                nedit/5.5 
cpmd/3.13.2                netcdf/3.6.2(default) 
doxygen/1.5.6              netcdf/4.0.0 
doxygen/1.5.8              netcdf/4.0.0_par 
ferret/6.1                 ompi/ADTR65 
fftpack/5-r4i4             ompi/ADTR77 
fftpack/5-r8i4             ompi/ADTR78 
fftpack/5-r8i8             ompi/DTR56 
fftw/3.1.2                 ompi/DTR59 
fftw/3.1.2-dualcore        ompi/routing-pgi 
fftw/3.2                   p-netcdf/1.0.2(default) 
fftw/3.2-dualcore          p-netcdf/1.0.3 
fpmpi/1.0                  parmetis/3.1 
fpmpi/1.1                  petsc/2.3.3-debug 
fpmpi_papi/1.0             petsc-complex/2.3.3-debug 
fpmpi_papi/1.1             pgplot/5.2 
gamess/2008Mar04           pspline/1.0 
git/1.6.0                  python/2.5.2 
git/1.6.0.4                python/2.5.2-netcdf 
globalarrays/4.0.8         qt/4.3.4 
gnuplot/4.2.3              ruby/1.8.7 
gnuplot/4.2.4(default)     ruby/1.9.1 
gptl/3.4.1                 spdcp/0.3.6 
gptl/3.4.3                 sprng/2.0b 
gptl/3.4.7(default)        stagesub/1.0.2 
grace/5.1.21               stagesub/1.0.3(default) 
gromacs/3.3.3              subversion/1.4.6 
gsl/1.11                   subversion/1.5.0(default) 
gsl/1.11-dualcore          sundials/2.3.0 
hdf5/1.6.7(default)        superlu/3.0 
hdf5/1.6.7_par             superlu_dist/2.2 
hdf5/1.6.8                 swig/1.3.36 
hdf5/1.6.8_par             szip/2.1 
hdf5/1.8.1                 tau/2.17.2 
hdf5/1.8.1_par             tau/2.17.3 
hdf5/1.8.2                 tkdiff/4.1.4 
hdf5/1.8.2_par             totalview/8.6.0-1(default) 
hypre/2.0.0                trilinos/8.0.3 
idl/6.4                    udunits/1.12.4 
imagemagick/6.4.2(default) udunits/1.12.9 
java-jdk/1.5.0.06          umfpack/5.1.1 
java-jdk/1.6.0.06          valgrind/3.3.1 
java-jre/1.5.0.06          vim/7.1 
lammps/4Mar08              vim/7.2 
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lammps/May08               visit/1.11.1 
lapack/3.1.1(default) 

A.3 COMPILATION FOR INSTRUMENTATION AND EXECUTION 

PAPI instrumented case (example) 
 
• Prepare the environment 

module load xt-papi . 
jaguarpf-login2 roche/chk-perf> env | grep PAPI 
PE_PRODUCT_LIST=ASYNCPE:XTMPT:LIBSCI:PGI:LUSTRE:XTPE_QUADCORE:FFTW:PAPI 
PAPI_POST_LINK_OPTS= -L/opt/xt-tools/papi/3.6.2/v23/linux/lib -lpapi -lpfm 
PAPI_INCLUDE_OPTS=-I/opt/xt-

tools/papi/3.6.2/v23/$XTPE_COMPILE_TARGET/include 
PAPI_VERSION=3.6.2 
 

• Compile the code 

cc -c -DKRP ${PAPI_INCLUDE_OPTS} kr-cpblas-tst.c ; cc -o xcpbls kr-
cpblastst.o ${PAPI_POST_LINK_OPTS} –lsci -lm 

/opt/cray/xt-asyncpe/2.0/bin/cc: INFO: linux target is being used 
/opt/cray/xt-asyncpe/2.0/bin/cc: INFO: linux target is being used 
 

• The run script 

#PBS -V 
#PBS -l walltime=00:30:00,size=256 
#PBS -A csc053 
#PBS -N cpbls 
#PBS -j oe 
 
cd ${PBS_O_WORKDIR} 
aprun -n 256 ./xcpbls 24576 24576 24576 80 16 16 
 

• The output of the example 

TotPEs(jagpf)[8] 
Mhz[2300] 
nCPU-SMPnode(jagpf)[8] 
nSMPnodes(jagpf)[1] 
vendor string cpu[AuthenticAMD} 
model string cpu[Quad-Core AMD Opteron(tm) Processor 23 (B3)} 
model number[16] 
 
PAPI_TOT_INS :  Tot[ 111540195796692 ]  Rt[ 449702700723 ] 
PAPI_FP_INS :   Tot[ 123390048343296 ]  Rt[ 522995200021 ] 
PAPI_FP_OPS :   Tot[ 123390048343296 ]  Rt[ 522995200021 ] 
PAPI_L2_DCM :   Tot[ 84401033569 ]      Rt[ 248334396 ] 
PAPI_real_cyc = 187063030672 
PAPI_real_usec = 81331753 
PAPI_user_cyc = 187036000000 
PAPI_user_usec = 81320000 
Application 107259 resources: utime 16225, stime 129 
 

Automatically instrumented case (example) 
 
• Prepare the environment 

module load xt-craypat . 
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• Check the modules 

module list 
Currently Loaded Modulefiles: 
1) modules/3.1.6                      4) moab/5.2.4 
7) xt-service/2.1.50HD               10) xt-boot/2.1.50HD 
13) Base-opts/2.1.50HD                16) xt-libsci/10.3.1 
19) xt-asyncpe/2.0 
2) DefApps                            5) xtpe-quadcore 
8) xt-libc/2.1.50HD                  11) xt-lustre-ss/2.1.50HD_PS04_1.6.5 
14) pgi/7.2.5                         17) xt-mpt/3.1.0 
20) PrgEnv-pgi/2.1.50HD 
3) torque/2.3.2-snap.200807092141     6) MySQL/5.0.45 
9) xt-os/2.1.50HD                    12) xtpe-target-cnl 
15) fftw/3.1.1                        18) xt-pe/2.1.50HD 
21) xt-craypat/4.4.0.4 
 

• Compile the code 

cc -c kr-cpblas-tst.c ; cc -o xcpbls-cp kr-cpblas-tst.o -lsci -lm 
/opt/cray/xt-asyncpe/2.0/bin/cc: INFO: linux target is being used 
/opt/cray/xt-asyncpe/2.0/bin/cc: INFO: linux target is being used 
 

• Build the instrumented binary 

pat_build -Drtenv=PAT_RT_HWPC=0 -g mpi -w –o xcpbls-cp+apa ./xcpbls-cp 
 

• The run script 

#PBS -V 
#PBS -l walltime=00:30:00,size=56 
#PBS -A csc053 
#PBS -N cpbls 
#PBS -j oe 
 
cd ${PBS_O_WORKDIR} 
aprun -n 56 ./xcpbls-cp+apa 16384 16384 16384 80 7 8 
 

• Run the code 

qsub qscr-joule-apa 
 

• Build the automated performance report 

pat_report -o apa-report.txt 
xcpbls-cp+apa+25678-20623tdt.xf 
 

• Actual output of the automatically generated performance report 

CrayPat/X:  Version 4.4.0 Revision 2195 (xf 2119)  10/29/08 14:13:53 
 
Number of PEs (MPI ranks):      56 
 
Number of Threads per PE:       1 
 
Number of Cores per Processor:  4 
 
Execution start time:   Tue Mar  3 02:31:12 2009 
 
System type and speed:   x86_64  2300 MHz 
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Current path to data file: 
  /tmp/work/roche/chk-perf/xcpbls-cp+apa+25678-20623tdt.ap2  (RTS) 
  /tmp/work/roche/chk-perf/xcpbls-cp+apa+25678-20623tdt.xf   (RTS) 
 
Notes for table 1: 
 
  Table option: 
    -O profile_pe_th-h 
  Options implied by table option:  
    -d ti%@0.95,ti,imb_ti,imb_ti%,tr -b gr,fu,pe=HIDE 
 
  Options for related tables not shown by default: 
    -O profile_pe.th           -O callers             
    -O profile_th_pe           -O callers+src         
    -O profile+src             -O calltree            
    -O load_balance            -O calltree+src        
 
  The Total value for each of Time, Calls is the sum of the Group values. 
  The Group value for each of Time, Calls is the sum of the Function 
values. 
  The Function value for each of Time, Calls is the avg of the PE values. 
    (To specify different aggregations, see:  pat_help report options s1) 
 
  This table shows only lines with Time% > 0.95. 
    (To set thresholds to zero, specify:  -T) 
 
  Percentages at each level are of the Total for the program. 
    (For percentages relative to next level up, specify: 
      -s percent=r[elative]) 
 
Table 1:  Profile by Function Group and Function (no hwpc) 
 
 Time % |       Time |Imb. Time |   Imb. |  Calls |Group 
        |            |          | Time % |        | Function 
        |            |          |        |        |  PE='HIDE' 
 
 100.0% | 110.941610 |       -- |     -- | 5109.3 |Total 
|------------------------------------------------------------- 
|  88.9% |  98.575756 |       -- |     -- |    2.0 |USER 
||------------------------------------------------------------ 
||  88.9% |  98.575642 | 4.527489 |   4.5% |    1.0 |main 
||============================================================ 
|  11.1% |  12.313924 |       -- |     -- | 5105.3 |MPI 
||------------------------------------------------------------ 
||   4.8% |   5.370178 | 1.467647 |  21.9% |    1.0 |MPI_Comm_create 
||   3.6% |   3.938757 | 3.694346 |  49.3% |  930.2 |MPI_Recv 
||   2.7% |   2.980756 | 3.777156 |  56.9% |  930.2 |MPI_Send 
|============================================================= 
 
Notes for table 2: 
 
  Table option: 
    -O profile 
  Options implied by table option:  
    -d ti%@0.95,ti,imb_ti,imb_ti%,tr,P -b gr,fu,pe=HIDE 
 
  Options for related tables not shown by default: 
    -O profile_pe.th           -O callers             
    -O profile_th_pe           -O callers+src         
    -O profile+src             -O calltree            
    -O load_balance            -O calltree+src        
 
  The Total value for each data item is the sum of the Group values. 
  The Group value for each data item is the sum of the Function values. 
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  The Function value for each data item is the avg of the PE values. 
    (To specify different aggregations, see:  pat_help report options s1) 
 
  'D1 cache utilization (M)' is based on data size 8B, and refills caused 
by 
 
    misses. 
 
  This table shows only lines with Time% > 0.95. 
    (To set thresholds to zero, specify:  -T) 
 
  Percentages at each level are of the Total for the program. 
    (For percentages relative to next level up, specify: 
      -s percent=r[elative]) 
 
Table 2:  Profile by Function Group and Function 
 
Group / Function / PE='HIDE' 
 
======================================================================== 
Totals for program 
------------------------------------------------------------------------ 
  Time%                                        100.0% 
  Time                                     110.941610 secs 
  Imb.Time                                         -- secs 
  Imb.Time%                                        -- 
  Calls                       46.3 /sec        5109.3 calls 
  PAPI_L1_DCM               11.761M/sec    1297073220 misses 
  PAPI_TOT_INS            5392.251M/sec  594676118362 instr 
  PAPI_L1_DCA             2267.168M/sec  250031159666 refs 
  PAPI_FP_OPS             5920.436M/sec  652926106258 ops 
  User time (approx)       110.283 secs  253651943657 cycles   99.4%Time 
  Average Time per Call                      0.021714 sec 
  CrayPat Overhead : Time     0.0% 
  HW FP Ops / User time   5920.436M/sec  652926106258 ops  64.4%peak(DP) 
  HW FP Ops / WCT         5885.313M/sec 
  HW FP Ops / Inst                             109.8% 
  Computational intensity     2.57 ops/cycle     2.61 ops/ref 
  Instr per cycle                                2.34 inst/cycle 
  MIPS                   301966.08M/sec 
  MFLOPS (aggregate)     331544.40M/sec 
  Instructions per LD & ST   42.0% refs          2.38 inst/ref 
  D1 cache hit,miss ratios   99.5% hits          0.5% misses 
  D1 cache utilization (M)  192.77 refs/miss   24.096 avg uses 
======================================================================== 
USER 
------------------------------------------------------------------------ 
  Time%                                         88.9% 
  Time                                      98.575756 secs 
  Imb.Time                                         -- secs 
  Imb.Time%                                        -- 
  Calls                        0.0 /sec           2.0 calls 
  PAPI_L1_DCM               11.002M/sec    1082508371 misses 
  PAPI_TOT_INS            5613.815M/sec  552364281560 instr 
  PAPI_L1_DCA             2370.347M/sec  233227344737 refs 
  PAPI_FP_OPS             6635.850M/sec  652926105327 ops 
  User time (approx)        98.394 secs  226305620820 cycles   99.8%Time 
  Average Time per Call                     49.287878 sec 
  CrayPat Overhead : Time     0.0% 
  HW FP Ops / User time   6635.850M/sec  652926105327 ops  72.1%peak(DP) 
  HW FP Ops / WCT         6623.597M/sec 
  HW FP Ops / Inst                             118.2% 
  Computational intensity     2.89 ops/cycle     2.80 ops/ref 
  Instr per cycle                                2.44 inst/cycle 
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  MIPS                   314373.63M/sec 
  MFLOPS (aggregate)     371607.57M/sec 
  Instructions per LD & ST   42.2% refs          2.37 inst/ref 
  D1 cache hit,miss ratios   99.5% hits          0.5% misses 
  D1 cache utilization (M)  215.45 refs/miss   26.931 avg uses 
======================================================================== 
USER / main 
------------------------------------------------------------------------ 
  Time%                                         88.9% 
  Time                                      98.575642 secs 
  Imb.Time                                   4.527489 secs 
  Imb.Time%                                      4.6% 
  Calls                        0.0 /sec           1.0 calls 
  PAPI_L1_DCM               11.002M/sec    1082507665 misses 
  PAPI_TOT_INS            5613.824M/sec  552364180392 instr 
  PAPI_L1_DCA             2370.351M/sec  233227289198 refs 
  PAPI_FP_OPS             6635.862M/sec  652926105327 ops 
  User time (approx)        98.394 secs  226305210179 cycles   99.8%Time 
  Average Time per Call                     98.575642 sec 
  CrayPat Overhead : Time     0.0% 
  HW FP Ops / User time   6635.862M/sec  652926105327 ops  72.1%peak(DP) 
  HW FP Ops / WCT         6623.605M/sec 
  HW FP Ops / Inst                             118.2% 
  Computational intensity     2.89 ops/cycle     2.80 ops/ref 
  Instr per cycle                                2.44 inst/cycle 
  MIPS                   314374.14M/sec 
  MFLOPS (aggregate)     371608.25M/sec 
  Instructions per LD & ST   42.2% refs          2.37 inst/ref 
  D1 cache hit,miss ratios   99.5% hits          0.5% misses 
  D1 cache utilization (M)  215.45 refs/miss   26.931 avg uses 
======================================================================== 
MPI 
------------------------------------------------------------------------ 
  Time%                                       11.1% 
  Time                                    12.313924 secs 
  Imb.Time                                       -- secs 
  Imb.Time%                                      -- 
  Calls                     431.2 /sec       5105.3 calls 
  PAPI_L1_DCM              18.020M/sec    213344554 misses 
  PAPI_TOT_INS           3557.995M/sec  42123083365 instr 
  PAPI_L1_DCA            1412.942M/sec  16727808051 refs 
  PAPI_FP_OPS                  79 /sec      930.161 ops 
  User time (approx)       11.839 secs  27229688194 cycles  96.1%Time 
  Average Time per Call                    0.002412 sec 
  CrayPat Overhead : Time    0.1% 
  HW FP Ops / User time        79 /sec      930.161 ops  0.0%peak(DP) 
  HW FP Ops / WCT              76 /sec 
  HW FP Ops / Inst                             0.0% 
  Computational intensity    0.00 ops/cycle    0.00 ops/ref 
  Instr per cycle                              1.55 inst/cycle 
  MIPS                  199247.71M/sec 
  MFLOPS (aggregate)         0.00M/sec 
  Instructions per LD & ST  39.7% refs         2.52 inst/ref 
  D1 cache hit,miss ratios  98.7% hits         1.3% misses 
  D1 cache utilization (M)  78.41 refs/miss   9.801 avg uses 
======================================================================== 
MPI / MPI_Comm_create 
------------------------------------------------------------------------ 
  Time%                                        4.8% 
  Time                                     5.370178 secs 
  Imb.Time                                 1.467647 secs 
  Imb.Time%                                   22.3% 
  Calls                       0.2 /sec          1.0 calls 
  PAPI_L1_DCM              19.450M/sec    104448581 misses 
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  PAPI_TOT_INS           3657.179M/sec  19639696959 instr 
  PAPI_L1_DCA            1453.390M/sec   7804962080 refs 
  PAPI_FP_OPS                                     0 ops 
  User time (approx)        5.370 secs  12351406681 cycles  100.0%Time 
  Average Time per Call                    5.370178 sec 
  CrayPat Overhead : Time    0.0% 
  HW FP Ops / User time                           0 ops   0.0%peak(DP) 
  HW FP Ops / WCT 
  HW FP Ops / Inst                             0.0% 
  Computational intensity    0.00 ops/cycle    0.00 ops/ref 
  Instr per cycle                              1.59 inst/cycle 
  MIPS                  204802.01M/sec 
  MFLOPS (aggregate)         0.00M/sec 
  Instructions per LD & ST  39.7% refs         2.52 inst/ref 
  D1 cache hit,miss ratios  98.7% hits         1.3% misses 
  D1 cache utilization (M)  74.73 refs/miss   9.341 avg uses 
======================================================================== 
MPI / MPI_Recv 
------------------------------------------------------------------------ 
  Time%                                        3.6% 
  Time                                     3.938757 secs 
  Imb.Time                                 3.694346 secs 
  Imb.Time%                                   50.2% 
  Calls                     267.3 /sec        930.2 calls 
  PAPI_L1_DCM              16.915M/sec     58867999 misses 
  PAPI_TOT_INS           3516.575M/sec  12238748109 instr 
  PAPI_L1_DCA            1395.848M/sec   4857975146 refs 
  PAPI_FP_OPS                                     0 ops 
  User time (approx)        3.480 secs   8004697555 cycles  88.4%Time 
  Average Time per Call                    0.004234 sec 
  CrayPat Overhead : Time    0.0% 
  HW FP Ops / User time                           0 ops  0.0%peak(DP) 
  HW FP Ops / WCT 
  HW FP Ops / Inst                             0.0% 
  Computational intensity    0.00 ops/cycle    0.00 ops/ref 
  Instr per cycle                              1.53 inst/cycle 
  MIPS                  196928.21M/sec 
  MFLOPS (aggregate)         0.00M/sec 
  Instructions per LD & ST  39.7% refs         2.52 inst/ref 
  D1 cache hit,miss ratios  98.8% hits         1.2% misses 
  D1 cache utilization (M)  82.52 refs/miss  10.315 avg uses 
======================================================================== 
MPI / MPI_Send 
------------------------------------------------------------------------ 
  Time%                                        2.7% 
  Time                                     2.980756 secs 
  Imb.Time                                 3.777156 secs 
  Imb.Time%                                   57.9% 
  Calls                     313.2 /sec        930.2 calls 
  PAPI_L1_DCM              16.804M/sec     49901153 misses 
  PAPI_TOT_INS           3444.843M/sec  10229767713 instr 
  PAPI_L1_DCA            1366.745M/sec   4058671524 refs 
  PAPI_FP_OPS                 313 /sec      930.161 ops 
  User time (approx)        2.970 secs   6830054698 cycles  99.6%Time 
  Average Time per Call                    0.003205 sec 
  CrayPat Overhead : Time    0.0% 
  HW FP Ops / User time       313 /sec      930.161 ops  0.0%peak(DP) 
  HW FP Ops / WCT             312 /sec 
  HW FP Ops / Inst                             0.0% 
  Computational intensity    0.00 ops/cycle    0.00 ops/ref 
  Instr per cycle                              1.50 inst/cycle 
  MIPS                  192911.20M/sec 
  MFLOPS (aggregate)         0.02M/sec 
  Instructions per LD & ST  39.7% refs         2.52 inst/ref 
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  D1 cache hit,miss ratios  98.8% hits         1.2% misses 
  D1 cache utilization (M)  81.33 refs/miss  10.167 avg uses 
======================================================================== 
 
