

# Evaluating Quantum Linear Solvers for Fluid Flow Enabled Through OLCF's QCUP

2025 OLCF User Meeting

Murali Gopalakrishnan Meena Oak Ridge National Laboratory



ORNL IS MANAGED BY UT-BATTELLE LLC FOR THE US DEPARTMENT OF ENERGY

This research used resources of the **Oak Ridge Leadership Computing Facility (OLCF) at the Oak Ridge National Laboratory**, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-000R22725.



### **Introduction & Motivation**

Fluid dynamics & Extreme-scale computation



### Fluid dynamics is everywhere & its "pretty" turbulent



Deflagration to Detonation Transition in fuel-air mixtures accelerated by obstacles<sup>[1]</sup>



I am an old man now, and when I die and go to Heaven there are two matters on which I hope for enlightenment. One is quantum electrodynamics and the other is the turbulent motion of fluids. And about the former I am rather more optimistic.

- Sir Horace Lamb



Community structures in 3D isotropic turbulence<sup>[3]</sup>

[2] Gottiparthi et al., AIAA-2016-4791, 2016

<sup>[1]</sup> Gottiparthi and Menon, Proc. European Combust. Meeting, 2013

<sup>[3]</sup> Gopalakrishnan Meena & Taira, J. Fluid Mech., 2021

## Governing equations of fluid flow comprise of linear & nonlinear terms that can be solved numerically

Conservation of mass

$$\nabla \cdot \boldsymbol{u} = 0,$$

Conservation of momentum

$$rac{\partial oldsymbol{u}}{\partial t} = - \underbrace{oldsymbol{u} \cdot 
abla oldsymbol{u}}_{ ext{nonlinear term}} - \underbrace{
abla p + rac{1}{Re} 
abla^2 oldsymbol{u}}_{ ext{linear terms}} + rac{1}{Re} 
abla^2 oldsymbol{u} + rac{1}$$

10<sup>-3</sup> m

The Navier—Stokes Equations

Pressure Poisson equation

$$\nabla^2 p = -\underbrace{\nabla \cdot (\boldsymbol{u} \cdot \nabla \boldsymbol{u})}_{\text{nonlinear term}}$$



Subgrid scales Resolved scales

Smallest scale for reactions and particle size viscous dissipation







10<sup>-9</sup> m

Governing equations are discretized to create a set of algebraic equations & assembled into Ax = b

$$egin{aligned} 
abla \cdot oldsymbol{u} &= 0, \\ 
rac{\partial oldsymbol{u}}{\partial t} &= - \underbrace{oldsymbol{u} \cdot 
abla oldsymbol{u}}_{ ext{nonlinear term}} - \underbrace{
abla p + rac{1}{Re} 
abla^2 oldsymbol{u} + oldsymbol{s}}_{ ext{linear terms}} + oldsymbol{s} \\ 
abla^2 p &= - \underbrace{
abla \cdot 
abla oldsymbol{u} \cdot 
abla oldsymbol{u}}_{ ext{nonlinear term}} - \underbrace{
abla^2 oldsymbol{v} + oldsymbol{v} + oldsymbol{s}}_{ ext{linear terms}} + oldsymbol{s} \\ 
abla^2 oldsymbol{v} - \underbrace{
abla^2 oldsymbol{v} \cdot 
abla^2 oldsymbol{u} \cdot 
abla^2 oldsymbol{u} + oldsymbol{s}}_{ ext{linear terms}} + oldsymbol{s} \\ 
abla^2 oldsymbol{v} - \underbrace{
abla^2 oldsymbol{v} \cdot 
abla^2 oldsymbol{u} \cdot 
abla^2 oldsymbol{u} \cdot 
abla^2 oldsymbol{v} \cdot 
abla^2 oldsymbol{u} + oldsymbol{s} \cdot 
abla^2 oldsymbol{u} + oldsymbol{s} \cdot 
abla^2 oldsymbol{v} \cdot 
abla^2 oldsymbol{u} \cdot 
abla^2 oldsymbol{v} \cdot 
abla^2 oldsymbol{u} \cdot 
abla^2$$

#### Finite difference approximation

$$\frac{\partial u_{\alpha}(x_{i})}{\partial x} \simeq \frac{u_{\alpha}(x_{i} + \delta x) - u_{\alpha}(x_{i} - \delta x)}{2\delta x}$$

$$\frac{\partial^{2} u_{\alpha}(x_{i})}{\partial x^{2}} \simeq \frac{u_{\alpha}(x_{i} + \delta x) + u_{\alpha}(x_{i} - \delta x) - 2u_{\alpha}(x_{i})}{\delta x^{2}}$$

$$+ \delta x + \frac{\delta x^{2}}{\delta x^{2}}$$







Grid resolution can get prohibitively expensive to simulate for practical fluid flow problems

- 3D stratified turbulence model for oceanographic flow<sup>[1]</sup>
- $37k \times 37k \times 4k \approx 6.6 \times 10^{12} > 2^{42}$  grid points
- 100 TB per snapshot





Isosurface of scalar dissipation rate for  $1/25^{th}$  of the domain, constructed using  $127 \times 10^6$  triangles.

