

An Introduction to Quantum Computing using Linear Solvers

2025 OLCF User Meeting Hands-On Quantum Computing Training

OLCF Staff

Oak Ridge National Laboratory

ORNL IS MANAGED BY UT-BATTELLE LLC FOR THE US DEPARTMENT OF ENERGY

This research used resources of the **Oak Ridge Leadership Computing Facility (OLCF) at the Oak Ridge National Laboratory**, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-000R22725.

Agenda

Who are we?
Team Members

What is quantum computing?

A brief Intro

What is QLSA?

A brief
Intro/Catchup

What quantum resources?

QCUP, IQM & IonQ

Demo Time!

OLCF Staff

Michael Sandoval

Suzanne Parete-Koon

MacKenzie Boyd

Murali Gopalakrishnan Meena

ORNL QCFD team and collaborators

Kalyan Gottiparthi

Chao Lu

Toño Coello Pérez Shehata

Amir

Michael Sandoval

Seongmin Kim

Pooja Rao **NVIDIA**

Justin Lietz **NVIDIA**

Xinfeng Gao UVA

In-Saeng Suh

Antigoni Georgiadou

Alessandro Baroni

Ryan Landfield

Matt Norman

Tom Beck

Paul Lin **NERSC-LBNL**

Yu Zhang LANL

ORNL - OLCF

Quantum Computing

A very brief Intro to QC

Classical vs Quantum Computing

- Bit vs Qubit information states
- State of superposition a combination of all possible configurations
 - Store more information!
 - Measuring will lead to collapse to a binary state
- Types of qubits:
 - Superconducting
 - Trapped ion
 - Photons
 - Neutral atoms
 - Quantum dots

Quantum computing -

Qubit

Key principles of quantum computing

1. Superposition

- Entanglement ability of qubits to correlate with each others' states
 - Store even more information!
- Interference information is structured like waves with amplitudes
 - Waves can amplify or cancel each other
 - Amplitudes: Probabilities of the outcomes of measurement
- 4. **Decoherence** collapse from quantum to nonquantum state
 - Intentionally (measurement)
 - Allows quantum computers to interact with classical computers
 - Unintentionally (interaction with environment)

$$|\psi\rangle = \alpha_1|00\rangle + \alpha_2|01\rangle + \alpha_3|10\rangle + \alpha_4|11\rangle$$

Working of a quantum computer

- 1. Qubits are prepared as superposition of states 3. Circuits are collection of gates
- **Gates** used to operate on qubits and entangle them
 - **Unitary operations**
 - Reversible
 - Can operate on a single qubit or multiple (entanglement)

- **4. Quantum algorithms** are collection of circuits to create desired interference between states
- **5. Measurement** (amplified outcomes) gives solution

Running a quantum algorithm

Backend	Mechanism	Functionality
Simulator	Classical	Classical program modeling a quantum system in an ideal scenario
Emulator	Classical	Classical program modeling actual behavior of a quantum system
Real	Quantum	Physical hardware performing real quantum computations

Quantum Linear Solvers

A brief Intro/Catchup

Governing equations are discretized to create a set of algebraic equations & assembled into Ax = b

$$egin{aligned}
abla \cdot oldsymbol{u} &= 0, \\
rac{\partial oldsymbol{u}}{\partial t} &= - \underbrace{oldsymbol{u} \cdot
abla oldsymbol{u}}_{ ext{nonlinear term}} - \underbrace{
abla p + rac{1}{Re}
abla^2 oldsymbol{u} + oldsymbol{s}}_{ ext{linear terms}} + oldsymbol{s} \\
abla^2 p &= - \underbrace{
abla \cdot
abla oldsymbol{u} \cdot
abla oldsymbol{u}}_{ ext{nonlinear term}} - \underbrace{
abla^2 oldsymbol{v} + oldsymbol{v} + oldsymbol{s}}_{ ext{linear terms}} + oldsymbol{s} \\
abla^2 oldsymbol{v} - \underbrace{
abla^2 oldsymbol{v} \cdot
abla^2 oldsymbol{u} \cdot
abla^2 oldsymbol{u} + oldsymbol{s}}_{ ext{linear terms}} + oldsymbol{s} \\
abla^2 oldsymbol{v} - \underbrace{
abla^2 oldsymbol{v} \cdot
abla^2 oldsymbol{u} \cdot
abla^2 oldsymbol{u} \cdot
abla^2 oldsymbol{v} \cdot
abla^2 oldsymbol{u} + oldsymbol{s} \cdot
abla^2 oldsymbol{u} + oldsymbol{s} \cdot
abla^2 oldsymbol{v} \cdot
abla^2 oldsymbol{u} \cdot
abla^2 oldsymbol{v} \cdot
abla^2 oldsymbol{u} \cdot
abla^2$$