Notes for table 3: 
 
  Table option: 
    -O load_balance_m 
  Options implied by table option:  
    -d ti%@0.95,ti,Mc,Mm,Mz -b gr,pe=[mmm] 
 
  Options for related tables not shown by default: 
    -O load_balance_sm         -O load_balance_cm     
 
  The Total value for each data item is the sum of the Group values. 
  The Group value for each data item is the avg of the PE values. 
    (To specify different aggregations, see:  pat_help report options s1) 
 
  This table shows only lines with Time% > 0.95. 
    (To set thresholds to zero, specify:  -T) 
 
  Percentages at each level are of the Total for the program. 
    (For percentages relative to next level up, specify: 
      -s percent=r[elative]) 
 
Table 3:  Load Balance with MPI Message Stats 
 
 Time % |       Time |   MPI |MPI Msg Bytes |Avg MPI Msg |Group 
        |            |   Msg |              |       Size | PE[mmm] 
        |            | Count |              |            | 
 
 100.0% | 110.949027 | 930.2 |  997045979.0 | 1071907.21 |Total 
|----------------------------------------------------------------- 
|  88.8% |  98.575759 |    -- |           -- |         -- |USER 
||---------------------------------------------------------------- 
||   1.7% | 103.103247 |    -- |           -- |         -- |pe.1 
||   1.6% |  99.183271 |    -- |           -- |         -- |pe.43 
||   1.5% |  95.192528 |    -- |           -- |         -- |pe.22 
||================================================================ 
|  11.1% |  12.321335 | 930.2 |  997045979.0 | 1071907.21 |MPI 
||---------------------------------------------------------------- 
||   0.3% |  17.008587 | 932.0 |  981012480.0 | 1052588.50 |pe.39 
||   0.2% |  12.790484 | 927.0 |  999014400.0 | 1077685.44 |pe.32 
||   0.0% |   2.468221 | 929.0 | 1015193600.0 | 1092781.05 |pe.1 
|================================================================= 
 
Notes for table 4: 
 
  Table option: 
    -O mpi_callers 
  Options implied by table option:  
    -d Mm,Mc@,Mb1..7 -b fu,ca,pe=[mmm] 
 
  Options for related tables not shown by default: 
    -O mpi_sm_callers          -O mpi_coll_callers    
 
  The Total value for each data item is the sum of the Function values. 
  The Function value for each data item is the sum of the Caller values. 
  The Caller value for each data item is the avg of the PE values. 
    (To specify different aggregations, see:  pat_help report options s1) 
 
  This table shows only lines with MPI Msg Count > 0. 
 
Table 4:  MPI Message Stats by Caller 
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MPI Msg Bytes |   MPI | 64KB<= | 1MB<= |Function 
              |   Msg |  MsgSz | MsgSz | Caller 
              | Count |   <1MB | <16MB |  PE[mmm] 
              |       |  Count | Count | 
 
  997045979.0 | 930.2 |  243.1 | 687.0 |Total 
|------------------------------------------------ 
|  997045979.0 | 930.2 |  243.1 | 687.0 |MPI_Send 
|              |       |        |       | pzgemm_ 
3              |       |        |       |  main 
||||--------------------------------------------- 
4||| 1015808000.0 | 926.0 |   82.0 | 844.0 |pe.3 
4|||  998711296.0 | 930.0 |  500.0 | 430.0 |pe.14 
4|||  978452480.0 | 930.0 |  507.0 | 423.0 |pe.55 
|================================================ 
 
Notes for table 6: 
 
  Table option: 
    -O program_time 
  Options implied by table option:  
    -d pt,hm -b pe=[mmm] 
 
  The Total value for each of Process Time, Process HiMem (MBytes) is the 
avg 
    of the PE values. 
    (To specify different aggregations, see:  pat_help report options s1) 
 
Table 6:  Program Wall Clock Time, Memory High Water Mark 
 
    Process |  Process |PE[mmm] 
       Time |    HiMem | 
            | (MBytes) | 
 
 114.987871 |      313 |Total 
|------------------------------ 
| 115.521469 |  320.918 |pe.9 
| 114.982404 |  313.098 |pe.28 
| 114.475464 |  313.090 |pe.20 
|============================== 
 
=========  Additional details ============================ 
 
Experiment:  trace 
 
Original path to data file: 
  /lustre/scratch/roche/chk-perf/xcpbls-cp+apa+25678-20623tdt.xf  (RTS) 
 
Original program:  /lustre/scratch/roche/chk-perf/./xcpbls-cp 
 
Instrumented with: 
  pat_build -Drtenv=PAT_RT_HWPC=0 -g mpi -w -o xcpbls-cp+apa \ 
         ./xcpbls-cp 
 
Instrumented program:  ./xcpbls-cp+apa 
 
Program invocation:  ./xcpbls-cp+apa 16384 16384 16384 80 7 8 
 
Exit Status:  0  PEs:  0-55 
 
Memory pagesize:  4096 
 
Runtime environment variables: 
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  MPICHBASEDIR=/opt/mpt/3.1.0/xt 
  PAT_RT_HWPC=0 
  MPICH_DIR=/opt/mpt/3.1.0/xt/mpich2-pgi 
 
Report time environment variables: 
  CRAYPAT_ROOT=/opt/xt-tools/craypat/4.4.0.4/v23/cpatx 
 
Report command line options:  -o apa-report.txt 
 
Operating system: 
  Linux 2.6.16.54-0.2.12_1.0000.3997.0-cnl #1 SMP Mon Jan 26 13:41:57 PST 
2009 
 
Hardware performance counter events: 
  PAPI_L1_DCM   Level 1 data cache misses 
  CYCLES_USER   User Cycles (approx, from clock ticks) 
  PAPI_L1_DCA   Level 1 data cache accesses 
  PAPI_TOT_INS  Instructions completed 
  PAPI_FP_OPS   Floating point operations 
 
Estimated minimum overhead per call of a traced function, 
  which was subtracted from the data shown in this report 
  (for raw data, use the option:  -s overhead=include): 
    PAPI_L1_DCM      10.653  misses 
    PAPI_TOT_INS   2019.045  instr 
    PAPI_L1_DCA    1192.191  refs 
    PAPI_FP_OPS       0.000  ops 
    CYCLES_USER    4107.143  cycles 
    Time              1.452  microseconds 
 
Number of traced functions: 104 
  (To see the list, specify:  -s traced_functions=show) 

 
GNU compilation/execution process plus automatic instrumentation 

 
• Instrument the code (from a bash shell) 

<yourcode>c via GNU gcc compiler 
 

• Load the GNU environment 

module swap PrgEnv-pgi PrgEnv-gnu . 
 

• Load the correct tools 

Module load xt-craypat . 
 

• Set the environment variables to capture intended metrics 

export PAT_RT_HWPC=PAPI_TOT_CYC,PAPI_TOT_INS,PAPI_FP_INS . 
 

• Instrument the source code by compiling with code generation hooks in the original code that 

CrayPAT will utilize 

cc -c -finstrument-functions <yourcode>.c . 
 

• Build the binary including the instrumentation hooks 

cc -o x<yourcodebinary><yourcode>.o . 
 

• Build the instrumentation (tracing example) binary 
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x<yourcodebinary>+pat : pat_build -w x<yourcodebinary>x<yourcodebinary>+pat 
. 

 
• Execute the instrumented binary 

aprun -n <n> ./x<yourcodebinary>+pat . 
 

• Build a simplistic performance report for the run 

pat_report -o <yourreport>.txt x<yourcodebinary>+pat+<processlabels>.xf . 
 

• Report is in the text file, which will include output similar to below (note that the profiled program 
did essentially no floating point computations) 
 
======================================================================== 
 Totals for program 
 ------------------------------------------------------------------------ 
   Time%                                   100.0% 
   Time                                  0.548266 secs 
   Imb.Time                                    -- secs 
   Imb.Time%                                   -- 
   Calls                     9.1 /sec         5.0 calls 
   PAPI_TOT_INS         3648.979M/sec  1997187152 instr 
   PAPI_FP_INS                 0 /sec       0.018 ops 
   PAPI_TOT_CYC            0.547 secs  1258853693 cycles 
   User time (approx)      0.548 secs  1260482143 cycles  99.8%Time 
   Average Time per Call                 0.109653 sec 
   CrayPat Overhead : Time  0.0% 
   HW FP Ops / Cycles                        0.00 ops/cycle 
   HW FP Ops / User time       0 /sec       0.018 ops  0.0%peak(DP) 
   HW FP Ops / WCT             0 /sec 
   HW FP Ops / Inst                          0.0% 
   Instr per cycle                           1.59 inst/cycle 
   MIPS                204342.81M/sec 
   MFLOPS (aggregate)       0.00M/sec 
 ======================================================================== 
 USER 
 ------------------------------------------------------------------------ 
   Time%                                   100.0% 
   Time                                  0.548263 secs 
   Imb.Time                                    -- secs 
   Imb.Time%                                   -- 
   Calls                     5.5 /sec         3.0 calls 
   PAPI_TOT_INS         3648.992M/sec  1997186185 instr 
   PAPI_FP_INS                 0 /sec       0.018 ops 
   PAPI_TOT_CYC            0.547 secs  1258848387 cycles 
   User time (approx)      0.548 secs  1260482143 cycles  99.8%Time 
   Average Time per Call                 0.182754 sec 
   CrayPat Overhead : Time  0.0% 
   HW FP Ops / Cycles                        0.00 ops/cycle 
   HW FP Ops / User time       0 /sec       0.018 ops  0.0%peak(DP) 
   HW FP Ops / WCT             0 /sec 
   HW FP Ops / Inst                          0.0% 
   Instr per cycle                           1.59 inst/cycle 
   MIPS                204343.58M/sec 
   MFLOPS (aggregate)       0.00M/sec 
 ======================================================================== 
 USER / main 
 ------------------------------------------------------------------------ 
   Time%                                   100.0% 
   Time                                  0.548163 secs 
   Imb.Time                              0.565060 secs 
   Imb.Time%                                52.6% 
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   Calls                     3.7 /sec         2.0 calls 
   PAPI_TOT_INS         3649.078M/sec  1997092099 instr 
   PAPI_FP_INS                 0 /sec       0.018 ops 
   PAPI_TOT_CYC            0.547 secs  1258759596 cycles 
   User time (approx)      0.548 secs  1260482143 cycles  99.8%Time 
   Average Time per Call                 0.274082 sec 
   CrayPat Overhead : Time  0.0% 
   HW FP Ops / Cycles                        0.00 ops/cycle 
   HW FP Ops / User time       0 /sec       0.018 ops  0.0%peak(DP) 
   HW FP Ops / WCT             0 /sec 
   HW FP Ops / Inst                          0.0% 
   Instr per cycle                           1.59 inst/cycle 
   MIPS                204348.36M/sec 
   MFLOPS (aggregate)       0.00M/sec 
 ======================================================================== 
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APPENDIX B. VISIT 
 
 

B.1 INPUT SETTINGS 

The VisIt test runs were launched using the python API using the isosurface and volume rendering 
scripts as given below. 

 
Isosurface script 

 
import sys 
OpenDatabase("/lustre/scratch/pugmire/proj/joule/denovo/forward_out.silo", 

0 ) 
expr = "scalar_flux_0 *1.6151E-04" 
expr = expr + "+ scalar_flux_1 *1.4451E-04" 
expr = expr + "+ scalar_flux_2 *1.2704E-04" 
expr = expr + "+ scalar_flux_3 *1.2811E-04" 
expr = expr + "+ scalar_flux_4 *1.2984E-04" 
expr = expr + "+ scalar_flux_5 *1.0343E-04" 
expr = expr + "+ scalar_flux_6 *5.2655E-05" 
expr = expr + "+ scalar_flux_7 *1.2861E-05" 
expr = expr + "+ scalar_flux_8 *3.7358E-06" 
expr = expr + "+ scalar_flux_9 *3.7198E-06" 
expr = expr + "+ scalar_flux_10 *4.0086E-06" 
expr = expr + "+ scalar_flux_11 *4.2945E-06" 
expr = expr + "+ scalar_flux_12 *4.4731E-06" 
expr = expr + "+ scalar_flux_13 *4.5656E-06" 
expr = expr + "+ scalar_flux_14 *4.5597E-06" 
expr = expr + "+ scalar_flux_15 *4.5210E-06" 
expr = expr + "+ scalar_flux_16 *4.4873E-06" 
expr = expr + "+ scalar_flux_17 *4.4660E-06" 
expr = expr + "+ scalar_flux_18 *4.4342E-06" 
expr = expr + "+ scalar_flux_19 *4.3316E-06" 
expr = expr + "+ scalar_flux_20 *4.2028E-06" 
expr = expr + "+ scalar_flux_21 *4.0974E-06" 
expr = expr + "+ scalar_flux_22 *3.8398E-06" 
expr = expr + "+ scalar_flux_23 *3.6748E-06" 
expr = expr + "+ scalar_flux_24 *3.6748E-06" 
expr = expr + "+ scalar_flux_25 *3.6748E-06" 
expr = expr + "+ scalar_flux_26 *3.6748E-06" 
DefineScalarExpression("dose", "%s" % expr) 
AddPlot("Contour", "dose", 1, 1) 
ContourAtts = ContourAttributes() 
ContourAtts.contourMethod = ContourAtts.Value 
ContourAtts.contourValue = (.001, .01, .1, 1, 10, 100) 
SetPlotOptions(ContourAtts) 
s = SaveWindowAttributes() 
s.width, s.height = (1024,1024) 
SetSaveWindowAttributes(s) 
DrawPlots() 
SaveWindow() 
sys.exit() 
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The Q4 problem script was identical to the Q2 script except that it references the new Q4 file. 
Namely: 

 
OpenDatabase("/lustre/scratch/pugmire/proj/joule/denovo/forward_out.silo", 

0 ) 
 
Was replaced with: 
 
OpenDatabase("/lustre/widow1/scratch/pugmire/proj/joule/denovo/medbig_forwa

rd_out.silo", 0 ) 
 
Volume Rendering script: 
 
import sys 
RestoreSession( "/lustre/scratch/pugmire/proj/joule/benchmark0/vr/VR-

4000samp.session", 0 ) 
s = SaveWindowAttributes() 
s.width, s.height = (1024,1024) 
SetSaveWindowAttributes(s) 
DrawPlots() 
SaveWindow() 
sys.exit() 
 
The Q4 problem script was identical to the Q2 script, except that it references the new Q4 data file. 

Namely: 
 
RestoreSession( "/lustre/scratch/pugmire/proj/joule/benchmark0/vr/VR-

4000samp.session", 0 ) 
 
Was replaced with: 
 
RestoreSession( 

"/lustre/widow1/scratch/pugmire/proj/joule/benchmark1/vr/VR-
4000samp.session", 0 ) 

 
Denvo was run on Jaguar/XT5 on 4096 cores and 4096 domains with the input deck given below. 
eq_set: sc 
input: pwr_in 
Pn_order: 3 
Sn_order: 16 
num_blocks_i: 64 
num_blocks_j: 64 
num_z_blocks: 27 
silo_output: forward_out 
pwr_in is a binary file specifying the problem setup. 
 