Group

Grid resolution can get prohibitively expensive to simulate for practical fluid flow problems

- Flow past turbine blades showing instantaneous heat transfer<sup>[1]</sup>
- Transition to turbulence is very challenging to capture
- Turbulence related projects: 35-45% of 2023 OLCF Frontier allocation



Isosurface of heat flux simulated using 14.6 billion cells.

## Quantum linear & nonlinear PDE solvers have the potential to exponentially reduce cost of solving large problems

- Quantum computing applications to fluid flow problems:
  - Lattice simulations: fluid motion modeled as the motion of discrete particles
  - Continuum simulations: fluid motion modeled as a continuous field

#### **Linear flow problems**

- Linear (ideal) & Linearized PDEs<sup>[1-4]</sup>:
   N—S equations with assumptions
- Use Quantum Linear System Algorithms (QLSA)
- Classical: O(N) (or higher for denser non-symmetric matrices)
- Quantum: O(log(N))
- Disadvantage: Enlarged solution space
  - [1] Yepez, PRE, 2001
  - [2] Xu, Daley, Givi, Somma, AIAAJ, 2018
  - [3] Bharadwaj & Sreenivasan, PNAS, 2023
  - [4] Gopalakrishnan Meena at al., PoF, 2024

#### **Nonlinear flow problems**

- Tackle nonlinearity of PDEs<sup>[5-10]</sup>
- Not generalized
- Limited work
- Variational algorithm using Quantum Nonlinear Processing Units<sup>[8]</sup>
  - [5] Leyton & Osborne, arXiv, 2008
  - [6] Gaitan, NPJ, 2020
  - [7] Steijl, Quantum Comp. & Comm., 2020
  - [8] Oz, et al., *Sci. Rep.*, 2023
  - [9] Lubasch, et al., *PRA*, 2020
  - [10] Gopalakrishnan Meena et al., IEEE QCE, 2024



#### **Objectives of this presentation**

- Disclaimer: We are not trying to show/demonstrate quantum advantage for fluid flow problems
- Current talk objectives:
  - Efforts at OLCF to investigate the application of a QLSA on a canonical fluid flow problem
  - Focus on practical issues on using the algorithm for canonical fluid flow problems
    - Computational cost
    - Noise modeling & mitigation
    - Running on real hardware
  - Collaborative effort & welcome collaboration



#### **ORNL QCFD team and collaborators**





Kalyan Gottiparthi



Chao Lu



Toño Coello Pérez Shehata



Amir



Michael Sandoval



Seongmin Kim



Pooja Rao **NVIDIA** 



Justin Lietz **NVIDIA** 



Xinfeng Gao UVA



In-Saeng Suh



Antigoni Georgiadou



Alessandro Baroni



Ryan Landfield



Matt Norman



Tom Beck



Paul Lin **NERSC-LBNL** 



Yu Zhang LANL

**ORNL - OLCF** 



## **Quantum Computing**

A very brief Intro to QC



### **Classical vs Quantum Computing**

- Bit vs Qubit information states
- State of superposition a combination of all possible configurations
  - Store more information!
  - Measuring will lead to collapse to a binary state
- Types of qubits:
  - Superconducting
  - Trapped ion
  - Photons
  - Neutral atoms
  - Quantum dots







Quantum computing -

**Qubit** 





#### Key principles of quantum computing

#### 1. Superposition

- 2. Entanglement ability of qubits to correlate with each others' states
  - Store even more information!
- Interference information is structured like waves with amplitudes
  - Waves can amplify or cancel each other
  - Amplitudes: Probabilities of the outcomes of measurement
- 4. **Decoherence** collapse from quantum to nonquantum state
  - Intentionally (measurement)
  - Allows quantum computers to interact with classical computers
  - Unintentionally (interaction with environment)



$$|\psi\rangle = \alpha_1|00\rangle + \alpha_2|01\rangle + \alpha_3|10\rangle + \alpha_4|11\rangle$$







