

Orchestrating Hierarchical Algorithms for Complex Scientific Applications on OLCF Systems with the PaRSEC Runtime

Qinglei Cao
Department of Computer Science

2025 OLCF User Meeting

Thank You for OLCF's Supports

- CSC312: "2.3.1.09 STPM11-ParSEC: Distributed Tasking for Exascale"
- CLI180: "High-Resolution E3SM Land Model on GPUs"
- CLI188: "Saving PetaBytes in Earth System Model Outputs using Stochastic Approximations"
- CLI194: "Saving PetaBytes in Earth System Model Outputs using Stochastic Approximations"
- CSC416: "Geostatistical Modeling and Prediction In Three Precisions"
- CSC574: "ICL DisCo"
- CSC612: "Optimizing PaRSEC on Frontier Supercomputer through Matrix Computations in Climate and Weather Prediction"
- CSC665: "Optimizing PaRSEC on Frontier Supercomputer"

Many Thanks to Cara Kennedy, Misty Abston, Lisa Mulig, and many others!!!

Our Journey One: Genome-Wide Association Studies

2024 Gordon Bell Prize Finalist

Paper

Our Journey One: Genome-Wide Association Studies

Leveraging the INT8 / FP8 / FP16 / FP32 / FP64 KRR-based multivariate GWAS for genetic epistasis.

Our Journal Two: Exascale Climate Emulator

- Developed and validated own climate emulator
 - emulates up to 54.5 million spatial locations across the globe with spatial resolution of 0.034° (3.5 km) at an hourly resolution for 35 years (1988-2022)
- Addressed resolution limitations of existing emulators
 - compresses 2D data on sphere with fast SHTs
 - filters high frequency noise
 - democratizes climate realizations (workstations)
 - plays to architectural strengths (dense matrices)
 - lowers storage barrier

2024 Gordon Bell Prize for Climate Modelling

Motivations for Mixed Precision

- Many matrices arising in applications have blocks of relatively small norm and can be replaced with reduced precision.
- Computational: faster time to solution
 - Jower energy consumption and higher performance, especially by exploiting heterogeneity

Peak Performance in TF/s	V100 NVLink	A100 NVLink	H100 SXM
FP64	7.8	9.7	34
FP32	15.7	19.5	67
FP64 Tensor Core	16x	19.5	67
TF32 Tensor Core		156 <mark>1</mark> 6x	494.7 <mark>15</mark> x
FP16 Tensor Core	125	312	989.4

- Mixed precision algorithms have a long history, e.g., iterative refinement (1963, Wilkinson), where multiple copies of the matrix are kept in different precisions for different purposes.
- There are many such new algorithms; see Higham & Mary, Mixed precision algorithms in numerical linear algebra, Acta Numerica (2022); up to 5 precisions!

Programming paradigms

BSP and early message passing

MPI + X

MPI + X + Y

Task-base runtime

• • •

Comparison of execution traces for the same algorithm using the single-program, multiple data message passing interface (SPMD/ MPI) programming model and the dataflow model

- Harder than sequential programming
- Users need to express parallelism with minimum synchronization points
- Managing shared memory, distributed memory and heterogeneous architectures

PaRSEC

A generic runtime system for asynchronous, architecture aware scheduling of fine-grained tasks on distributed many-core heterogeneous architectures.

Dynamic Task Discovery (DTD)

GEQRT

TSQRT

UNMQF

TSMQR

```
for (k = 0; k < SIZE; k++) {
    parsec insert task( "GEQRT",
                DATA OF (A, k, k), INOUT | AFFINITY,
                DATA OF (T, k, k), OUTPUT | TILE RECT)
    for (n = k+1; n < SIZE; n++)
    parsec insert task( "UNMQR",
                DATA OF (A, k, k), INPUT | TILE L,
                DATA OF (T, k, k), INPUT | TILE RECT,
                DATA OF (A, k, n), INOUT | AFFINITY)
    for (m = k+1; m < SIZE; m++) {
    parsec insert task( "TSQRT",
                DATA OF (A, k, k), INOUT | TILE U,
                DATA OF (A, m, k), INOUT | AFFINITY,
                DATA OF (T, m, k), OUTPUT | TILE RECT)
    for (n = k+1; n < SIZE; n++) {
         parsec insert task( "TSMQR",
                     DATA OF(A, k, n), INOUT,
                     DATA OF (A, m, n), INOUT | AFFINITY,
                     DATA OF(A, m, k), INPUT,
                     DATA OF (T, m, k), INPUT | TILE RECT)
```


DSL: Parameterized Task Graph (PTG)

The Portable Software Stack

X86 CPU

IBM CPU

AArch64

AMD CPU

Frontier

Summit

Leonardo

Alps

Weak Scalability on 12,288 GPUs of Summit

- 3 mixed-precision variants
- Up to 2,048 nodes of Summit (12,288 NVIDIA V100 GPUs)
- Excellent weak scaling efficiency

Strong Scalability on 12,288 GPUs of Summit

- 3 mixed-precision variants
- Up to 2,048 nodes of Summit (12,288 NVIDIA V100 GPUs)
- Up to 72% strong scaling efficiency with 12,288 GPUs

Exascale runs

Performance of largest runs on Summit, Leonardo, Alps, and Frontier; with additional run-up points on Alps and Frontier, all using the DP/HP precision variant.

Summary

- Innovations: Introduces mixed-precision computation strategies optimized for different GPU generations, supported by the PaRSEC runtime system, to efficiently balance computation, communication, and memory footprint
- Performance: Supports many GPU-based systems as well as CPU-based systems. It has demonstrated significant computational performance across multiple exascale platforms:
 - 0.976 EFlop/s on 9,025 nodes of Frontier
 - 0.375 EFlop/s on 3,072 nodes of Summit
- Impact: Enables domain scientists to next-generation's applications with significantly reduced computational cost

Thank You!

Exascale Genomics

Exascale Climate Emulator

qinglei.cao@slu.edu