Finite difference approximation

$$\frac{\partial u_{\alpha}(x_{i})}{\partial x} \simeq \frac{u_{\alpha}(x_{i} + \delta x) - u_{\alpha}(x_{i} - \delta x)}{2\delta x}$$

$$\frac{\partial^{2} u_{\alpha}(x_{i})}{\partial x^{2}} \simeq \frac{u_{\alpha}(x_{i} + \delta x) + u_{\alpha}(x_{i} - \delta x) - 2u_{\alpha}(x_{i})}{\delta x^{2}}$$

$$+ \delta x + \frac{\delta x^{2}}{\delta x^{2}}$$

Quantum Linear Systems Algorithms (QLSA) solve Ax = b problems using quantum computers

Quantum Hardware Access with QCUP

IQM Resonance & IonQ Cloud

Quantum Computing User Program

Enable Research

Provide a broad spectrum of user access to the best available quantum computing systems

Evaluate Technology

Monitor the breadth and performance of early quantum computing applications

Engage Community

Support growth of the quantum ecosystem by engaging with users, developers, vendors, and providers

QCUP Operations Model: Cloud Access

Quantum Computing Community

Multiple Quantum Computing Resources

IBM Quantum

General-purpose trasnmon systems provide up to 156 qubits

IQM

General-purpose trasnmon systems provide up to 56 qubits

Quantinuum

General-purpose ion trap systems provide up to 56 qubits

IonQ

General-purpose ion trap systems provide up to 36 qubits

IQM Resonance

- IQM provides access to quantum computing resources through their cloud platform, IQM Resonance.
 - The 20 qubit **Garnet**, 16 qubit Sirius, and 54 qubit Emerald systems.
 - IQM's quantum processors are made up of superconducting transmon qubits, utilizing multiple topologies.
 - User dashboard: https://resonance.meetigm.com/
- OLCF Documentation: https://docs.olcf.ornl.gov/quantum/quantum_systems/iqm.html
- We'll be submitting jobs to Garnet via Python from Frontier
 - "Pay-as-you-go" mode
 - Certain windows where a queue is open
 - "Timeslot" mode
 - Reserved for today from 2-3 PM (Eastern)
- Should've received an invite from me to create your account (not the same account as Frontier!!)

The IQM Resonance Dashboard - I

The IQM Resonance Dashboard - II

The IQM Resonance Dashboard - III

Availability calendar

Availa	bility calen	dar					×
IQM Ga	rnet \$	(i) Pay-as-you	-go slots are updat	ed in real-time and	l may change as tin	neslot bookings ar	e made.
Today	< >		4.8-10.8.20	Month Week List view			
	04 Mon	05 Tue	06 Wed	07 Thu	08 Fri	09 Sat	10 Sun
12:00 AM	12:00 AM - 12:30 AM	12:00 AM - 12:30 AM	12:00 AM - 12:30 AM	12:00 AM - 12:30 AM	12:00 AM - 12:30 AM	12:00 AM - 12:30 AM	12:00 AM - 12:30 AM
1:00 AM							
2:00 AM							
3:00 AM							
4:00 AM	3:30 AM - 11:30 AM Pay-as-you-go	3:30 AM - 11:30 AM Pay-as-you-go	3:30 AM - 11:30 AM Pay-as-you-go	3:30 AM - 11:30 AM Pay-as-you-go	3:30 AM - 11:30 AM Pay-as-you-go	3:30 AM - 11:30 AM Pay-as-you-go	3:30 AM - 11:30 AM Pay-as-you-go
5:00 AM							
6:00 AM							
7:00 AM							
8:00 AM							
9:00 AM							
10:00 AM							
11:00 AM							
12:00 PM							
1:00 PM							
2:00 PM	2:00 PM - 11:59 PM Pay-as-you-go	2:00 PM - 11:59 PM Pay-as-you-go	2:00 PM - 3:00 PM Booked Timeslot	2:00 PM - 11:59 PM Pay-as-you-go			
3:00 PM	. Dy de jou go	. ay us you go	3:00 PM - 11:59 PM Pay-as-you-go	. ay do you go	. ay do you go	. My do you go	. ay uo you go
4:00 PM			. a, as you go				