The simulation output is as follows: 
 
Tue Dec 16 23:18:29 EST 2008 
>>> Finished reading problem database. 
>>> Finished partitioning problem. 
>>> Finished reading material database. 
>>> Finished reading source database. 
>>> Finished building solvers. 
Database for hpc_input has: 
    12 integer entries 
    1 double entries 
    2 bool entries 
    4 string entries 
    0 vector<int> entries 
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    5 vector<double> entries 
    1 nested database entries 
 
=================================== 
Entries in       hpc_input database 
=================================== 
integer entries 
---------------------------------------- 
                 Pn_order              3 
                 Sn_order             16 
               aztec_diag              0 
             aztec_kspace             20 
             aztec_output              0 
              first_group              0 
               last_group             26 
                  max_itr           1000 
             num_blocks_i             64 
             num_blocks_j             64 
               num_groups             46 
             num_z_blocks             27 
double entries 
---------------------------------------- 
                tolerance          1e-06 
bool entries 
---------------------------------------- 
                  adjoint              0 
              downscatter              1 
 
string entries 
---------------------------------------- 
                 boundary         vacuum 
                    input         pwr_in 
             problem_name            pwr 
      within_group_solver          GMRES 
=================================== 
Entries in            silo database 
=================================== 
bool entries 
---------------------------------------- 
         silo_out_current              0 
           silo_out_sigma              0 
string entries 
---------------------------------------- 
              silo_output    forward_out 
Denovo Setup complete, ready to solve using   SC spatial differencing 

option. 
--------------------------------------------------------------------------- 
 
>>> Forward group   0 finished in    8 GMRES iterations. 
>>> Forward group   1 finished in    9 GMRES iterations. 
>>> Forward group   2 finished in    9 GMRES iterations. 
>>> Forward group   3 finished in    9 GMRES iterations. 
>>> Forward group   4 finished in   12 GMRES iterations. 
>>> Forward group   5 finished in   17 GMRES iterations. 
>>> Forward group   6 finished in   23 GMRES iterations. 
>>> Forward group   7 finished in   21 GMRES iterations. 
>>> Forward group   8 finished in   27 GMRES iterations. 
>>> Forward group   9 finished in   26 GMRES iterations. 
>>> Forward group  10 finished in   27 GMRES iterations. 
>>> Forward group  11 finished in   23 GMRES iterations. 
>>> Forward group  12 finished in   20 GMRES iterations. 
>>> Forward group  13 finished in   20 GMRES iterations. 
>>> Forward group  14 finished in   15 GMRES iterations. 
>>> Forward group  15 finished in   13 GMRES iterations. 
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>>> Forward group  16 finished in    9 GMRES iterations. 
>>> Forward group  17 finished in    8 GMRES iterations. 
>>> Forward group  18 finished in   10 GMRES iterations. 
>>> Forward group  19 finished in   14 GMRES iterations. 
>>> Forward group  20 finished in    9 GMRES iterations. 
>>> Forward group  21 finished in   10 GMRES iterations. 
>>> Forward group  22 finished in   13 GMRES iterations. 
>>> Forward group  23 finished in    9 GMRES iterations. 
>>> Forward group  24 finished in    8 GMRES iterations. 
>>> Forward group  25 finished in    9 GMRES iterations. 
>>> Forward group  26 finished in    8 GMRES iterations. 
 
=================== 
Final Timing Report 
=================== 
                                 Routine   Max Fraction   Min Fraction 
================================================================== 
                            Build_solver     1.5522e-05     5.1841e-06 
                                  Output     9.5824e-02     4.0892e-04 
                                   Setup     3.6749e-01     3.6746e-01 
                                  Solver     5.3672e-01     5.3669e-01 
                                   Sweep     5.1994e-01     4.8821e-01 
                     Within_group_solver     5.3672e-01     5.3669e-01 
================================================================== 
Total execution time : 4.1919e+03 seconds. 
Application 1843223 resources: utime 0, stime 7 

B.2 COMPILATION 

Compilation of VisIt was done withVisIt version 1.11.1 using the g++ compiler (in 
/opt/gcc/4.2.0.quadcore/bin/g++). The following compiler options were used: 

 
CC="gcc" 
CXX="g++" 
CFLAGS=" -m64 -fPIC -DMPICH_IGNORE_CXX_SEEK -DPAPI" 
CXXFLAGS=" -m64 -fPIC -DMPICH_IGNORE_CXX_SEEK -DPAPI" 
#Get these via CC -v 
LDFLAGS="-L/opt/fftw/3.1.1/cnos/lib $LDFLAGS" 
LDFLAGS="-L/opt/mpt/3.1.0/xt/mpich2-gnu/lib $LDFLAGS" 
LDFLAGS="-L/opt/xt-libsci/10.3.1/gnu/snos64/lib $LDFLAGS" 
LDFLAGS="-L/opt/mpt/3.1.0/xt/sma/lib $LDFLAGS" 
LDFLAGS="-L/opt/mpt/3.1.0/xt/util/lib $LDFLAGS" 
LDFLAGS="-L/opt/mpt/3.1.0/xt/pmi/lib $LDFLAGS" 
LDFLAGS="-L/opt/xt-pe/2.1.41HD/lib/snos64 $LDFLAGS" 
LDFLAGS="-L/opt/xt-service/2.1.41HD/lib/snos64 $LDFLAGS" 
LDFLAGS="-L/opt/mpt/3.1.0/xt/mpich2-gnu/lib $LDFLAGS" 
CPPFLAGS="-I/opt/mpt/3.1.0/xt/mpich2-gnu/include -I/opt/xt-

tools/papi/3.6.2/v23/linux/include $CPPFLAGS" 
MPI_LIBS="-Bstatic -lfftw3 -lfftw3f -lsci_quadcore -lsci -lfftw3 -lfftw3f 

/opt/mpt/3.1.0/xt/sma/lib/libsma.a /opt/mpt/3.1.0/xt/mpich2-
gnu/lib/libmpichcxx.a /opt/mpt/3.1.0/xt/mpich2-gnu/lib/libmpich.a -lrt -
-start -lpct /opt/mpt/3.1.0/xt/pmi/lib/libpmi.a /opt/xt-
mpt/2.1.41HD/lib/snos64/libalpslli.a /opt/xt-
mpt/2.1.41HD/lib/snos64/libalpsutil.a /opt/xt-
service/2.1.41HD/lib/snos64/libportals.a /opt/xt-
tools/papi/3.6.2/v23/linux/lib/libpapi.a /opt/xt-
tools/papi/3.6.2/v23/linux/lib/libpfm.a -lpthread -lm --end -lm -lgcc -
lgcc_eh -lc -lgcc -lgcc_eh -lc" 
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The VisIt parallel engine links to the Silo, python, VTK, mesa and HDF5 libraries: 
 
silo/4.6.1/linux-x86_64_gcc-4.2.0 
python/2.5/linux-x86_64_gcc-4.2.0 
vtk/5.0.0c/linux-x86_64_gcc-4.2.0 
mesa/5.0/linux-x86_64_gcc-4.2.0 
hdf5/1.6.5/linux-x86_64_gcc-4.2.0 

B.3 BATCH SCRIPT 

The batch script is available upon request. 

B.4 RUNTIME ENVIRONMENT 

Modules used: 
 
PrgEnv-gnu 
xt-papi 
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APPENDIX C. CAM 
 
 
Here we report the important elements of the software environment at the time of the Q2 run. This 

includes version specification of the operating system, compiler, and required software libraries. We also 
report important settings in the Makefile and other parts of the model build procedure (configuration and 
compilation), including optimization flags passed to the compiler. Finally, the model run script and 
critical Fortran name-list settings are also included. We have archived all these files and settings locally 
(along with the model source code), in order to isolate what was changed between Q2 and Q4. We did not 
include full Makefile, name list, or “make” output here due to the vast volume of data inclusion that 
would be required. 

C.1 INPUT SETTINGS 

Shown below are performance tuning settings from the input Fortran name-list that were applied in 
the Q2 and Q4 runs. Changes in the Q4 settings are as a result of exploring optimal values, and the fact 
that the optimal values can change based on code changes. 

 
&cam_inparm 
 phys_loadbalance = 2 
 phys_alltoall = 1 
/ 
 
Q4 settings: 
 
&cam_inparm 
 phys_loadbalance = 3 
/ 

C.2 COMPILATION 

The following are the critical settings from the model Makefile used in the Q2 and Q4 runs, 
respectively. 

 
Q2 Makefile: 
 
MODEL_EXEDIR:=/autofs/na1_home/rosinski/cam3.5.55/models/atm/cam/joulebase 
INC_NETCDF   := /sw/xt5/netcdf/3.6.2/sles10.1_pgi7.2.3/include 
LIB_NETCDF   := /sw/xt5/netcdf/3.6.2/sles10.1_pgi7.2.3/lib 
MOD_NETCDF   := /sw/xt5/netcdf/3.6.2/sles10.1_pgi7.2.3/include 
USER_CPPDEFS := -DHAVE_PAPI -DFORTRANUNDERSCORE \ 
                -DTROPCHEM -DCOUP_DOM -DPLON=1024 \ 
                -DPLAT=512 -DPLEV=26 -DPCNST=3 -DPCOLS=16 \ 
                -DPTRM=341 -DPTRN=341 -DPTRK=341 
FORTRAN_OPTIMIZATION := -fast -Mvect=nosse –Kieee 
 
Q4 Makefile: 
 
MODEL_EXEDIR:=/autofs/na1_home/rosinski/cam3.5.55/models/atm/cam/joulebase 
INC_NETCDF   := /opt/cray/netcdf/4.0.0.3/netcdf-pgi/include 
LIB_NETCDF   := /opt/cray/netcdf/4.0.0.3/netcdf-pgi/lib 
MOD_NETCDF   := /opt/cray/netcdf/4.0.0.3/netcdf-pgi/include 
USER_CPPDEFS := -DHAVE_PAPI -DFORTRANUNDERSCORE \ 
                -DTROPCHEM -DCOUP_DOM -DPLON=1024 \ 
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                -DPLAT=512 -DPLEV=26 -DPCNST=3 -DPCOLS=16 \ 
                -DPTRM=341 -DPTRN=341 -DPTRK=341 
FORTRAN_OPTIMIZATION := -fast -fastsse -Mvect=sse 

C.3 BATCH SCRIPT 

The following is the Q2 model run script, minus the Fortran name lists. 
 
!/bin/csh -fvx 
#PBS -N jb8192 
#PBS -V 
#PBS -A CSC053CAM 
#PBS -j oe 
#PBS -l walltime=3:00:00 
#PBS -l size=8192 
#PBS -q batch 
##PBS -q debug 
 
setenv OMP_NUM_THREADS 8 
setenv MPSTKZ 384M 
setenv MPICH_UNEX_BUFFER_SIZE 250M 
 
cd /tmp/work/rosinski/cam3.5.55.t341.withmods.adv3/joulebase  || exit 1 
 
set iter = 2 
set dir = npes8192.iter$iter 
mkdir $dir 
cd $dir 
cp /ccs/home/rosinski/cam3.5.55/models/atm/cam/joulebase/cam . 
aprun -n 1024 -d $OMP_NUM_THREADS ./cam >&! out.init 
exit 0 
 
Paths to model source and run directories were different for the Q4 runs. But there were no changes to 

environment variables or other aspects of the build system. 

C.4 RUNTIME ENVIRONMENT 

The runtime environment is available in an archived file on the Jaguar/XT5 file system. 
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APPENDIX D. XGC1 
 
 

D.1 INPUT SETTINGS 

Input namelist file 
&sml_param 
sml_machine=1             ! 0 circular, 1:D3D,  
sml_node_file='d3d_g096333_2mm_16_mr10.1.node' 
sml_ele_file='d3d_g096333_2mm_16_mr10.1.ele' 
sml_use_pade=.true. 
sml_bfollow=1 
sml_bfollow_read=0 
 
sml_special=0             ! 0: normal simulation, 1: single particle 

simulation 
sml_dt=0.002            ! delta-t for one time step - unit of toroidal 

transit time.  
sml_mstep=500          ! totoal time step 
sml_deltaf=0              ! delta-f simulation switch - incomplete 
sml_turb_efield=1 
sml_electron_on=0 
sml_nphi_total=16 
sml_canonical_maxwell=0   ! cononical maxwellian initial loading switch - 

incomplete 
sml_bounce=0              ! Particle motion boundary condition  
                          ! 1 for edge simulation (including open field 

line region) 
                          ! 2 for core simulation (excluding open field 

line region) 
sml_limiter=0             ! Limiter on/off 
sml_fem_matrix=1 
sml_inpsi=0.0d0             ! inner boundary of simulation - unit of 

eq_x_psi 
sml_outpsi=1.10d0           ! outter boundary of simulation - unit of 

eq_x_psi 
sml_push_mode=3 
sml_pc_order=2 
sml_restart_write_period=500 
sml_restart=0 
sml_zero_inner_bd=0 
sml_guess_table_size=1500 
sml_no_00_efield=0 
sml_input_file_dir='../XGC1_inputs/' 
sml_bd_ext_delta2=-0.01 
sml_bd_ext_delta1=-0.003 
sml_bd_ext_delta3=0.001 
sml_bd_ext_delta4=0.03 
sml_max_mat_width=300 
sml_bd_Te_mode=0 
sml_bd_Te_width=0.01D0 
sml_sheath_mode=0 
sml_sheath_init_pot_factor=2.5 
sml_rgn1_pot0_only=.true. 
sml_add_pot0=1 
sml_add_pot0_file='pot0_0327_d3d_g096333_2mm_16_mr10_177236_fac.5.dat' 
sml_zero_out_total_charge=.false. 
sml_pol_decomp=.false. 
sml_heat_on=.true. 
sml_iter_solver=.false. 
sml_iter_solver_niter=3 
sml_bt_sign=1 
/ 
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&ptl_param 
ptl_mass_au=2D0             ! 1 for hydrogen, 2 for deutron 
ptl_charge_eu=1D0            ! ion charge 
ptl_num=450000             ! number of particle for simulation 
ptl_maxnum=550000 
/ 
 
&eq_param ! Initial equilibrium profile - Tanh profile 
eq_filename='d3d096333.eqd' 
eq_den_shape=-1 
eq_den_edge=4.0D20          ! inside value of density m^-3 
eq_den_out=0.5D20           ! outside value of density  m^-3 
eq_den_ped_c=0.96D0      ! pedestal center  
eq_den_ped_width=0.09D0    ! pedestal width 
eq_den_val3=6.0D20 
eq_den_psi3=0D0 
 
eq_tempi_shape=-1 
eq_tempe_shape=-1 
eq_tempi_ped_c=0.91D0 
eq_tempe_ped_c=0.91D0 
eq_tempi_ped_width=0.14D0 
eq_tempe_ped_width=0.14D0 
eq_tempi_ev_edge=1D3      ! ion temperature (inside) - eV 
eq_tempi_ev_out=5d1     ! ion temperature (outside) - eV 
eq_tempe_ev_edge=1D3 
eq_tempe_ev_out=5D1 
eq_tempi_val3=4.5D3 
eq_tempi_psi3=0D0 
eq_tempe_val3=4.5D3 
eq_tempe_psi3=0D0 
 
eq_den_file='d3d_white_pop_2008_den.prf' 
eq_tempi_file='d3d_white_pop_2008_tempi.prf' 
eq_tempe_file='d3d_white_pop_2008_tempe.prf' 
/ 
 
&efld_param ! E-field calculation 
efld_mode=2              ! 0 zero efield, 1 static efield, 2 self-

consistent 
efld_cutoff=0 
/ 
 
&col_param  ! Collision 
col_mode=3  ! 0 : off , 1 monte-carlo (non-conserving) 2: monte-carlo 

(conserving) 
col_accel=.true. 
col_accel_n=1 
col_accel_factor1=10. 
col_accel_pout1=0.08   
/ 
 
&diag_param ! diagnosis 
diag_f_on=0 
diag_tracer_period=1 
diag_tracer_n=1 
diag_binout_period=10 
diag_pot_period=200000 
diag_ptl_on=0 
diag_ptl_begin=10 
diag_ptl_num=1000 
diag_gam_on=0 
diag_avg_on=1 
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diag_avg_outperiod=10 
diag_flow_period=10 
diag_rect_rmin=1.7 
diag_rect_rmax=2.3 
diag_rect_zmin=-0.03 
diag_rect_zmax=0.03 
diag_rect_nr=100 
diag_rect_nz=3 
diag_stress_on=.true. 
/ 
 
&neu_param            ! neutral collision 
neu_col_mode=0 
/ 
 
&lim_param            ! limiter  
 
/ 
&smooth_param 
smooth_mode_in=0 
smooth_n_in=2 
smooth_H_mode_in=2 
smooth_H_n_in=2 
 
smooth_r1_n_in=-1 
smooth_r1_d0_in=0.0042 
smooth_r1_type_in=1 
 
smooth_diag_mode_in=-1 
/ 
 
&tbl_param 
/ 
 
&heat_param 
heat_narea=1 
heat_power=50D6 
heat_period=10 
heat_outpsi=0.04 
heat_decay_width=0.05 
/ 
 
&mon_param 
mon_flush_count=100 
/ 
 
&prof_inparam 
profile_papi_enable=.true. 
profile_outpe_num = -1 
profile_single_file = .false. 
/ 
&papi_inparam 
papi_ctr1_str="PAPI_TOT_CYC" 
papi_ctr2_str="PAPI_TOT_INS" 
papi_ctr3_str="PAPI_FP_INS" 
/ 
 
PETSc input 
-log_summary 
-pc_type hypre 
%-pc_type jacobi 
-ksp_type cg 
-pc_hypre_type boomeramg 
-mat_partitioning_type current 
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-s2_mat_partitioning_type current 
-s2_ksp_type cg  
-s2_pc_type hypre 
-s2_pc_hypre_type boomeramg 

D.2 COMPILATION 

/usr/bin/make  all-am 
make[1]: Entering directory `/autofs/na1_home/shku/xgc/trunk/XGC1/jaguarpf' 
source='../../camtimers/GPTLget_memusage.c' object='libtimers_wpapi_a-

GPTLget_memusage.o' libtool=no \ 
DEPDIR=.deps depmode=none /bin/sh ../../acfiles/depcomp \ 
cc -DHAVE_CONFIG_H -I. -I.. -I.    -DLINUX -DFORTRANUNDERSCORE -DSPMD -

DHAVE_NANOTIME -DBIT64 -I../../camtimers  -DHAVE_PAPI -I/opt/xt-
tools/papi/3.6.2/v23/xt-cnl/include -fastsse -Kieee -mp -c -o 
libtimers_wpapi_a-GPTLget_memusage.o `test -f 
'../../camtimers/GPTLget_memusage.c' || echo 
'../'`../../camtimers/GPTLget_memusage.c 

/opt/cray/xt-asyncpe/2.0/bin/cc: INFO: linux target is being used 
source='../../camtimers/GPTLprint_memusage.c' object='libtimers_wpapi_a-

GPTLprint_memusage.o' libtool=no \ 
DEPDIR=.deps depmode=none /bin/sh ../../acfiles/depcomp \ 
cc -DHAVE_CONFIG_H -I. -I.. -I.    -DLINUX -DFORTRANUNDERSCORE -DSPMD -