### Working of a quantum computer

- 1. Qubits are prepared as superposition of states 3. Circuits are collection of gates
- **Gates** used to operate on qubits and entangle them
  - **Unitary operations**
  - Reversible
  - Can operate on a single qubit or multiple (entanglement)

- **4. Quantum algorithms** are collection of circuits to create desired interference between states
- **5. Measurement** (amplified outcomes) gives solution







## Running a quantum algorithm

| Backend   | Mechanism | Functionality                                                    |
|-----------|-----------|------------------------------------------------------------------|
| Simulator | Classical | Classical program modeling a quantum system in an ideal scenario |
| Emulator  | Classical | Classical program modeling actual behavior of a quantum system   |
| Real      | Quantum   | Physical hardware performing real quantum computations           |



## **Quantum Linear Solver Algorithms**

Solving the Hele—Shaw flow using QLSA



### **Model problem: Hele—Shaw flow**

Flow between 2 flat plates driven by pressure difference at inlet & outlet

#### Flow properties:

- 2D, Steady
- Incompressible, inviscid
- N-S equations reduce to

$$\nabla \cdot \boldsymbol{u} = 0$$
 and  $\Delta \boldsymbol{u} - \nabla p = 0$ 









### Overview of solving the Hele—Shaw flow using a QLSA



### The Harrow-Hassidim-Lloyd (HHL) algorithm

- Convert the problem using eigen basis of Hermitian A to give
  - $x = A^{-1}b = \sum_{i} \lambda_{i}^{-1}b_{i}u_{i}$ ,  $\lambda_{i} \& u_{i}$  are the eigenvalues & eigenvectors of A
  - Usually, 2N since fluid flow Jacobians are not usually Hermitian
  - Use Quantum Phase Estimation (QPE) to obtain eigen basis
  - Computational complexity:  $O(\log(N) s^2 \kappa^2 / \epsilon)$ ,
    - N size of A
    - s sparsity of A
    - $\kappa$  condition number of A
    - $\epsilon$  accuracy of approximation
    - Up to  $\kappa \log(\kappa/\epsilon)$  [2]
- Current implementation using Qiskit



3. Controlled Rotation of



[2] Morales et al., 2025

## Computational costs are quite high attributing to various components of the problem and algorithm

Testing a sample system of linear equations: tridiagonal Toeplitz matrix

- Need for GPU accelerated simulators: cuQuantum
- Preconditioning matrix or preconditioning-free HHL algorithm
- Better QPE algorithm



## LuGo: An implementation of QPE to eliminate redundant circuit repetitions

- A parallel framework to avoid the exponential growth of controlled-U circuit
- Complexity: Standard  $\mathcal{O}(2^k \mathcal{C}(U))$  LuGo:  $\mathcal{O}(k\mathcal{C}(U))$
- LuGo achieves reduction for: (1) time to generate and run circuits, and (2) circuit depth



C. Lu et al., 2025 - in review



This research used resources of the National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science User Facility located at Lawrence Berkeley National Laboratory, operated under Contract No. DE-AC02-05CH11231.

## Results

Simulator → Emulator → Real Hardware



## Validation: Accurate reconstruction of the pressure & velocity profiles achieved using simulators

#### Results using classical simulators



| Variable     | Pressure | Velocity |
|--------------|----------|----------|
| Fidelity (%) | 99.9     | 99.9     |



### LuGo-based HHL enables scaling to larger flow problems

#### Results using classical simulators





## Noise modeling, error mitigation & suppression enable running standard QPE-based HHL on real hardware

- Noise modeling & mitigation using Qiskit primitives: Sampler
- Noise model: fake backends
- Error mitigation: qubit readout errors
- Error suppression: Optimizing circuit and Dynamic decoupling





## LuGo-based HHL solver better scales on superconducting & trapped-ion quantum hardware



## Solving canonical flow problems using the HHL algorithm on superconducting & trapped-ion devices



#### **OLCF's Quantum Computing User Program (QCUP)**

- Premium access to current stack of quantum devices available through OLCF
- Apply any time
- Free of charge
- Each project is assigned a liaison:
  - ORNL point of contact with quantum science expertise
- Access available for international (non-US) participants















IQM



Link

Contact – gopalakrishm@ornl.gov





#### **Current & Future directions**

#### Computational cost

• Need for hybrid quantum-classical algorithms<sup>[1,2,3,4,5,6]</sup>

#### Tackle more complex flow problems

• 2D potential flow over a cylinder/sphere O: [A]