IonQ Cloud Console

- IonQ provides access to quantum computing resources through their cloud platform, IonQ Quantum Cloud.
 - The 25 qubit Aria and 36 qubit Forte systems.
 - IonQ's quantum processors are made up of trapped-ion qubits, utilizing multiple topologies.
 - User dashboard: https://cloud.ionq.com/
- OLCF Documentation: https://docs.olcf.ornl.gov/quantum/quantum_systems/ionq.html
- We'll be submitting jobs to Aria via Python from Frontier
 - Run using credits
 - Priority window for today from 2-3:30 PM (Eastern)
 - Limited credits for this tutorial only run up to 500 shots
- Should've received an invite from me to create your account (not the same account as Frontier!!)

The IonQ Cloud Dashboard - I

•							Oak Ridge National Laboratory Organization	n\$	<u> </u>
My Jobs									
〒 F 31 Jobs	Filter							⊿ E	Export
000	Date ↓	Status	Name	Backend	ID	Туре	Project	Cost	
	2025-07-31 15:57:09 EDT	⊘ completed	circuit-194	simulator \otimes	0198620f □	circuit	CFD181	\$0.00	***
	2025-07-31 15:55:57 EDT	⊘ completed	circuit-194	simulator \otimes	0198620e 🗇	circuit	CFD181	\$0.00	***
	2025-07-31 15:40:51 EDT	⊘ completed	circuit-194	simulator \otimes	01986200 🗇	circuit	CFD181	\$0.00	***
	2025-07-31 15:40:33 EDT	⊘ completed	circuit-194	simulator \otimes	01986200 🗇	circuit	CFD181	\$0.00	***
	2025-07-28 14:45:41 EDT	⊘ completed	circuit-194	simulator \otimes	0198525a 🗇	circuit	CFD181	\$0.00	***
	2025-07-28 14:42:38 EDT	⊘ completed	circuit-194	simulator \otimes	01985258 🗇	circuit	CFD181	\$0.00	***
	2025-07-28 14:41:26 EDT	⊘ completed	circuit-194	simulator \otimes	01985256 🗇	circuit	CFD181	\$0.00	***
	2025-07-28 14:40:56 EDT	⊘ completed	circuit-194	simulator \otimes	01985256 🗖	circuit	CFD181	\$0.00	444
	2025-07-28 14:39:41 EDT	⊘ completed	circuit-194	simulator \otimes	01985255 🗖	circuit	CFD181	\$0.00	444
	2025-07-28 14:38:45 EDT	⊘ completed	circuit-194	simulator \otimes	01985254 🗇	circuit	CFD181	\$0.00	A A A
	2024-10-24 15:40:41 EDT	⊘ completed	circuit-193	simulator \otimes	c3c2f4ea □	circuit	Personal Workspace (gopalakrishm@ornl.go v)	\$0.00	**
	2024-06-21 12:07:20 EDT	⊘ completed	circuit-193	simulator \otimes	ca24d088 🗇	circuit	Personal Workspace (gopalakrishm@ornl.go v)	\$0.00	*
							Personal Workspace (gonalakrishm@ornl.go		

The IonQ Cloud Dashboard - II

The IonQ Cloud Dashboard - III

The Hands-On Tutorial

Demo & Challenge

Run the HHL circuit on simulators, emulators, and real devices

Demo Time!

https://github.com/olcf/hands-on-with-frontier

Go to: challenges/Python_QLSA

Challenge Time! Two Tasks:

- 1. Shots-based study
- 2. Backend evaluation

Logistics

- 1. When requesting Frontier node,
 - 1. Use the reservation flag: --reservation=usermeeting2
 - 2. Please request only **1 node** per user
- 2. Due to limited resources, lonQ runs are capped at 500 shots try to use the resource sparingly

Sample results of running on IonQ

Run the HHL circuit on simulators, emulators, and real devices

https://github.com/olcf/hands-on-with-frontier

Go to: challenges/Python_QLSA

Explore more!

- 1. Shots-based study uncertainty in results
- 2. Backend evaluation quasi-probability distribution
- 3. Bonus: Solve the Hele—Shaw flow

Try out our 2025 WCISCC student challenge! https://github.com/olcf/wciscc2025.git

(a) Convergence plot of fidelity for solving matrix of size 2×2 . Shot range from 100 to 1,000,000.

Report your deduction of the converged shot value. (5 points)

roblem

Run on simulator only.