DHAVE_NANOTIME -DBIT64 -I../../camtimers  -DHAVE_PAPI -I/opt/xt-
tools/papi/3.6.2/v23/xt-cnl/include -fastsse -Kieee -mp -c -o 
libtimers_wpapi_a-GPTLprint_memusage.o `test -f 
'../../camtimers/GPTLprint_memusage.c' || echo 
'../'`../../camtimers/GPTLprint_memusage.c 

/opt/cray/xt-asyncpe/2.0/bin/cc: INFO: linux target is being used 
source='../../camtimers/GPTLutil.c' object='libtimers_wpapi_a-GPTLutil.o' 

libtool=no \ 
DEPDIR=.deps depmode=none /bin/sh ../../acfiles/depcomp \ 
cc -DHAVE_CONFIG_H -I. -I.. -I.    -DLINUX -DFORTRANUNDERSCORE -DSPMD -

DHAVE_NANOTIME -DBIT64 -I../../camtimers  -DHAVE_PAPI -I/opt/xt-
tools/papi/3.6.2/v23/xt-cnl/include -fastsse -Kieee -mp -c -o 
libtimers_wpapi_a-GPTLutil.o `test -f '../../camtimers/GPTLutil.c' || 
echo '../'`../../camtimers/GPTLutil.c 

/opt/cray/xt-asyncpe/2.0/bin/cc: INFO: linux target is being used 
source='../../camtimers/f_wrappers.c' object='libtimers_wpapi_a-

f_wrappers.o' libtool=no \ 
DEPDIR=.deps depmode=none /bin/sh ../../acfiles/depcomp \ 
cc -DHAVE_CONFIG_H -I. -I.. -I.    -DLINUX -DFORTRANUNDERSCORE -DSPMD -

DHAVE_NANOTIME -DBIT64 -I../../camtimers  -DHAVE_PAPI -I/opt/xt-
tools/papi/3.6.2/v23/xt-cnl/include -fastsse -Kieee -mp -c -o 
libtimers_wpapi_a-f_wrappers.o `test -f '../../camtimers/f_wrappers.c' 
|| echo '../'`../../camtimers/f_wrappers.c 

/opt/cray/xt-asyncpe/2.0/bin/cc: INFO: linux target is being used 
source='../../camtimers/gptl.c' object='libtimers_wpapi_a-gptl.o' 

libtool=no \ 
DEPDIR=.deps depmode=none /bin/sh ../../acfiles/depcomp \ 
cc -DHAVE_CONFIG_H -I. -I.. -I.    -DLINUX -DFORTRANUNDERSCORE -DSPMD -

DHAVE_NANOTIME -DBIT64 -I../../camtimers  -DHAVE_PAPI -I/opt/xt-
tools/papi/3.6.2/v23/xt-cnl/include -fastsse -Kieee -mp -c -o 
libtimers_wpapi_a-gptl.o `test -f '../../camtimers/gptl.c' || echo 
'../'`../../camtimers/gptl.c 

/opt/cray/xt-asyncpe/2.0/bin/cc: INFO: linux target is being used 
source='../../camtimers/gptl_papi.c' object='libtimers_wpapi_a-gptl_papi.o' 

libtool=no \ 
DEPDIR=.deps depmode=none /bin/sh ../../acfiles/depcomp \ 
cc -DHAVE_CONFIG_H -I. -I.. -I.    -DLINUX -DFORTRANUNDERSCORE -DSPMD -

DHAVE_NANOTIME -DBIT64 -I../../camtimers  -DHAVE_PAPI -I/opt/xt-
tools/papi/3.6.2/v23/xt-cnl/include -fastsse -Kieee -mp -c -o 
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libtimers_wpapi_a-gptl_papi.o `test -f '../../camtimers/gptl_papi.c' || 
echo '../'`../../camtimers/gptl_papi.c 

/opt/cray/xt-asyncpe/2.0/bin/cc: INFO: linux target is being used 
PGC-W-0095-Type cast required for this conversion 

(../../camtimers/gptl_papi.c: 952) 
PGC/x86-64 Linux 7.2-5: compilation completed with warnings 
source='../../camtimers/threadutil.c' object='libtimers_wpapi_a-

threadutil.o' libtool=no \ 
DEPDIR=.deps depmode=none /bin/sh ../../acfiles/depcomp \ 
cc -DHAVE_CONFIG_H -I. -I.. -I.    -DLINUX -DFORTRANUNDERSCORE -DSPMD -

DHAVE_NANOTIME -DBIT64 -I../../camtimers  -DHAVE_PAPI -I/opt/xt-
tools/papi/3.6.2/v23/xt-cnl/include -fastsse -Kieee -mp -c -o 
libtimers_wpapi_a-threadutil.o `test -f '../../camtimers/threadutil.c' 
|| echo '../'`../../camtimers/threadutil.c 

/opt/cray/xt-asyncpe/2.0/bin/cc: INFO: linux target is being used 
ftn -DHAVE_CONFIG_H -I. -I.. -I.    -Mfree -i4 -Mdalign -Mextend -

byteswapio -DLINUX -DFORTRANUNDERSCORE -DSPMD -DHAVE_NANOTIME -DBIT64 -
I../../camtimers  -DHAVE_PAPI -I/opt/xt-tools/papi/3.6.2/v23/xt-
cnl/include -fastsse -Kieee -mp -c -o libtimers_wpapi_a-perf_utils.o 
`test -f '../../camtimers/perf_utils.F90' || echo 
'../'`../../camtimers/perf_utils.F90 

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used 
ftn -DHAVE_CONFIG_H -I. -I.. -I.    -Mfree -i4 -Mdalign -Mextend -

byteswapio -DLINUX -DFORTRANUNDERSCORE -DSPMD -DHAVE_NANOTIME -DBIT64 -
I../../camtimers  -DHAVE_PAPI -I/opt/xt-tools/papi/3.6.2/v23/xt-
cnl/include -fastsse -Kieee -mp -c -o libtimers_wpapi_a-perf_mod.o `test 
-f '../../camtimers/perf_mod.F90' || echo 
'../'`../../camtimers/perf_mod.F90 

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used 
rm -f libtimers_wpapi.a 
/usr/bin/ar crus libtimers_wpapi.a libtimers_wpapi_a-GPTLget_memusage.o 

libtimers_wpapi_a-GPTLprint_memusage.o libtimers_wpapi_a-GPTLutil.o 
libtimers_wpapi_a-f_wrappers.o libtimers_wpapi_a-gptl.o 
libtimers_wpapi_a-gptl_papi.o libtimers_wpapi_a-threadutil.o 
libtimers_wpapi_a-perf_utils.o libtimers_wpapi_a-perf_mod.o  

/usr/bin/ranlib libtimers_wpapi.a 
ftn -DHAVE_CONFIG_H -I. -I.. -I.     -DADIOS -

I/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/include  -DCAM_TIMERS -
I../../camtimers -DPSPLINE -I/sw/xt/pspline/1.0/cnl2.0_pgi7.0.7/mod   -
I/opt/petsc/2.3.3a/real/PGI/linux -
I/opt/petsc/2.3.3a/real/PGI/linux/bmake/cray-xt -
I/opt/petsc/2.3.3a/real/PGI/linux/include -fastsse -Kieee -mp -c -o 
xgc1-module.o `test -f 'module.F90' || echo '../'`module.F90 

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used 
ftn -DHAVE_CONFIG_H -I. -I.. -I.     -DADIOS -

I/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/include  -DCAM_TIMERS -
I../../camtimers -DPSPLINE -I/sw/xt/pspline/1.0/cnl2.0_pgi7.0.7/mod   -
I/opt/petsc/2.3.3a/real/PGI/linux -
I/opt/petsc/2.3.3a/real/PGI/linux/bmake/cray-xt -
I/opt/petsc/2.3.3a/real/PGI/linux/include -fastsse -Kieee -mp -c -o 
xgc1-search.o `test -f 'search.F90' || echo '../'`search.F90 

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used 
ftn -DHAVE_CONFIG_H -I. -I.. -I.     -DADIOS -

I/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/include  -DCAM_TIMERS -
I../../camtimers -DPSPLINE -I/sw/xt/pspline/1.0/cnl2.0_pgi7.0.7/mod   -
I/opt/petsc/2.3.3a/real/PGI/linux -
I/opt/petsc/2.3.3a/real/PGI/linux/bmake/cray-xt -
I/opt/petsc/2.3.3a/real/PGI/linux/include -fastsse -Kieee -mp -c -o 
xgc1-charge.o `test -f 'charge.F90' || echo '../'`charge.F90 

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used 
ftn -DHAVE_CONFIG_H -I. -I.. -I.     -DADIOS -

I/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/include  -DCAM_TIMERS -
I../../camtimers -DPSPLINE -I/sw/xt/pspline/1.0/cnl2.0_pgi7.0.7/mod   -
I/opt/petsc/2.3.3a/real/PGI/linux -
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I/opt/petsc/2.3.3a/real/PGI/linux/bmake/cray-xt -
I/opt/petsc/2.3.3a/real/PGI/linux/include -fastsse -Kieee -mp -c -o 
xgc1-read.o `test -f 'read.F90' || echo '../'`read.F90 

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used 
ftn -DHAVE_CONFIG_H -I. -I.. -I.     -DADIOS -

I/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/include  -DCAM_TIMERS -
I../../camtimers -DPSPLINE -I/sw/xt/pspline/1.0/cnl2.0_pgi7.0.7/mod   -
I/opt/petsc/2.3.3a/real/PGI/linux -
I/opt/petsc/2.3.3a/real/PGI/linux/bmake/cray-xt -
I/opt/petsc/2.3.3a/real/PGI/linux/include -fastsse -Kieee -mp -c -o 
xgc1-pol_decomp.o `test -f 'pol_decomp.F90' || echo '../'`pol_decomp.F90 

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used 
ftn -DHAVE_CONFIG_H -I. -I.. -I.     -DADIOS -

I/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/include  -DCAM_TIMERS -
I../../camtimers -DPSPLINE -I/sw/xt/pspline/1.0/cnl2.0_pgi7.0.7/mod   -
I/opt/petsc/2.3.3a/real/PGI/linux -
I/opt/petsc/2.3.3a/real/PGI/linux/bmake/cray-xt -
I/opt/petsc/2.3.3a/real/PGI/linux/include -fastsse -Kieee -mp -c -o 
xgc1-push.o `test -f 'push.F90' || echo '../'`push.F90 

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used 
ftn -DHAVE_CONFIG_H -I. -I.. -I.     -DADIOS -

I/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/include  -DCAM_TIMERS -
I../../camtimers -DPSPLINE -I/sw/xt/pspline/1.0/cnl2.0_pgi7.0.7/mod   -
I/opt/petsc/2.3.3a/real/PGI/linux -
I/opt/petsc/2.3.3a/real/PGI/linux/bmake/cray-xt -
I/opt/petsc/2.3.3a/real/PGI/linux/include -fastsse -Kieee -mp -c -o 
xgc1-setup.o `test -f 'setup.F90' || echo '../'`setup.F90 

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used 
ftn -DHAVE_CONFIG_H -I. -I.. -I.     -DADIOS -

I/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/include  -DCAM_TIMERS -
I../../camtimers -DPSPLINE -I/sw/xt/pspline/1.0/cnl2.0_pgi7.0.7/mod   -
I/opt/petsc/2.3.3a/real/PGI/linux -
I/opt/petsc/2.3.3a/real/PGI/linux/bmake/cray-xt -
I/opt/petsc/2.3.3a/real/PGI/linux/include -fastsse -Kieee -mp -c -o 
xgc1-efield.o `test -f 'efield.F90' || echo '../'`efield.F90 

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used 
ftn -DHAVE_CONFIG_H -I. -I.. -I.     -DADIOS -

I/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/include  -DCAM_TIMERS -
I../../camtimers -DPSPLINE -I/sw/xt/pspline/1.0/cnl2.0_pgi7.0.7/mod   -
I/opt/petsc/2.3.3a/real/PGI/linux -
I/opt/petsc/2.3.3a/real/PGI/linux/bmake/cray-xt -
I/opt/petsc/2.3.3a/real/PGI/linux/include -fastsse -Kieee -mp -c -o 
xgc1-diagnosis.o `test -f 'diagnosis.F90' || echo '../'`diagnosis.F90 

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used 
ftn -DHAVE_CONFIG_H -I. -I.. -I.     -DADIOS -

I/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/include  -DCAM_TIMERS -
I../../camtimers -DPSPLINE -I/sw/xt/pspline/1.0/cnl2.0_pgi7.0.7/mod   -
I/opt/petsc/2.3.3a/real/PGI/linux -
I/opt/petsc/2.3.3a/real/PGI/linux/bmake/cray-xt -
I/opt/petsc/2.3.3a/real/PGI/linux/include -fastsse -Kieee -mp -c -o 
xgc1-limiter.o `test -f 'limiter.F90' || echo '../'`limiter.F90 

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used 
ftn -DHAVE_CONFIG_H -I. -I.. -I.     -DADIOS -

I/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/include  -DCAM_TIMERS -
I../../camtimers -DPSPLINE -I/sw/xt/pspline/1.0/cnl2.0_pgi7.0.7/mod   -
I/opt/petsc/2.3.3a/real/PGI/linux -
I/opt/petsc/2.3.3a/real/PGI/linux/bmake/cray-xt -
I/opt/petsc/2.3.3a/real/PGI/linux/include -fastsse -Kieee -mp -c -o 
xgc1-bounce.o `test -f 'bounce.F90' || echo '../'`bounce.F90 

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used 
ftn -DHAVE_CONFIG_H -I. -I.. -I.     -DADIOS -

I/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/include  -DCAM_TIMERS -
I../../camtimers -DPSPLINE -I/sw/xt/pspline/1.0/cnl2.0_pgi7.0.7/mod   -
I/opt/petsc/2.3.3a/real/PGI/linux -
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I/opt/petsc/2.3.3a/real/PGI/linux/bmake/cray-xt -
I/opt/petsc/2.3.3a/real/PGI/linux/include -fastsse -Kieee -mp -c -o 
xgc1-diagnosis2.o `test -f 'diagnosis2.F90' || echo '../'`diagnosis2.F90 

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used 
ftn -DHAVE_CONFIG_H -I. -I.. -I.     -DADIOS -

I/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/include  -DCAM_TIMERS -
I../../camtimers -DPSPLINE -I/sw/xt/pspline/1.0/cnl2.0_pgi7.0.7/mod   -
I/opt/petsc/2.3.3a/real/PGI/linux -
I/opt/petsc/2.3.3a/real/PGI/linux/bmake/cray-xt -
I/opt/petsc/2.3.3a/real/PGI/linux/include -fastsse -Kieee -mp -c -o 
xgc1-collision.o `test -f 'collision.F90' || echo '../'`collision.F90 

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used 
ftn -DHAVE_CONFIG_H -I. -I.. -I.     -DADIOS -

I/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/include  -DCAM_TIMERS -
I../../camtimers -DPSPLINE -I/sw/xt/pspline/1.0/cnl2.0_pgi7.0.7/mod   -
I/opt/petsc/2.3.3a/real/PGI/linux -
I/opt/petsc/2.3.3a/real/PGI/linux/bmake/cray-xt -
I/opt/petsc/2.3.3a/real/PGI/linux/include -fastsse -Kieee -mp -c -o 
xgc1-collision2.o `test -f 'collision2.F90' || echo '../'`collision2.F90 

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used 
ftn -DHAVE_CONFIG_H -I. -I.. -I.     -DADIOS -

I/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/include  -DCAM_TIMERS -
I../../camtimers -DPSPLINE -I/sw/xt/pspline/1.0/cnl2.0_pgi7.0.7/mod   -
I/opt/petsc/2.3.3a/real/PGI/linux -
I/opt/petsc/2.3.3a/real/PGI/linux/bmake/cray-xt -
I/opt/petsc/2.3.3a/real/PGI/linux/include -fastsse -Kieee -mp -c -o 
xgc1-diagnosis-f.o `test -f 'diagnosis-f.F90' || echo '../'`diagnosis-
f.F90 

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used 
ftn -DHAVE_CONFIG_H -I. -I.. -I.     -DADIOS -

I/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/include  -DCAM_TIMERS -
I../../camtimers -DPSPLINE -I/sw/xt/pspline/1.0/cnl2.0_pgi7.0.7/mod   -
I/opt/petsc/2.3.3a/real/PGI/linux -
I/opt/petsc/2.3.3a/real/PGI/linux/bmake/cray-xt -
I/opt/petsc/2.3.3a/real/PGI/linux/include -fastsse -Kieee -mp -c -o 
xgc1-heat.o `test -f 'heat.F90' || echo '../'`heat.F90 

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used 
ftn -DHAVE_CONFIG_H -I. -I.. -I.     -DADIOS -

I/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/include  -DCAM_TIMERS -
I../../camtimers -DPSPLINE -I/sw/xt/pspline/1.0/cnl2.0_pgi7.0.7/mod   -
I/opt/petsc/2.3.3a/real/PGI/linux -
I/opt/petsc/2.3.3a/real/PGI/linux/bmake/cray-xt -
I/opt/petsc/2.3.3a/real/PGI/linux/include -fastsse -Kieee -mp -c -o 
xgc1-turbulence.o `test -f 'turbulence.F90' || echo '../'`turbulence.F90 

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used 
ftn -DHAVE_CONFIG_H -I. -I.. -I.     -DADIOS -

I/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/include  -DCAM_TIMERS -
I../../camtimers -DPSPLINE -I/sw/xt/pspline/1.0/cnl2.0_pgi7.0.7/mod   -
I/opt/petsc/2.3.3a/real/PGI/linux -
I/opt/petsc/2.3.3a/real/PGI/linux/bmake/cray-xt -
I/opt/petsc/2.3.3a/real/PGI/linux/include -fastsse -Kieee -mp -c -o 
xgc1-neutral.o `test -f 'neutral.F90' || echo '../'`neutral.F90 

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used 
ftn -DHAVE_CONFIG_H -I. -I.. -I.     -DADIOS -

I/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/include  -DCAM_TIMERS -
I../../camtimers -DPSPLINE -I/sw/xt/pspline/1.0/cnl2.0_pgi7.0.7/mod   -
I/opt/petsc/2.3.3a/real/PGI/linux -
I/opt/petsc/2.3.3a/real/PGI/linux/bmake/cray-xt -
I/opt/petsc/2.3.3a/real/PGI/linux/include -fastsse -Kieee -mp -c -o 
xgc1-neutral2.o `test -f 'neutral2.F90' || echo '../'`neutral2.F90 