- [1] Bravo-Prieto et al, Quantum, 2023
- [2] Jaksch et al, AIAAJ, 2023
- [3] Bharadwaj & Sreenivasan, PNAS, 2023
- [4] <u>Gopalakrishnan Meena et al., IEEE QCE, 2024</u>
- 5 Shehata et al., FGCS 2025
- [6] Gopalakrishnan Meena et al., IEEE QCE, 2025
- [7] miniWeatherML https://github.com/mrnorman/miniWeatherML





#### **OLCF's Quantum Computing User Program (QCUP)**

- Premium access to current stack of quantum devices available through OLCF
- Apply any time
- Free of charge
- Each project is assigned a liaison:
  - ORNL point of contact with quantum science expertise
- Access available for international (non-US) participants















IQM



<u>ink</u>

Contact - gopalakrishm@ornl.gov







## **Appendix**



## An implementation of QPE to eliminate redundant circuit repetitions





- A parallel framework to avoid the exponential growth of controlled-U circuit (c-U)
- Each  $U_t = e^{iA2^t}$  is computed classically instead of repeating the  $U_0 = e^{iA}$  circuit  $2^t$  times
- Computation of each c-U circuit: embarrassingly parallel - leverages HPC
- Complexity:
  - Standard:  $\mathcal{O}(2^k \mathcal{C}(U))$
  - LuGo: O(kC(U))
- Reduction in circuit depth by minimizing iterations & optimizing design

C. Lu et al., 2025a - in review





#### Results

- We divided total time consumption of HHL to QPE, QPE+iQPE, other components, and circuit saving.
- From the figures, LuGo has better scalability and performance compared to standard QPE generation algorithm.
- LuGo has identical fidelity with standard QPE on ideal Simulator.
- LuGo also obtained circuit compression on circuit count and depth to reduce computing pressure on quantum computers.





## Circuit characteristics of LuGo enabled HHL circuits for superconducting and trapped-ion quantum hardware

#### 2x2 matrix

| 2x2 Matrix               | Gate type              | ibm_marrakesh | IQM Garnet | IQM Sirius | Quantinuum |  |
|--------------------------|------------------------|---------------|------------|------------|------------|--|
|                          | Standard HHL/ LuGo HHL |               |            |            |            |  |
|                          | Rx                     | -             | -          | -          | -          |  |
|                          | Ry                     | -             | -          | -          | -          |  |
|                          | Rz                     | 220/228       | -          | -          | -          |  |
| Single-qubit gates       | PhasedX                | -             | -          | -          | 84/72      |  |
|                          | R                      | -             | 200/211    | 117/153    | -          |  |
|                          | Sx                     | 257/252       | -          | -          | -          |  |
|                          | X                      | 20/19         | -          | -          | -          |  |
| Total single-qubit gates |                        | 497/499       | 200/211    | 117/153    | 84/72      |  |
|                          | Rxx                    | -             | -          | -          | -          |  |
| True cubite cotes        | ZZPhase                | -             | -          | -          | 56/50      |  |
| Two-qubits gates         | MOVE                   | -             | -          | 108/160    | -          |  |
|                          | CZ                     | 117/113       | 155/113    | 110/88     | -          |  |
| Total two-qubits gates   |                        | 117/113       | 155/113    | 218/248    | 56/50      |  |

#### 4x4 matrix

| 4x4 Matrix               | Gate type             | ibm_marrakesh | IQM Garnet | IQM Sirius | Quantinuum |  |  |
|--------------------------|-----------------------|---------------|------------|------------|------------|--|--|
| 4x4 Mauix                | Standard HHL/LuGo HHL |               |            |            |            |  |  |
| Single-qubit gates       | Rx                    | -             | -          | -          | -          |  |  |
|                          | Ry                    | -             | -          | -          | -          |  |  |
|                          | Rz                    | 1117/888      | -          | -          | -          |  |  |
|                          | PhasedX               | -             | -          | -          | 250/319    |  |  |
|                          | R                     | -             | 742/881    | 393/532    | -          |  |  |
|                          | Sx                    | 763/1087      | -          | -          | -          |  |  |
|                          | X                     | 47/70         | -          | -          | -          |  |  |
| Total single-qubit gates |                       | 1927/2045     | 742/881    | 393/532    | 250/319    |  |  |
| Two-qubits gates         | Rxx                   | -             | -          | -          | -          |  |  |
|                          | ZZPhase               | -             | -          | -          | 172/240    |  |  |
|                          | MOVE                  | -             | -          | 320/578    | -          |  |  |
|                          | CZ                    | 553/490       | 544/486    | 352/310    | -          |  |  |
| Total two-qubits gates   |                       | 553/490       | 544/486    | 672/888    | 172/240    |  |  |