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used 
ftn -DHAVE_CONFIG_H -I. -I.. -I.     -DADIOS -

I/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/include  -DCAM_TIMERS -
I../../camtimers -DPSPLINE -I/sw/xt/pspline/1.0/cnl2.0_pgi7.0.7/mod   -
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I/opt/petsc/2.3.3a/real/PGI/linux -
I/opt/petsc/2.3.3a/real/PGI/linux/bmake/cray-xt -
I/opt/petsc/2.3.3a/real/PGI/linux/include -fastsse -Kieee -mp -c -o 
xgc1-linearsolver.o `test -f 'linearsolver.F90' || echo 
'../'`linearsolver.F90 

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used 
ftn -DHAVE_CONFIG_H -I. -I.. -I.     -DADIOS -

I/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/include  -DCAM_TIMERS -
I../../camtimers -DPSPLINE -I/sw/xt/pspline/1.0/cnl2.0_pgi7.0.7/mod   -
I/opt/petsc/2.3.3a/real/PGI/linux -
I/opt/petsc/2.3.3a/real/PGI/linux/bmake/cray-xt -
I/opt/petsc/2.3.3a/real/PGI/linux/include -fastsse -Kieee -mp -c -o 
xgc1-therm2d.o `test -f 'therm2d.F90' || echo '../'`therm2d.F90 

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used 
ftn -DHAVE_CONFIG_H -I. -I.. -I.     -DADIOS -

I/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/include  -DCAM_TIMERS -
I../../camtimers -DPSPLINE -I/sw/xt/pspline/1.0/cnl2.0_pgi7.0.7/mod   -
I/opt/petsc/2.3.3a/real/PGI/linux -
I/opt/petsc/2.3.3a/real/PGI/linux/bmake/cray-xt -
I/opt/petsc/2.3.3a/real/PGI/linux/include -fastsse -Kieee -mp -c -o 
xgc1-poisson.o `test -f 'poisson.F90' || echo '../'`poisson.F90 

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used 
ftn -DHAVE_CONFIG_H -I. -I.. -I.     -DADIOS -

I/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/include  -DCAM_TIMERS -
I../../camtimers -DPSPLINE -I/sw/xt/pspline/1.0/cnl2.0_pgi7.0.7/mod   -
I/opt/petsc/2.3.3a/real/PGI/linux -
I/opt/petsc/2.3.3a/real/PGI/linux/bmake/cray-xt -
I/opt/petsc/2.3.3a/real/PGI/linux/include -fastsse -Kieee -mp -c -o 
xgc1-taus88.o `test -f 'taus88.F90' || echo '../'`taus88.F90 

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used 
ftn -DHAVE_CONFIG_H -I. -I.. -I.     -DADIOS -

I/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/include  -DCAM_TIMERS -
I../../camtimers -DPSPLINE -I/sw/xt/pspline/1.0/cnl2.0_pgi7.0.7/mod   -
I/opt/petsc/2.3.3a/real/PGI/linux -
I/opt/petsc/2.3.3a/real/PGI/linux/bmake/cray-xt -
I/opt/petsc/2.3.3a/real/PGI/linux/include -fastsse -Kieee -mp -c -o 
xgc1-derf.o `test -f 'derf.F90' || echo '../'`derf.F90 

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used 
ftn -DHAVE_CONFIG_H -I. -I.. -I.     -DADIOS -

I/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/include  -DCAM_TIMERS -
I../../camtimers -DPSPLINE -I/sw/xt/pspline/1.0/cnl2.0_pgi7.0.7/mod   -
I/opt/petsc/2.3.3a/real/PGI/linux -
I/opt/petsc/2.3.3a/real/PGI/linux/bmake/cray-xt -
I/opt/petsc/2.3.3a/real/PGI/linux/include -fastsse -Kieee -mp -c -o 
xgc1-datanh.o `test -f 'datanh.F90' || echo '../'`datanh.F90 

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used 
ftn -DHAVE_CONFIG_H -I. -I.. -I.     -DADIOS -

I/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/include  -DCAM_TIMERS -
I../../camtimers -DPSPLINE -I/sw/xt/pspline/1.0/cnl2.0_pgi7.0.7/mod   -
I/opt/petsc/2.3.3a/real/PGI/linux -
I/opt/petsc/2.3.3a/real/PGI/linux/bmake/cray-xt -
I/opt/petsc/2.3.3a/real/PGI/linux/include -fastsse -Kieee -mp -c -o 
xgc1-fmin.o `test -f 'fmin.F90' || echo '../'`fmin.F90 

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used 
ftn -DHAVE_CONFIG_H -I. -I.. -I.     -DADIOS -

I/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/include  -DCAM_TIMERS -
I../../camtimers -DPSPLINE -I/sw/xt/pspline/1.0/cnl2.0_pgi7.0.7/mod   -
I/opt/petsc/2.3.3a/real/PGI/linux -
I/opt/petsc/2.3.3a/real/PGI/linux/bmake/cray-xt -
I/opt/petsc/2.3.3a/real/PGI/linux/include -fastsse -Kieee -mp -c -o 
xgc1-bspline90_22.o `test -f 'bspline90_22.F90' || echo 
'../'`bspline90_22.F90 

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used 
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ftn -DHAVE_CONFIG_H -I. -I.. -I.     -DADIOS -
I/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/include  -DCAM_TIMERS -
I../../camtimers -DPSPLINE -I/sw/xt/pspline/1.0/cnl2.0_pgi7.0.7/mod   -
I/opt/petsc/2.3.3a/real/PGI/linux -
I/opt/petsc/2.3.3a/real/PGI/linux/bmake/cray-xt -
I/opt/petsc/2.3.3a/real/PGI/linux/include -fastsse -Kieee -mp -c -o 
xgc1-mpi.o `test -f 'mpi.F90' || echo '../'`mpi.F90 

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used 
ftn -DHAVE_CONFIG_H -I. -I.. -I.     -DADIOS -

I/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/include  -DCAM_TIMERS -
I../../camtimers -DPSPLINE -I/sw/xt/pspline/1.0/cnl2.0_pgi7.0.7/mod   -
I/opt/petsc/2.3.3a/real/PGI/linux -
I/opt/petsc/2.3.3a/real/PGI/linux/bmake/cray-xt -
I/opt/petsc/2.3.3a/real/PGI/linux/include -fastsse -Kieee -mp -c -o 
xgc1-interpolation.o `test -f 'interpolation.F90' || echo 
'../'`interpolation.F90 

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used 
ftn -DHAVE_CONFIG_H -I. -I.. -I.     -DADIOS -

I/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/include  -DCAM_TIMERS -
I../../camtimers -DPSPLINE -I/sw/xt/pspline/1.0/cnl2.0_pgi7.0.7/mod   -
I/opt/petsc/2.3.3a/real/PGI/linux -
I/opt/petsc/2.3.3a/real/PGI/linux/bmake/cray-xt -
I/opt/petsc/2.3.3a/real/PGI/linux/include -fastsse -Kieee -mp -c -o 
xgc1-load.o `test -f 'load.F90' || echo '../'`load.F90 

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used 
ftn -DHAVE_CONFIG_H -I. -I.. -I.     -DADIOS -

I/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/include  -DCAM_TIMERS -
I../../camtimers -DPSPLINE -I/sw/xt/pspline/1.0/cnl2.0_pgi7.0.7/mod   -
I/opt/petsc/2.3.3a/real/PGI/linux -
I/opt/petsc/2.3.3a/real/PGI/linux/bmake/cray-xt -
I/opt/petsc/2.3.3a/real/PGI/linux/include -fastsse -Kieee -mp -c -o 
xgc1-main.o `test -f 'main.F90' || echo '../'`main.F90 

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used 
ftn  -fastsse -Kieee -mp   -o xgc1  xgc1-module.o xgc1-search.o xgc1-

charge.o xgc1-read.o xgc1-pol_decomp.o xgc1-push.o xgc1-setup.o xgc1-
efield.o xgc1-diagnosis.o xgc1-limiter.o xgc1-bounce.o xgc1-diagnosis2.o 
xgc1-collision.o xgc1-collision2.o xgc1-diagnosis-f.o xgc1-heat.o xgc1-
turbulence.o xgc1-neutral.o xgc1-neutral2.o xgc1-linearsolver.o xgc1-
therm2d.o xgc1-poisson.o  xgc1-taus88.o xgc1-derf.o xgc1-datanh.o xgc1-
fmin.o xgc1-bspline90_22.o xgc1-mpi.o xgc1-interpolation.o xgc1-load.o 
xgc1-main.o    -L/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/lib -ladios -lmxml 
-I/sw/xt5/hdf5/1.6.8/cnl2.1_pgi7.2.3_par/include -
L/sw/xt5/hdf5/1.6.8/cnl2.1_pgi7.2.3_par/lib -lhdf5 -
L/sw/xt5/szip/2.1/sles10.1_pgi7.2.3/lib -lsz -lz  -L. -ltimers_wpapi -
L/sw/xt/pspline/1.0/cnl2.0_pgi7.0.7/lib -lpspline -lezcdf -lportlib -
L/sw/xt/netcdf/3.6.2/sles9.2_pgi7.0.7/lib -lnetcdf -
L/sw/xt/netcdf/3.6.2/sles9.2_pgi7.0.7/lib -lnetcdf      

/opt/cray/xt-asyncpe/2.0/bin/ftn: INFO: linux target is being used 
/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/lib/libadios.a(libadios_a-

adios_socket.o): In function `adios_set_socket_address': 
/autofs/na1_sw/xt5/adios/0.9.8/cnl2.1_pgi8.0.3/adios-

0.9.8/src/adios_socket.c:46: warning: Using 'gethostbyaddr' in 
statically linked applications requires at runtime the shared libraries 
from the glibc version used for linking 

/autofs/na1_sw/xt5/adios/0.9.8/cnl2.1_pgi8.0.3/adios-
0.9.8/src/adios_socket.c:41: warning: Using 'gethostbyname' in 
statically linked applications requires at runtime the shared libraries 
from the glibc version used for linking 

make[1]: Leaving directory `/autofs/na1_home/shku/xgc/trunk/XGC1/jaguarpf 
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D.3 BATCH SCRIPT 

#PBS -N pf9 
#PBS -l walltime=24:00:00,size=29952 
#PBS -j eo 
##PBS -q debug 
#PBS -A csc053xgc1  
cd $PBS_O_WORKDIR 
date 
rm finished.sim 
mkdir restart_dir 
lfs setstripe restart_dir -s 39845888  -c 40 -i -1 
aprun -n 29952 ../xgc1exe/xgc1+apa3 >& output.out 
date 
touch finished.sim 

D.4 RUNTIME ENVIRONMENT 

FFTW_POST_LINK_OPTS= -L/opt/fftw/3.1.1/cnos/lib -lfftw3 -lfftw3f 
MODULE_VERSION_STACK=3.1.6 
LESSKEY=/etc/lesskey.bin 
PAPI_POST_LINK_OPTS= -L/opt/xt-tools/papi/3.6.2/v23/linux/lib -lpapi -lpfm 
NNTPSERVER=news 
INFODIR=/usr/local/info:/usr/share/info:/usr/info 
MANPATH=/sw/xt5/totalview/8.6.0-

1/sles10.1_binary/man:/opt/petsc/2.3.3a/man:/opt/xt-
tools/papi/3.6.2/man:/sw/xt5/pspline/1.0/cnl2.1_pgi7.2.3/share/man:/sw/x
t5/netcdf/3.6.2/sles10.1_pgi7.2.3/share/man:/sw/xt5/subversion/1.5.0/sle
s10.1_gnu4.2.4/share/man:/opt/xt-
pe/2.1.50HD/papi/man:/opt/mpt/3.1.0/xt/man:/opt/xt-
libsci/10.3.1/man:/opt/fftw/3.1.1/cnos/man:/opt/pgi/7.2.5/linux86-
64/7.2/man:/opt/xt-lustre-
ss/2.1.50HD.PS04.lus.1.6.5.steve.8062_1.6.5/usr/man:/opt/xt-
os/2.1.50HD/cnselect/man:/opt/xt-os/2.1.50HD/ros/man:/opt/xt-
libc/2.1.50HD/xt3_glibc/man:/opt/MySQL/5.0.45/man:/opt/moab/man:/opt/tor
que/default/man:/sw/xt5/man:/usr/local/man:/usr/share/man:/usr/X11R6/man
:/opt/gnome/share/man:/opt/xt-pe/2.1.50HD/pe/man 

HOSTNAME=jaguarpf-login1 
GNOME2_PATH=/usr/local:/opt/gnome:/usr 
XKEYSYMDB=/usr/X11R6/lib/X11/XKeysymDB 
PAPI_VERSION=3.6.2 
PE_ENV=PGI 
PATHSCALE_POST_COMPILE_OPTS= -march=barcelona 
_MODULESBEGINENV_=/ccs/home/shku/.modulesbeginenv.jaguarpf-login1 
HOST=jaguarpf-login1 
TERM=xterm 
SHELL=/bin/bash 
XTOS_VERSION=2.1.50HD 
PROFILEREAD=true 
HISTSIZE=1000 
TOTALVIEW_VERSION=8.6.0-1 
PETSC_ARCH=cray-xt 
PERFMON_VERSION=v23 
SSH_CLIENT=128.122.81.37 40601 22 
LIBRARY_PATH=/sw/xt5/pspline/1.0/cnl2.1_pgi7.2.3/lib:/sw/xt5/netcdf/3.6.2/s

les10.1_pgi7.2.3/lib:/sw/xt5/subversion/1.5.0/sles10.1_gnu4.2.4/lib 
MPT_DIR=/opt/mpt/3.1.0/xt 
FFTW_INC=/opt/fftw/3.1.1/cnos/include 
MORE=-sl 
BOOT_DIR=/opt/xt-boot/2.1.50HD 
QTDIR=/usr/lib/qt3 
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INCLUDE_PATH=/sw/xt5/pspline/1.0/cnl2.1_pgi7.2.3/mod:/sw/xt5/netcdf/3.6.2/s
les10.1_pgi7.2.3/include:/sw/xt5/subversion/1.5.0/sles10.1_gnu4.2.4/incl
ude 

PRGENV_DIR=/opt/xt-prgenv/2.1.50HD 
SSH_TTY=/dev/pts/26 
TVMEMDEBUG_POST_LINK_OPTS= -L/sw/xt/totalview/8.6.0-

1/sles10.1_binary/linux-x86-64/lib -ltvheap_cnl_static 
PSPLINE_INCLUDE_OPTS=-I/sw/xt5/pspline/1.0/cnl2.1_pgi7.2.3/mod 
FFTW_DIR=/opt/fftw/3.1.1/cnos/lib 
ASYNCPE_DIR=/opt/cray/xt-asyncpe/2.0 
BUILD_OPTS=/opt/cray/xt-asyncpe/2.0/bin/build-opts 
GROFF_NO_SGR=yes 
JRE_HOME=/usr/lib/jvm/jre 
USER=shku 
LD_LIBRARY_PATH=/opt/xt-

tools/papi/3.6.2/v23/linux/lib:/sw/xt5/pspline/1.0/cnl2.1_pgi7.2.3/lib:/
sw/xt5/netcdf/3.6.2/sles10.1_pgi7.2.3/lib:/sw/xt5/subversion/1.5.0/sles1
0.1_gnu4.2.4/lib:/opt/xt-
pe/2.1.50HD/lib:/opt/fftw/3.1.1/cnos/lib:/opt/pgi/7.2.5/linux86-
64/7.2/libso:/opt/pgi/7.2.5/linux86-64/7.2/lib:/opt/xt-
os/2.1.50HD/lib:/opt/xt-
libc/2.1.50HD/amd64/lib:/opt/MySQL/5.0.45/lib/mysql 

LS_COLORS=no=00:fi=00:di=01;34:ln=00;36:pi=40;33:so=01;35:do=01;35:bd=40;33
;01:cd=40;33;01:or=41;33;01:ex=00;32:*.cmd=00;32:*.exe=01;32:*.com=01;32
:*.bat=01;32:*.btm=01;32:*.dll=01;32:*.tar=00;31:*.tbz=00;31:*.tgz=00;31
:*.rpm=00;31:*.deb=00;31:*.arj=00;31:*.taz=00;31:*.lzh=00;31:*.zip=00;31
:*.zoo=00;31:*.z=00;31:*.Z=00;31:*.gz=00;31:*.bz2=00;31:*.tb2=00;31:*.tz
2=00;31:*.tbz2=00;31:*.avi=01;35:*.bmp=01;35:*.fli=01;35:*.gif=01;35:*.j
pg=01;35:*.jpeg=01;35:*.mng=01;35:*.mov=01;35:*.mpg=01;35:*.pcx=01;35:*.
pbm=01;35:*.pgm=01;35:*.png=01;35:*.ppm=01;35:*.tga=01;35:*.tif=01;35:*.
xbm=01;35:*.xpm=01;35:*.dl=01;35:*.gl=01;35:*.wmv=01;35:*.aiff=00;32:*.a
u=00;32:*.mid=00;32:*.mp3=00;32:*.ogg=00;32:*.voc=00;32:*.wav=00;32: 

LC_PE_ENV=pgi 
TVDSVRLAUNCHCMD=ssh 
XNLSPATH=/usr/X11R6/lib/X11/nls 
PGI_VERS_STR=7.2.5 
MPICH_DIR=/opt/mpt/3.1.0/xt/mpich2-pgi 
ENV=/etc/bash.bashrc 
GOTO_NUM_THREADS=1 
HOSTTYPE=x86_64 
RCLOCAL_PRGENV=true 
MPT_VERSION=3.1.0 
PE_PRODUCT_LIST=TOTALVIEW:TOTALVIEW-

SUPPORT:PSPLINE:ASYNCPE:XTMPT:LIBSCI:PGI:LUSTRE:XTPE_QUADCORE:FFTW:PAPI:
PETSC 

FROM_HEADER= 
PGI_VERSION=7.2 
FFTW_SYSTEM_WISDOM_DIR=/opt/xt-libsci/10.3.1 
PAGER=less 
PAPI_INCLUDE_OPTS= -I/opt/xt-

tools/papi/3.6.2/v23/${XTPE_COMPILE_TARGET}/include 
OS_DIR=/opt/xt-os/2.1.50HD 
CSHEDIT=emacs 
PSPLINE_DIR=/sw/xt5/pspline/1.0/cnl2.1_pgi7.2.3 
MPICHBASEDIR=/opt/mpt/3.1.0/xt 
XDG_CONFIG_DIRS=/usr/local/etc/xdg/:/etc/xdg/:/etc/opt/gnome/xdg/ 
PGI=/opt/pgi/7.2.5 
MINICOM=-c on 
PETSC_INCLUDE_OPTS= -

I/opt/petsc/2.3.3a/real/${PE_ENV}/${XTPE_COMPILE_TARGET} -
I/opt/petsc/2.3.3a/real/${PE_ENV}/${XTPE_COMPILE_TARGET}/include 

YOD_LOGFILE=syslog 
MODULE_VERSION=3.1.6 
MAIL=/var/mail/shku 
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PATH=/sw/xt5/totalview/8.6.0-1/sles10.1_binary/totalview-
support/1.0.6/bin:/sw/xt5/totalview/8.6.0-
1/sles10.1_binary/bin:/sw/xt5/totalview/8.6.0-
1/sles10.1_binary/bin2:/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/bin:/opt/xt-
tools/papi/3.6.2/v23/linux/bin:/sw/xt5/pspline/1.0/cnl2.1_pgi7.2.3/bin:/
sw/xt5/netcdf/3.6.2/sles10.1_pgi7.2.3/bin:/sw/xt5/hdf5/1.6.8/cnl2.1_pgi7
.2.3_par/bin:/sw/xt5/subversion/1.5.0/sles10.1_gnu4.2.4/bin:/opt/cray/xt
-asyncpe/2.0/bin:/opt/xt-pe/2.1.50HD/bin/snos64:/opt/xt-
pe/2.1.50HD/cnos/linux/64/bin:/opt/fftw/3.1.1/cnos/bin:/opt/pgi/7.2.5/li
nux86-64/7.2/bin:/opt/xt-lustre-
ss/2.1.50HD.PS04.lus.1.6.5.steve.8062_1.6.5/usr/sbin:/opt/xt-lustre-
ss/2.1.50HD.PS04.lus.1.6.5.steve.8062_1.6.5/usr/bin:/opt/xt-
boot/2.1.50HD/bin/snos64:/opt/xt-os/2.1.50HD/bin/snos64:/opt/xt-
service/2.1.50HD/bin/snos64:/opt/xt-
prgenv/2.1.50HD/bin:/opt/MySQL/5.0.45/etc:/opt/MySQL/5.0.45/libexec:/opt
/MySQL/5.0.45/bin:/opt/moab/bin:/opt/torque/default/bin:/sw/xt5/bin:/opt
/modules/3.1.6/bin:/ccs/home/shku/bin:/usr/local/bin:/usr/bin:/usr/X11R6
/bin:/bin:/usr/games:/opt/bin:/opt/gnome/bin:/opt/kde3/bin:/usr/lib/jvm/
jre/bin:/usr/lib/mit/bin:/usr/lib/mit/sbin:/opt/pathscale/bin:.:/usr/lib
/qt3/bin:/opt/bin:/opt/public/bin:/ccs/proj/e2e/wf/bin:/ccs/proj/e2e/wf/
Workflows/XGC/monitor:/ccs/proj/e2e/wf/bin:/ccs/proj/e2e/wf/Workflows/XG
C/monitor 

HDF5_CLIB=-I/sw/xt5/hdf5/1.6.8/cnl2.1_pgi7.2.3_par/include -
L/sw/xt5/hdf5/1.6.8/cnl2.1_pgi7.2.3_par/lib -lhdf5 -
L/sw/xt5/szip/2.1/sles10.1_pgi7.2.3/lib -lsz -lz 

CPU=x86_64 
JAVA_BINDIR=/usr/lib/jvm/jre/bin 
SSH_SENDS_LOCALE=yes 
OCTAVE=sku@depot.cims.nyu.edu:octave 
ASYNCPE_VERSION=2.0 
GNU_POST_COMPILE_OPTS= -march=barcelona 
XTPE_COMPILE_TARGET=linux 
RCLOCAL_MYSQL=true 
INPUTRC=/etc/inputrc 
PWD=/ccs/home/shku/joule/Q2 
_LMFILES_=/opt/modulefiles/modules/3.1.6:/sw/xt5/modulefiles/DefApps:/opt/m

odulefiles/torque/2.3.2-
snap.200807092141:/opt/modulefiles/moab/5.2.4:/opt/cray/xt-
asyncpe/2.0/modulefiles/xtpe-
quadcore:/opt/modulefiles/MySQL/5.0.45:/opt/modulefiles/xt-
service/2.1.50HD:/opt/modulefiles/xt-libc/2.1.50HD:/opt/modulefiles/xt-
os/2.1.50HD:/opt/modulefiles/xt-boot/2.1.50HD:/opt/modulefiles/xt-
lustre-
ss/2.1.50HD.PS04.lus.1.6.5.steve.8062_1.6.5:/opt/modulefiles/xtpe-
target-cnl:/opt/modulefiles/Base-
opts/2.1.50HD:/opt/modulefiles/pgi/7.2.5:/opt/modulefiles/fftw/3.1.1:/op
t/modulefiles/xt-libsci/10.3.1:/opt/modulefiles/xt-
mpt/3.1.0:/opt/modulefiles/xt-pe/2.1.50HD:/opt/modulefiles/xt-
asyncpe/2.0:/opt/modulefiles/PrgEnv-
pgi/2.1.50HD:/sw/xt5/modulefiles/subversion/1.5.0:/sw/xt5/modulefiles/hd
f5/1.6.8_par:/sw/xt5/modulefiles/netcdf/3.6.2:/sw/xt5/modulefiles/psplin
e/1.0:/opt/modulefiles/xt-
papi/3.6.2:/opt/modulefiles/petsc/2.3.3a:/sw/xt5/modulefiles/adios/0.9.8
:/sw/xt5/modulefiles/totalview/8.6.0-1 

JAVA_HOME=/usr/lib/jvm/jre 
EDITOR=vi 
FFTW_INCLUDE_OPTS= -I/opt/fftw/3.1.1/cnos/include 
C_DIR=/opt/xt-libc/2.1.50HD 
SYSTEM_USERDIR=/tmp/work/shku 
LANG=en_US.UTF-8 
MODULEPATH=/opt/cray/xt-

asyncpe/2.0/modulefiles:/opt/modulefiles:/opt/modules/3.1.6:/sw/xt5/modu
lefiles 

PYTHONSTARTUP=/etc/pythonstart 
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ADIOS_LIB=-L/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/lib -ladios -lmxml 
PETSC_FORTRAN_INCPATH_CNL=-lmpichf90 
LOADEDMODULES=modules/3.1.6:DefApps:torque/2.3.2-

snap.200807092141:moab/5.2.4:xtpe-quadcore:MySQL/5.0.45:xt-
service/2.1.50HD:xt-libc/2.1.50HD:xt-os/2.1.50HD:xt-boot/2.1.50HD:xt-
lustre-ss/2.1.50HD.PS04.lus.1.6.5.steve.8062_1.6.5:xtpe-target-cnl:Base-
opts/2.1.50HD:pgi/7.2.5:fftw/3.1.1:xt-libsci/10.3.1:xt-mpt/3.1.0:xt-
pe/2.1.50HD:xt-asyncpe/2.0:PrgEnv-
pgi/2.1.50HD:subversion/1.5.0:hdf5/1.6.8_par:netcdf/3.6.2:pspline/1.0:xt
-papi/3.6.2:petsc/2.3.3a:adios/0.9.8:totalview/8.6.0-1 

PGI_POST_COMPILE_OPTS= -tp barcelona-64 
LM_LICENSE_FILE=/sw/sources/totalview/license.dat:/opt/pgi/7.2.5/license.da

t 
XTPE_QUADCORE_ENABLED=ON 
MPICH_PTL_UNEX_EVENTS=400000 
DEPOT1=sku@depot.cims.nyu.edu:svn/xgc/trunk/XGC1 
TEXINPUTS=:/ccs/home/shku/.TeX:/usr/share/doc/.TeX:/usr/doc/.TeX 
NETCDF_CLIB=-I/sw/xt5/netcdf/3.6.2/sles10.1_pgi7.2.3/include -

L/sw/xt5/netcdf/3.6.2/sles10.1_pgi7.2.3/lib -lnetcdf  
QT_SYSTEM_DIR=/usr/share/desktop-data 
SHLVL=1 
HOME=/ccs/home/shku 
ADIOS_DIR=/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3 
NETCDF_DIR=/sw/xt5/netcdf/3.6.2/sles10.1_pgi7.2.3 
PTL_SNOS_NAL=SS 
PGI_PATH=/opt/pgi/7.2.5 
LESS_ADVANCED_PREPROCESSOR=no 
OSTYPE=linux 
SE_DIR=/opt/xt-service/2.1.50HD 
LIBLUSTRE_DEBUG_CONSOLE=0 
LS_OPTIONS=-N --color=tty -T 0 
WINDOWMANAGER= 
GTK_PATH=/usr/local/lib/gtk-2.0:/opt/gnome/lib/gtk-2.0:/usr/lib/gtk-2.0 
PSPLINE_LIB=-I/sw/xt5/pspline/1.0/cnl2.1_pgi7.2.3/mod -

L/sw/xt5/pspline/1.0/cnl2.1_pgi7.2.3/lib -lpspline -lezcdf -lportlib 
G_FILENAME_ENCODING=@locale,UTF-8,ISO-8859-15,CP1252 
LESS=-M -I 
MACHTYPE=x86_64-suse-linux 
LOGNAME=shku 
CIMS=sku@access.cims.nyu.edu:data 
GTK_PATH64=/usr/local/lib64/gtk-2.0:/opt/gnome/lib64/gtk-

2.0:/usr/lib64/gtk-2.0 
CVS_RSH=ssh 
XDG_DATA_DIRS=/usr/local/share/:/usr/share/:/etc/opt/kde3/share/:/opt/kde3/

share/:/opt/gnome/share/ 
ACLOCAL_FLAGS=-I /opt/gnome/share/aclocal 
SSH_CONNECTION=128.122.81.37 40601 160.91.205.194 22 
PETSC_POST_LINK_OPTS= -L 

/opt/petsc/2.3.3a/real/${PE_ENV}/${XTPE_COMPILE_TARGET}/lib -lcraypetsc 
-lHYPRE -lparmetis -lmetis -lcmumps -ldmumps -lsmumps -lzmumps -lpord -
lsuperlu_3.0 -lsci -lmpich 

MODULESHOME=/opt/modules/3.1.6 
PKG_CONFIG_PATH=/usr/local/lib/pkgconfig:/usr/local/share/pkgconfig:/usr/li

b64/pkgconfig:/usr/share/pkgconfig:/opt/kde3/lib64/pkgconfig:/opt/gnome/
lib64/pkgconfig:/opt/gnome/lib64/pkgconfig:/opt/gnome/share/pkgconfig 

LESSOPEN=lessopen.sh %s 
LIBSCI_BASE_DIR=/opt/xt-libsci/10.3.1 
TOTALVIEW_SUPPORT_LIB=/sw/xt5/totalview/8.6.0-1/sles10.1_binary/totalview-

support/1.0.6/lib 
HDF5_FLIB=-module . -module /sw/xt5/hdf5/1.6.8/cnl2.1_pgi7.2.3_par/lib -

I/sw/xt5/hdf5/1.6.8/cnl2.1_pgi7.2.3_par/include -
L/sw/xt5/hdf5/1.6.8/cnl2.1_pgi7.2.3_par/lib -lhdf5_fortran -lhdf5 -
L/sw/xt5/szip/2.1/sles10.1_pgi7.2.3/lib -lsz -lz 

LIBSCI_VERSION=10.3.1 
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INFOPATH=/opt/MySQL/5.0.45/info:/usr/local/info:/usr/share/info:/usr/info:/
opt/gnome/share/info 

TV_EXTRA_OPTIONS=-use_interface ss 
NETCDF_FLIB=-module . -module 

/sw/xt5/netcdf/3.6.2/sles10.1_pgi7.2.3/include -
I/sw/xt5/netcdf/3.6.2/sles10.1_pgi7.2.3/include -
L/sw/xt5/netcdf/3.6.2/sles10.1_pgi7.2.3/lib -lnetcdf  

DISPLAY=localhost:25.0 
ADIOS_INC=-I/sw/xt5/adios/0.9.8/cnl2.1_pgi7.2.3/include 
PSPLINE_POST_LINK_OPTS=-L/sw/xt5/pspline/1.0/cnl2.1_pgi7.2.3/lib -lpspline 

-lezcdf -lportlib 
XAUTHLOCALHOSTNAME=jaguarpf-login1 
PETSC_DIR=/opt/petsc/2.3.3a/real/PGI/linux 
PE_DIR=/opt/xt-pe/2.1.50HD 
LIBSCI_POST_LINK_OPTS= -lsci_quadcore 
LESSCLOSE=lessclose.sh %s %s 
DEPOT=sku@depot.cims.nyu.edu:scratch/tmp 
G_BROKEN_FILENAMES=1 
LUSTRE_DIR=/opt/xt-lustre-ss/2.1.50HD.PS04.lus.1.6.5.steve.8062_1.6.5 
JAVA_ROOT=/usr/lib/jvm/jre 
COLORTERM=1 
OLDPWD=/ccs/home/shku/joule 
_=/usr/bin/env 
 
Loaded module 
Currently Loaded Modulefiles: 
  1) modules/3.1.6 
  2) DefApps 
  3) torque/2.3.2-snap.200807092141 
  4) moab/5.2.4 
  5) xtpe-quadcore 
  6) MySQL/5.0.45 
  7) xt-service/2.1.50HD 
  8) xt-libc/2.1.50HD 
  9) xt-os/2.1.50HD 
 10) xt-boot/2.1.50HD 
 11) xt-lustre-ss/2.1.50HD.PS04.lus.1.6.5.steve.8062_1.6.5 
 12) xtpe-target-cnl 
 13) Base-opts/2.1.50HD 
 14) pgi/7.2.5 
 15) fftw/3.1.1 
 16) xt-libsci/10.3.1 
 17) xt-mpt/3.1.0 
 18) xt-pe/2.1.50HD 
 19) xt-asyncpe/2.0 
 20) PrgEnv-pgi/2.1.50HD 
 21) subversion/1.5.0 
 22) hdf5/1.6.8_par 
 23) netcdf/3.6.2 
 24) pspline/1.0 
 25) xt-papi/3.6.2 
 26) petsc/2.3.3a 
 27) adios/0.9.8 
 28) totalview/8.6.0-1 
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APPENDIX E. RAPTOR 

E.1 INPUT SETTINGS 

&solvr 
  cfl    = 0.1000000000000000e+00, 
  vnn    = 0.0100000000000000e+00, 
  ptf    = 1.0000000000000000e+00, 
  sor    = 1.0000000000000000e+00, 
  src    = 1.0000000000000000e+00, 
  tme    = 0.0000000000000000e+00, 
  dtm    = 0.0010000000000000e+00, 
  nrtitr = 100, 
  nrtout = 100, 
  nrtprt = 1, 
  nrtrew = 5000, 
  nptitr = 20, 
  nptout = 1, 
  nptprt = 1, 
  nmpitr = 1000, 
  nmpout = 1, 
  nmpprt = 1, 
  nblkio = 1, 
 / 
&vtmvl 
   cfl_t = 1.0000000000000000e+00, 
   vnn_t = 0.1000000000000000e+00, 
   rtf_t = 1.0000000000000000e+00, 
   dtm_x = 0.0100000000000000e+00, 
 / 
&lhsqv 
   idtrk = 0, 
   irkms = 0, 
   irkcy = 0, 
   iomga = 0, 
   islib = 1, 
   ivtme = 0, 
   inorm = 0, 
   iscvc = 0, 
   idecc = 0, 
   imecp = 0, 
 / 
&rhsqv 
   iturb = 0, 
   isgsm = 0, 
   ichem = 0, 
   ispry = 0, 
   ihsrc = 0, 
   itvgm = 0, 
   iflux = 0, 
   ilmeq = 1, 
   ilmtr = 2, 
   icsrc = 1, 
   ivisc = 1, 
 / 
&flags 
   irsrt = 0, 
   ishot = 0, 
   ibcnd = 000001, 
   ibcwf = 0, 
   ilfnc = 333333, 
   idbsh = 1, 
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   itmsh = 1, 
   itset = 0, 
   iarch = 000000, 
   idata = 0, 
   ianim = 0, 
   istsh = 0, 
   ipost = 0, 
   icsys = 0, 
 / 
&refvl 
   p_ref = 99300.000000000000e+00, 
   T_ref = 294.00000000000000e+00, 
 rho_ref = 1.7912921543918080e+00, 
   U_ref = 8.0240600000000000e+00, 
   L_ref = 8.0000000000000000e-03, 
  mu_ref = 8.0402554092161456e-06, 
  Cp_ref = 1648.3392027401540e+00, 
   c_ref = 250.19015210483540e+00, 
   g_ref = 9.8100000000000000e+00, 
 / 
&refbc 
   u_ave = 0.0000000000000000e+00, 
   v_ave = 0.0000000000000000e+00, 
   w_ave = 0.0000000000000000e+00, 
   u_rms = 0.0000000000000000e+00, 
   v_rms = 0.0000000000000000e+00, 
   w_rms = 0.0000000000000000e+00, 
   m_dot = 785.39810000000000e-03, 
   S_fac = 0.0000000000000000e+00, 
   qwall = 0.0000000000000000e+00, 
   f_sto = 0.0000000000000000e+00, 
   T_sto = 0.0000000000000000e+00, 
   p_tot = 0.0000000000000000e+00, 
   T_tot = 0.0000000000000000e+00, 
   Rmgas = 0.0000000000000000e+00, 
   gCpCv = 0.0000000000000000e+00, 
   c_rf0 = 0.0000000000000000e+00, 
   M_rf1 = 0.0000000000000000e+00, 
   M_rf2 = 0.0000000000000000e+00, 
 / 
&rftme 
   tme_1 = 0.0000000000000000e+00, 
   tme_2 = 0.0000000000000000e+00, 
   tme_3 = 0.0000000000000000e+00, 
   tme_4 = 0.0000000000000000e+00, 
   tme_5 = 0.0000000000000000e+00, 
   tme_6 = 0.0000000000000000e+00, 
 / 
&rftol 
 epsilon_tau = 1.0000000000000000e-04, 
 epsilon_inv = 0.1000000000000000e-04, 
 epsilon_vis = 0.1000000000000000e-08, 
 epsilon_sor = 1.0000000000000000e-16, 
 epsilon_tol = 1.0000000000000000e-16, 
 epsilon_src = 1.0000000000000000e-16, 
 epsilon_chm = 1.0000000000000000e-99, 
 / 

E.2 COMPILATION 

RAPTOR was compiled using the default Portland Group Fortran compiler. Output from the 
compilation is included in Sect. 3.4.7. Here we show only the skeletal output, which includes the options 
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used for optimization of the code. Note that the complete output, which includes all information related to 
the optimization, is also available but spans 21,807 lines and has thus been omitted in the interest of 
space. The code was profiled using CrayPAT 4.2 using the following recipe to build the executable: 

module load xt-craypat 
make 
pat_build -w -Drtenv=PAT_RT_HWPC=0 DTMS.out DTMS_pat.out. 

The instrumented executable (DTMS pat.out) was run using the batch script listed in Sect. E.3. The 
corresponding run time environment is listed in Sect. E.4. Performance data was generated by issuing the 
commands 

module load xt-craypat 
pat_report DTMS_pat.out+xxxyyy > report.out, 

where DTMS pat.out+xxxyyy is the name of the directory created by CrayPAT after the run completed. 
Output from the build is shown below. Here we show only the skeletal output, which includes the options 
used for optimization of the code. Note that the complete output, which includes all information related to 
the optimization, is also available but spans 21,807 lines and has thus been omitted in the interest of 
space. 

 
ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c MDLS.f90 
ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c DTMS.f90 
ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c abrt.f90 
ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c allocate_grid.f90 
ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c allocate_xyzh.f90 
ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c allocate_jcch.f90 
ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c allocate_jcuh.f90 
ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c allocate_jcvh.f90 
ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c allocate_jcwh.f90 
ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c allocate_main.f90 
ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c allocate_halo.f90 
ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c allocate_lpsh.f90 
ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c allocate_bcwf.f90 
ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c grid_MPI.f90 
ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c gdim.f90 
ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c mtrc.f90 
ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c mtrc_scg.f90 
ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c tvgm.f90 
ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c tvgm_vlp.f90 
ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c tvgm_spk.f90 
ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 

-Minfo=all -DPARALLEL -DSPECIES -c pole.f90 
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ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c pole_jcc.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c qref.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c qref_aux.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c init.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c init_aux.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c rsrt_MPI.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c rsrt_aux.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c anim_MPI.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c arch_MPI.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c arch_ascii_MPI.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c arch_ascii_opt.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c qvbt.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c dtdt.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c vtme.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c dtme.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c dtau.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c norm.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c halo.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c halo_dqv.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c halo_flx.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c halo_jcc.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c halo_jcu.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c halo_jcv.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c halo_jcw.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c halo_qmp.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c halo_sgs.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c halo_qvp.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c halo_src.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c halo_xyz.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c bcnd.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c bcnd_aux.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c bcnd_dqv.f90 
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ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c bcnd_flx.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c bcnd_jcc.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c bcnd_jcu.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c bcnd_jcv.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c bcnd_jcw.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c bcnd_qmp.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c bcnd_sgs.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c bcnd_qvp.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c bcnd_src.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c bcnd_xyz.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c bcdq.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c bctd.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c inlt.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c inlt_aux.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c estr.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c estr_lib.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c estr_mix.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c estr_Z.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c dqvc.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c dsgs.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c dsgs_c.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c dsgs_m.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c dsgs_r.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c dsgs_t.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c bcwf.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c tble.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c tbls.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c upyp.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c urms.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c ures.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c sgsh.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c rk_1.f90 



 

E-6 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c rk_4.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c rk_4J.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c rk_5J.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c dqdt.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c dddt.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c dflx.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c lmtr.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c scvc.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c sidq.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c sidd.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c mask.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c mocQ.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c flxM.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c flxM_M.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c flxM_C.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c flxM_tvg.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c flxM_L.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c flxM_D.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c flxM_D0.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c flxM_P.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c flxP_C.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c flxQ.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c flxQ_K.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c flxQ_C.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c flxQ_tvg.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c flxQ_L.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c flxQ_D.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c srcM.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c srcM_C.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c srcM_tvg.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c srcM_tvg_ddt.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c srcM_D.f90 
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ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c srcP.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c srcP_C.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c srcQ.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c srcQ_hv.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c srcQ_tvg.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c dqmp.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c tmsh.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c lgfc.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c dbsh.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c stsh.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c stsh_arch_MPI.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c stsh_arch_ascii_MPI.ftn -target=linux 
-Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast -Minfo=all -
DPARALLEL -DSPECIES -c stsh_arch_ascii_opt.ftn -target=linux -Kieee -
Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast -Minfo=all -DPARALLEL -
DSPECIES -c stgp.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c stlp.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c lpsh.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c lptd.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c lpdt.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c lpqs.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c lphx.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c lphxM.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c lphxQ.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c lpli.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c lpdf.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c lprk.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c lpdq.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c lpcf.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c lpbc.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c lppk.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c lpcm.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c lpsh_arch_MPI.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c lpsh_arch_ascii_MPI.ftn -target=linux 



 

E-8 

-Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast -Minfo=all -
DPARALLEL -DSPECIES -c lpsh_arch_ascii_opt.ftn -target=linux -Kieee -
Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast -Minfo=all -DPARALLEL -
DSPECIES -c frmp.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c prof.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c tdst.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c zdst.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c ydis.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c bisc.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c bnbk.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c bndc.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c circ.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c conv.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c cube.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c cycl.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c diam.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c hunt.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c inth.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c li_1.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c li_2.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c li_3.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c lubk.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c ludc.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c ndev.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c sfcn.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c simp.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c spln.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c thms.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -c udev.f90 

ftn -target=linux -Kieee -Mpreprocess -byteswapio -r8 -i4 -fast -Mipa=fast 
-Minfo=all -DPARALLEL -DSPECIES -o DTMS.out MDLS.o DTMS. 
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E.3 BATCH SCRIPT (IDENTICAL FOR BOTH Q2 AND Q4 EXCEPT FOR CORE SIZE) 

#================================================================ # 
# Oak Ridge National Laboratories NCCS Systems. ================= # 
#================================================================ # 
#PBS -A CSC057 
#PBS -N RAPTOR 
#PBS -M oefelei@sandia.gov 
#PBS -m abe 
#PBS -o Std.out 
#PBS -e Std.err 
#PBS -l walltime=04:00:00,size=47616 
set -x 
source /opt/modules/default/init/bash 
cd $PBS_O_WORKDIR 
date 
export PAT_RT_HWPC=0 
export MPICH_ENV_DISPLAY=1 
export MPICH_VERSION_DISPLAY=1 
module list 
module avail 
env 
aprun -n 47616 ./dtms.e 
#================================================================ # 
#================================================================ # 
#================================================================ # 

E.4 RUNTIME ENVIRONMENT 

LESSKEY=/etc/lesskey.bin 
MODULE_VERSION_STACK=3.1.6 
FFTW_POST_LINK_OPTS= -L/opt/fftw/3.1.1/cnos/lib -lfftw3 -lfftw3f 
MANPATH=/opt/xt-pe/2.1.50HD/papi/man:/opt/mpt/3.1.0/xt/man:/opt/xt-

libsci/10.3.1/man:/opt/fftw/3.1.1/cnos/man:/opt/pgi/7.2.5/linux86-
INFODIR=/usr/local/info:/usr/share/info:/usr/info 

NNTPSERVER=news 
HOSTNAME=jaguarpf-batch4 
XKEYSYMDB=/usr/X11R6/lib/X11/XKeysymDB 
GNOME2_PATH=/usr/local:/opt/gnome:/usr 
_MODULESBEGINENV_=/ccs/home/oefelei/.modulesbeginenv 
PATHSCALE_POST_COMPILE_OPTS= -march=barcelona 
PE_ENV=PGI 
SHELL=/bin/bash 
HOST=jaguarpf-batch4 
BATCH_ALLOC_COOKIE=0 
HISTSIZE=1000 
PROFILEREAD=true 
XTOS_VERSION=2.1.50HD 
PBS_JOBNAME=RAPTOR 
MPT_DIR=/opt/mpt/3.1.0/xt 
FFTW_INC=/opt/fftw/3.1.1/cnos/include 
BATCH_JOBID=71541 
PBS_ENVIRONMENT=PBS_BATCH 
MORE=-sl 
OLDPWD=/autofs/na1_home/oefelei 
QTDIR=/usr/lib/qt3 
BOOT_DIR=/opt/xt-boot/2.1.50HD 
PBS_O_WORKDIR=/ccs/home/oefelei/scratch/FY09JouleQ2 
PRGENV_DIR=/opt/xt-prgenv/2.1.50HD 
FFTW_DIR=/opt/fftw/3.1.1/cnos/lib 
USER=oefelei 
PBS_TASKNUM=1 
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JRE_HOME=/usr/lib/jvm/jre 
GROFF_NO_SGR=yes 
BUILD_OPTS=/opt/cray/xt-asyncpe/2.0/bin/build-opts 
ASYNCPE_DIR=/opt/cray/xt-asyncpe/2.0 
LS_COLORS= 
LD_LIBRARY_PATH=/opt/xt-

pe/2.1.50HD/lib:/opt/fftw/3.1.1/cnos/lib:/opt/pgi/7.2.5/linux86-
64/7.2/libso:/opt/pgi/7.2.5/linux86-64/7.2/PBS_O_HOME=/ccs/home/oefelei 

LC_PE_ENV=pgi 
XNLSPATH=/usr/X11R6/lib/X11/nls 
TVDSVRLAUNCHCMD=ssh 
PBS_NNODES=47616 
ENV=/etc/bash.bashrc 
MPICH_DIR=/opt/mpt/3.1.0/xt/mpich2-pgi 
PGI_VERS_STR=7.2.5 
HOSTTYPE=x86_64 
GOTO_NUM_THREADS=1 
RCLOCAL_PRGENV=true 
PBS_MOMPORT=15003 
FROM_HEADER= 
PE_PRODUCT_LIST=ASYNCPE:XTMPT:LIBSCI:PGI:LUSTRE:XTPE_QUADCORE:FFTW 
MPT_VERSION=3.1.0 
PAGER=less 
FFTW_SYSTEM_WISDOM_DIR=/opt/xt-libsci/10.3.1 
PGI_VERSION=7.2 
CSHEDIT=emacs 
OS_DIR=/opt/xt-os/2.1.50HD 
PBS_O_QUEUE=batch 
XDG_CONFIG_DIRS=/usr/local/etc/xdg/:/etc/xdg/:/etc/opt/gnome/xdg/ 
MPICHBASEDIR=/opt/mpt/3.1.0/xt 
MINICOM=-c on 
PGI=/opt/pgi/7.2.5 
PATH=/opt/cray/xt-asyncpe/2.0/bin:/opt/xt-pe/2.1.50HD/bin/snos64:/opt/xt-

pe/2.1.50HD/cnos/linux/64/bin:/opt/fftw/3.1.1/cnos/bin:/opt/PBS_O_LOGNAM
E=oefelei 

MAIL=/var/spool/mail/oefelei 
MODULE_VERSION=3.1.6 
YOD_LOGFILE=syslog 
PBS_O_LANG=en_US.UTF-8 
CPU=x86_64 
PBS_JOBCOOKIE=C036D87E89EB27BDBAA67C293634D3AC 
JAVA_BINDIR=/usr/lib/jvm/jre/bin 
GNU_POST_COMPILE_OPTS= -march=barcelona 
ASYNCPE_VERSION=2.0 
PWD=/ccs/home/oefelei/scratch/FY09JouleQ2 
INPUTRC=/etc/inputrc 
RCLOCAL_MYSQL=true 
XTPE_COMPILE_TARGET=linux 
JAVA_HOME=/usr/lib/jvm/jre 
_LMFILES_=/opt/modulefiles/modules/3.1.6:/sw/xt5/modulefiles/DefApps:/opt/m

odulefiles/torque/2.3.2-
snap.200807092141:/opt/modulefiles/MPICH_VERSION_DISPLAY=1 

C_DIR=/opt/xt-libc/2.1.50HD 
FFTW_INCLUDE_OPTS= -I/opt/fftw/3.1.1/cnos/include 
LANG=en_US.UTF-8 
PBS_NODENUM=0 
SYSTEM_USERDIR=/tmp/work/oefelei 
PYTHONSTARTUP=/etc/pythonstart 
MODULEPATH=/opt/cray/xt-

asyncpe/2.0/modulefiles:/opt/modulefiles:/opt/modules/3.1.6:/sw/xt5/modu
lefiles 

LOADEDMODULES=modules/3.1.6:DefApps:torque/2.3.2-
snap.200807092141:moab/5.2.4:xtpe-quadcore:MySQL/5.0.45:xt-
service/2.1.50HD:xt-libc/PBS_O_SHELL=/bin/bash 
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PGI_POST_COMPILE_OPTS= -tp barcelona-64 
PBS_SERVER=jaguarpf-login2.ccs.ornl.gov 
PBS_JOBID=71541.nid17924 
XTPE_QUADCORE_ENABLED=ON 
LM_LICENSE_FILE=/opt/pgi/7.2.5/license.dat 
PAT_RT_HWPC=0 
ENVIRONMENT=BATCH 
TEXINPUTS=:/ccs/home/oefelei/.TeX:/usr/share/doc/.TeX:/usr/doc/.TeX 
HOME=/ccs/home/oefelei 
SHLVL=2 
QT_SYSTEM_DIR=/usr/share/desktop-data 
OSTYPE=linux 
LESS_ADVANCED_PREPROCESSOR=no 
PGI_PATH=/opt/pgi/7.2.5 
PTL_SNOS_NAL=SS 
PBS_O_HOST=jaguarpf-login2.ccs.ornl.gov 
XCURSOR_THEME=Industrial 
LS_OPTIONS=-N --color=none -T 0 
LIBLUSTRE_DEBUG_CONSOLE=0 
SE_DIR=/opt/xt-service/2.1.50HD 
WINDOWMANAGER= 
MPICH_ENV_DISPLAY=1 
PBS_VNODENUM=0 
GTK_PATH=/usr/local/lib/gtk-2.0:/opt/gnome/lib/gtk-2.0:/usr/lib/gtk-2.0 
LOGNAME=oefelei 
MACHTYPE=x86_64-suse-linux 
LESS=-M -I 
G_FILENAME_ENCODING=@locale,UTF-8,ISO-8859-15,CP1252 
CVS_RSH=ssh 
GTK_PATH64=/usr/local/lib64/gtk-2.0:/opt/gnome/lib64/gtk-

2.0:/usr/lib64/gtk-2.0 
BATCH_PARTITION_ID=1 
PBS_QUEUE=batch 
ACLOCAL_FLAGS=-I /opt/gnome/share/aclocal 
XDG_DATA_DIRS=/usr/local/share/:/usr/share/:/etc/opt/kde3/share/:/opt/kde3/

share/:/opt/gnome/share/ 
MODULESHOME=/opt/modules/3.1.6 
PBS_O_MAIL=/var/mail/oefelei 
LESSOPEN=lessopen.sh %s 
PKG_CONFIG_PATH=/usr/local/lib/pkgconfig:/usr/local/share/pkgconfig:/usr/li

b64/pkgconfig:/usr/share/pkgconfig:/opt/kde3/lib64/pkgconfig:/ 
LIBSCI_BASE_DIR=/opt/xt-libsci/10.3.1 
INFOPATH=/opt/MySQL/5.0.45/info:/usr/local/info:/usr/share/info:/usr/info:/

opt/gnome/share/info 
LIBSCI_VERSION=10.3.1 
LESSCLOSE=lessclose.sh %s %s 
LIBSCI_POST_LINK_OPTS= -lsci_quadcore 
PE_DIR=/opt/xt-pe/2.1.50HD 
PBS_NODEFILE=/var/spool/torque/aux//71541.nid17924 
G_BROKEN_FILENAMES=1 
PBS_O_PATH=/opt/xt-tools/craypat/4.4.0.4/v23/bin:/opt/cray/xt-

asyncpe/2.0/bin:/opt/xt-pe/2.1.50HD/bin/snos64:/opt/xt-
pe/2.1.50HD/cnos/COLORTERM=1 

JAVA_ROOT=/usr/lib/jvm/jre 
LUSTRE_DIR=/opt/xt-lustre-ss/2.1.50HD.PS04.lus.1.6.5.steve.8062_1.6.5 
_=/usr/bin/env 
-------------------------------------------------------------------------- 
++ source /opt/modules/default/init/bash 
+++ ’[’ 3.1.6 = ’’ ’]’ 
+++ MODULE_VERSION_STACK=3.1.6 
+++ export MODULE_VERSION_STACK 
+++ MODULESHOME=/opt/modules/3.1.6 
+++ export MODULESHOME 
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+++ ’[’ modules/3.1.6:DefApps:torque/2.3.2-
snap.200807092141:moab/5.2.4:xtpe-quadcore:MySQL/5.0.45:xt-
service/2.1.50HD:xt-libc/2.1.50HD:+++ ’[’ /opt/cray/xt-
asyncpe/2.0/modulefiles:/opt/modulefiles:/opt/modules/3.1.6:/sw/xt5/modu
lefiles = ’’ ’]’ 

++ cd /ccs/home/oefelei/scratch/FY09JouleQ2 
++ date 
++ export PAT_RT_HWPC=0 
++ PAT_RT_HWPC=0 
++ export MPICH_ENV_DISPLAY=1 
++ MPICH_ENV_DISPLAY=1 
++ export MPICH_VERSION_DISPLAY=1 
++ MPICH_VERSION_DISPLAY=1 
++ module list 
+++ /opt/modules/3.1.6/bin/modulecmd bash list 
Currently Loaded Modulefiles: 
1) modules/3.1.6 
2) DefApps 
3) torque/2.3.2-snap.200807092141 
4) moab/5.2.4 
5) xtpe-quadcore 
6) MySQL/5.0.45 
7) xt-service/2.1.50HD 
8) xt-libc/2.1.50HD 
9) xt-os/2.1.50HD 
10) xt-boot/2.1.50HD 
11) xt-lustre-ss/2.1.50HD.PS04.lus.1.6.5.steve.8062_1.6.5 
12) xtpe-target-cnl 
13) Base-opts/2.1.50HD 
14) pgi/7.2.5 
15) fftw/3.1.1 
16) xt-libsci/10.3.1 
17) xt-mpt/3.1.0 
18) xt-pe/2.1.50HD 
19) xt-asyncpe/2.0 
20) PrgEnv-pgi/2.1.50HD 
++ eval 
++ module avail 
+++ /opt/modules/3.1.6/bin/modulecmd bash avail 
------------------ /opt/cray/xt-asyncpe/2.0/modulefiles ------------------ 
xtpe-quadcore xtpe-target-native 
---------------------------- /opt/modulefiles ---------------------------- 
Base-opts/2.1.27HD 
Base-opts/2.1.27HD.lusrelsave 
Base-opts/2.1.29HD 
Base-opts/2.1.29HD.lusrelsave 
Base-opts/2.1.41HD 
Base-opts/2.1.41HD.lusrelsave 
Base-opts/2.1.50HD(default) 
Base-opts/2.1.50HD.lusrelsave 
MySQL/5.0.45 
PrgEnv-cray/1.0.0(default) 
PrgEnv-gnu/2.1.27HD 
PrgEnv-gnu/2.1.29HD 
PrgEnv-gnu/2.1.41HD 
PrgEnv-gnu/2.1.50HD(default) 
PrgEnv-pathscale/2.1.27HD 
PrgEnv-pathscale/2.1.29HD 
PrgEnv-pathscale/2.1.41HD 
PrgEnv-pathscale/2.1.50HD(default) 
PrgEnv-pgi/2.1.27HD 
PrgEnv-pgi/2.1.29HD 
PrgEnv-pgi/2.1.41HD 
PrgEnv-pgi/2.1.50HD(default) 
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acml/4.0.1a 
acml/4.1.0(default) 
acml/4.2.0 
apprentice2/4.3.0 
apprentice2/4.4.0(default) 
apprentice2/4.4.0.1 
blcr/0.7.3 
cce/7.0.0(default) 
cce/7.0.1 
cray/audit/1.0.0-1.0000.15784.0 
dwarf/8.2.0 
dwarf/8.4.0 
dwarf/8.6.0 
dwarf/8.8.0(default) 
elf/0.8.10(default) 
fftw/2.1.5 
fftw/3.1.1(default) 
gcc/4.1.2 
gcc/4.2.0.quadcore(default) 
gcc/4.2.3 
gcc/4.2.4 
gcc-catamount/3.3 
gnet/2.0.5 
iobuf/1.0.6(default) 
java/jdk1.6.0_05(default) 
libfast/1.0(default) 
libfast/1.0.2 
libscifft-pgi/1.0.0(default) 
moab/5.2.3 
moab/5.2.4(default) 
moab/5.3.0 
modules/3.1.6(default) 
pathscale/3.2(default) 
petsc/2.3.3a(default) 
petsc-complex/2.3.3a(default) 
pgi/6.2.5 
pgi/7.0.7 
pgi/7.1.6 
pgi/7.2.3 
pgi/7.2.4 
pgi/7.2.5(default) 
pgi/8.0.1 
pgi/8.0.2 
pkgconfig/0.15.0(default) 
torque/2.3.2-snap.200807092141(default) 
xt-asyncpe/1.0c 
xt-asyncpe/1.1 
xt-asyncpe/1.2 
xt-asyncpe/2.0(default) 
xt-asyncpe/2.0.34 
xt-boot/2.1.27HD 
xt-boot/2.1.29HD 
xt-boot/2.1.41HD 
xt-boot/2.1.50HD 
xt-catamount/2.1.27HD 
xt-catamount/2.1.29HD 
xt-catamount/2.1.41HD 
xt-catamount/2.1.50HD 
xt-craypat/4.3.1 
xt-craypat/4.3.3 
xt-craypat/4.4.0 
xt-craypat/4.4.0.2 
xt-craypat/4.4.0.4(default) 
xt-libc/2.1.27HD 
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xt-libc/2.1.29HD 
xt-libc/2.1.41HD 
xt-libc/2.1.50HD 
xt-libsci/10.2.1 
xt-libsci/10.3.0 
xt-libsci/10.3.1(default) 
xt-libsci/10.3.2 
xt-lustre-ss/2.1.27HD_1.6.5 
xt-lustre-ss/2.1.29.HD_ORNL.nic1_1.6.5 
xt-lustre-ss/2.1.29HD_1.6.5 
xt-lustre-ss/2.1.29HD_ORNL.nic10_1.6.5 
xt-lustre-ss/2.1.29HD_ORNL.nic11_1.6.5 
xt-lustre-ss/2.1.29HD_ORNL.nic12_1.6.5 
xt-lustre-ss/2.1.29HD_ORNL.nic2_1.6.5 
xt-lustre-ss/2.1.29HD_ORNL.nic5_1.6.5 
xt-lustre-ss/2.1.29HD_ORNL.nic6_1.6.5 
xt-lustre-ss/2.1.41HD_1.6.5 
xt-lustre-ss/2.1.50HD.PS04.lus.1.6.5.steve.8062_1.6.5 
xt-lustre-ss/2.1.50HD_1.6.5 
xt-lustre-ss/2.1.50HD_PS04_1.6.5 
xt-lustre-ss/2.1.UP00_ORNL.nic12_1.6.5 
xt-lustre-ss/2.1.UP00_ORNL.nic2_1.6.5 
xt-lustre-ss/2.1.UP00_ORNL.nic30_1.6.5 
xt-lustre-ss/2.1.UP00_ORNL.nic3_1.6.5 
xt-lustre-ss/2.1.UP00_ORNL.nic40_1.6.5 
xt-lustre-ss/2.1.UP00_ORNL.nic51_1.6.5 
xt-lustre-ss/2.1.UP00_ORNL.nic52_1.6.5 
xt-mpt/2.1.27HD 
xt-mpt/2.1.29HD 
xt-mpt/2.1.41HD 
xt-mpt/2.1.50HD 
xt-mpt/3.0.1 
xt-mpt/3.0.2 
xt-mpt/3.0.4 
xt-mpt/3.1.0(default) 
xt-mpt/3.1.0.4 
xt-mpt/3.1.0.6 
xt-mpt/3.1.0.7 
xt-os/2.1.27HD 
xt-os/2.1.29HD 
xt-os/2.1.41HD 
xt-os/2.1.50HD 
xt-papi/3.5.99c 
xt-papi/3.6 
xt-papi/3.6.1a 
xt-papi/3.6.2(default) 
xt-pe/2.1.27HD 
xt-pe/2.1.29HD 
xt-pe/2.1.41HD 
xt-pe/2.1.50HD 
xt-service/2.1.27HD 
xt-service/2.1.29HD 
xt-service/2.1.41HD 
xt-service/2.1.50HD 
xtgdb/1.0.0(default) 
xtpe-target-catamount 
xtpe-target-cnl 
--------------------------- /opt/modules/3.1.6 --------------------------- 
modulefiles/modules/dot modulefiles/modules/modules 
modulefiles/modules/module-cvs modulefiles/modules/null 
modulefiles/modules/module-info modulefiles/modules/use.own 
-------------------------- /sw/xt5/modulefiles --------------------------- 
DefApps lapack/3.1.1-dualcore 
MiscApps lapack/3.1.1-fPIC 



 

E-15 

adios/0.9.8(default) liblut/0.9.6 
arpack/2008.03.11 m4/1.4.11 
atlas/3.8.2 matlab/7.5 
atlas/3.8.2-fPIC-dualcore mercurial/1.0.2 
autoconf/2.63 metis/4.0 
automake/1.10.1 mpe2/1.0.6 
aztec/2.1 mpip/3.1.2 
blas/ref(default) mumps/4.7.3_par 
blas/ref-dualcore namd/2.6 
bugget/2.0 ncl/5.0.0 
cmake/2.6.1(default) nco/3.9.4 
cmake/2.6.2 ncview/1.93c 
cpmd/3.13.1 nedit/5.5 
cpmd/3.13.2 netcdf/3.6.2(default) 
doxygen/1.5.6 netcdf/4.0.0 
doxygen/1.5.8 netcdf/4.0.0_par 
ferret/6.1 ompi/ADTR65 
fftpack/5-r4i4 ompi/ADTR77 
fftpack/5-r8i4 ompi/ADTR78 
fftpack/5-r8i8 ompi/DTR56 
fftw/3.1.2 ompi/DTR59 
fftw/3.1.2-dualcore ompi/routing-pgi 
fftw/3.2 p-netcdf/1.0.2(default) 
fftw/3.2-dualcore p-netcdf/1.0.3 
fpmpi/1.0 parmetis/3.1 
fpmpi/1.1 petsc/2.3.3-debug 
fpmpi_papi/1.0 petsc-complex/2.3.3-debug 
fpmpi_papi/1.1 pgplot/5.2 
gamess/2008Mar04 pspline/1.0 
git/1.6.0 python/2.5.2 
git/1.6.0.4 python/2.5.2-netcdf 
globalarrays/4.0.8 qt/4.3.4 
gnuplot/4.2.3 ruby/1.8.7 
gnuplot/4.2.4(default) ruby/1.9.1 
gptl/3.4.1 spdcp/0.3.6 
gptl/3.4.3 sprng/2.0b 
gptl/3.4.7(default) stagesub/1.0.2 
grace/5.1.21 stagesub/1.0.3(default) 
gromacs/3.3.3 subversion/1.4.6 
gsl/1.11 subversion/1.5.0(default) 
gsl/1.11-dualcore sundials/2.3.0 
hdf5/1.6.7(default) superlu/3.0 
hdf5/1.6.7_par superlu_dist/2.2 
hdf5/1.6.8 swig/1.3.36 
hdf5/1.6.8_par szip/2.1 
hdf5/1.8.1 tau/2.17.2 
hdf5/1.8.1_par tau/2.17.3 
hdf5/1.8.2 tkdiff/4.1.4 
hdf5/1.8.2_par totalview/8.6.0-1(default) 
hypre/2.0.0 trilinos/8.0.3 
idl/6.4 udunits/1.12.4 
imagemagick/6.4.2(default) udunits/1.12.9 
java-jdk/1.5.0.06 umfpack/5.1.1 
java-jdk/1.6.0.06 valgrind/3.3.1 
java-jre/1.5.0.06 vim/7.1 
lammps/4Mar08 vim/7.2 
lammps/May08 visit/1.11.1 
lapack/3.1.1(default) 
++ eval 
++ env 
++ aprun -n 47616 ./dtms.e 
MPI VERSION : CRAY MPICH2 XT version 3.1.0 (ANL base 1.0.6) 
BUILD INFO : Built Thu Nov 20 11:14:12 2008 (svn rev 7246) 
PE 0: MPICH environment settings: 
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PE 0: MPICH_ENV_DISPLAY = 1 
PE 0: MPICH_VERSION_DISPLAY = 1 
PE 0: MPICH_ABORT_ON_ERROR = 0 
PE 0: MPICH_CPU_YIELD = 0 
PE 0: MPICH_RANK_REORDER_METHOD = 1 
PE 0: MPICH_RANK_REORDER_DISPLAY = 0 
PE 0: MPICH_MAX_THREAD_SAFETY = single 
PE 0: MPICH_MSGS_PER_PROC = 16384 
PE 0: MPICH/SMP environment settings: 
PE 0: MPICH_SMP_OFF = 0 
PE 0: MPICH_SMPDEV_BUFS_PER_PROC = 32 
PE 0: MPICH_SMP_SINGLE_COPY_SIZE = 131072 
PE 0: MPICH_SMP_SINGLE_COPY_OFF = 0 
PE 0: MPICH/PORTALS environment settings: 
PE 0: MPICH_MAX_SHORT_MSG_SIZE = 4301 
PE 0: MPICH_UNEX_BUFFER_SIZE = 142848000 
PE 0: MPICH_PTL_UNEX_EVENTS = 104755 
PE 0: MPICH_PTL_OTHER_EVENTS = 11904 
PE 0: MPICH_VSHORT_OFF = 0 
PE 0: MPICH_MAX_VSHORT_MSG_SIZE = 1024 
PE 0: MPICH_VSHORT_BUFFERS = 32 
PE 0: MPICH_PTL_EAGER_LONG = 0 
PE 0: MPICH_PTL_MATCH_OFF = 0 
PE 0: MPICH_PTL_SEND_CREDITS = 0 
PE 0: MPICH/COLLECTIVE environment settings: 
PE 0: MPICH_FAST_MEMCPY = 0 
PE 0: MPICH_COLL_OPT_OFF = 0 
PE 0: MPICH_COLL_SYNC = 0 
PE 0: MPICH_BCAST_ONLY_TREE = 1 
PE 0: MPICH_ALLTOALL_SHORT_MSG = 1024 
PE 0: MPICH_REDUCE_SHORT_MSG = 65536 
PE 0: MPICH_ALLREDUCE_LARGE_MSG = 262144 
PE 0: MPICH_ALLGATHER_VSHORT_MSG = 2048 
PE 0: MPICH_ALLTOALLVW_FCSIZE = 32 
PE 0: MPICH_ALLTOALLVW_SENDWIN = 20 
PE 0: MPICH_ALLTOALLVW_RECVWIN = 20 
PE 0: MPICH/MPIIO environment settings: 
PE 0: MPICH_MPIIO_HINTS_DISPLAY = 0 
PE 0: MPICH_MPIIO_CB_ALIGN = 0 
PE 0: MPICH_MPIIO_HINTS = NULL 
CrayPat/X: Version 4.4.0 Revision 2195 10/29/08 14:13:53 
Experiment data directory written: 
/lustre/scratch/oefelei/FY09JouleQ2/dtms.e+25388-13808tdt 

E.5 COMPARISON OF TOTAL RUN TIME VS INITIALIZATION TIME 

In running the Q4 case, we observed an anomaly associated with the time required for the 
initialization stage of the calculation (which is not compute intensive) compared to the integration stage 
(which is compute intensive). This anomaly was traced to CrayPAT. In all cases, executables that were 
instrumented with CrayPAT exhibited a wide range of initialization times compared to those that were 
not. In the results for Q2, for example, the total run time reported by CrayPAT was 1,423 s, as shown in 
Table E.1. However, the time spent in the integration part of the calculation, as given by the internal timer 
in the code was only 1,034 s, which implies that approximately 389 s were required for initialization. To 
verify this we reran the Q2 case with the integration loop bypassed to isolate the time associated with 
initialization. Results from this run are provided shown in Table E.2. Comparing these data verifies that a 
negligible amount of floating point operations occurred during initialization for the selected cases and that 
the internal timer used to measure the amount of time spent in the integrator was accurate. As a second 
test, we ran both the Q2 benchmark and Q4 cases without CrayPAT installed and verified that the 
initialization times for both became negligible (i.e., less than 10 percent of the total integration time). The 
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combined set of tests confirmed that the integration times and estimated floating point operation rates 
reported are accurate.  

 
 
 

Table E.1. Counter data acquired from CrayPAT 4.2 for Q2 benchmark run using RAPTOR 
 
Totals for program 
------------------------------------------------------------------------ 
  Time%                                        100.0% 
  Time                                    1425.761880 secs 
  Imb.Time                                         -- secs 
  Imb.Time%                                        -- 
  Calls                       0.0 /sec            4.0 calls 
  PAPI_L1_DCM              20.674M/sec    26457314029 misses 
  PAPI_TOT_INS           3379.668M/sec  4325136094614 instr 
  PAPI_L1_DCA            1348.943M/sec  1726311709236 refs 
  PAPI_FP_OPS               6.204M/sec     7939032813 ops 
  User time (approx)     1279.752 secs  2943428628772 cycles  89.8%Time 
  Average Time per Call                    356.440470 sec 
  CrayPat Overhead : Time    0.0% 
  HW FP Ops / User time     6.204M/sec     7939032813 ops  0.1%peak(DP) 
  HW FP Ops / WCT           5.568M/sec 
  HW FP Ops / Inst                               0.2% 
  Computational intensity    0.00 ops/cycle      0.00 ops/ref 
  Instr per cycle                                1.47 inst/cycle 
  MIPS               160926295.28M/sec 
  MFLOPS (aggregate)    295389.35M/sec 
  Instructions per LD & ST  39.9% refs           2.51 inst/ref 
  D1 cache hit,miss ratios  98.5% hits           1.5% misses 
  D1 cache utilization (M)  65.25 refs/miss     8.156 avg uses 
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Table E.2. Counter data acquired from CrayPAT 4.2 for Q2 benchmark run using RAPTOR  
but with the integration loop bypassed 

 
Totals for program 
------------------------------------------------------------------------ 
  Time%                                        100.0% 
  Time                                     398.057434 secs 
  Imb.Time                                         -- secs 
  Imb.Time%                                        -- 
  Calls                       0.0 /sec            4.0 calls 
  PAPI_L1_DCM              23.802M/sec     8862182513 misses 
  PAPI_TOT_INS           3505.363M/sec  1305131854712 instr 
  PAPI_L1_DCA            1393.542M/sec   518849673837 refs 
  PAPI_FP_OPS               0.002M/sec         574298 ops 
  User time (approx)      372.324 secs   856345890248 cycles  93.5%Time 
  Average Time per Call                     99.514358 sec 
  CrayPat Overhead : Time    0.0% 
  HW FP Ops / User time     0.002M/sec         574298 ops  0.0%peak(DP) 
  HW FP Ops / WCT           0.001M/sec 
  HW FP Ops / Inst                               0.0% 
  Computational intensity    0.00 ops/cycle      0.00 ops/ref 
  Instr per cycle                                1.52 inst/cycle 
  MIPS               166911368.33M/sec 
  MFLOPS (aggregate)        73.45M/sec 
  Instructions per LD & ST  39.8% refs           2.52 inst/ref 
  D1 cache hit,miss ratios  98.3% hits           1.7% misses 
  D1 cache utilization (M)  58.55 refs/miss     7.318 avg uses 

 
 
 


