—1

Hewlett Packard
Enterprise

Debugging on HPE Cray Supercomputers
With AMD GPUs

Mark Stock
And Steve Abbott

February 17, 2023

Outline: Debugging techniques and tools

e Lay the right groundwork before you encounter the bug
« Add asserts and error code checking
e Leverage version control (you're using it, right?)
e Revert commits until the problem goes away — what changed since then?
e Run with smaller inputs or fewer parameters
e Understand the error message
e Set environmental variables to change execution
o One-shot systems for serializing all GPU calls, or dumping real-time status
e (Interactive debugging
 Build a debug version of your code (and/or link with debug versions of libraries)
e Run gdb /rocgdb / kokkosgdb / gdb4hpc / ccdb / DDT / Totalview, etc.
« Examine a core file, attach to a running process, or interactively probe execution

Before the Bug:
Best Practices

HaN

Public domain

https://commons.wikimedia.org/wiki/File:Queensland_entomologist,_Frederick_Parkhurst_Dodd_in_his_garden_with_a_butterfly_net,_1930s.jpg

Set yourself up for success - Asserts

e Compile-time
« Save yourself from problematic variable or type usage

Zero performance hit at runtime

« std::static_assert(sizeof(long) == 8, “Require long int to be 8 bytes”);
e Run-time asserts

In C++

#include <assert>

assert(neverIsZero == 0 && “Somehow it equals zero”);
And define NDEBUG during compilation to turn all of them off

In Fortran
if (neverIsZero .eq. 0) stop “Somehow it equals zero”

If used outside of inner loops, performance hit is minimal
Runtime asserts in GPU code may impact performance

11

Set yourself up for success - Builds

e Build with —g or —ggdb
e Also consider —v
e CCE users can see the underlying command with —craype-verbose
e CMake users
o Set CMAKE_BUILD_TYPE=RelWithDebInfo
o Build with VERBOSE=1 make
» Note that the optimization level has a strong influence on many bugs
o -O0 code is larger & uses more resources — BUT necessary for deep GPU debugging
e -O1 makes good debug builds for CPU codes

e -02 is well-optimized, and the default for CMake, though many temporaries lost
o -G2 for OpenMP+0Offload with ftn

12

Set yourself up for success - Check error codes!!

e If library authors went to the trouble of returning error codes, you should check them!
e Drop-in macro is all you need:

#define HIP_RC(ChipCall) { \
hipError_t e = hipCall; \
if (e != hipSuccess) { \
e = hipGetLastError();
fprintf(stdout, "%s:%d —- %s returned %d:%s\n ",

__FILE__, __LINE__, #hipCall , e, hipGetErrorString(e));
abort(); 11}

~ ~

e Then wrap your synchronous HIP API calls with this:
HIP_RC(hipMalloc(&d_A, N * sizeof(int)));

e Gives nice errors on failure:

simple_hmm.c:21 —— hipMalloc(&d_A, N * sizeof(int)) returned 2:hipErrorOutOfMemory

E—

13

Check asynchronous calls, too

e Asynchronous calls like kernel launches don’t immediately emit error codes
e Use the same macro to check a subsequent (synchronous) call:

// launch kernel
hipLaunchKernelGGL(vector_addition, blk_in_grid, thr_per_blk , 0, 0, d_A, d_B, d_C);

// check for synchronous errors during kernel launch (like invalid execution params)
HIP_RC(C hipGetLastError());

// check for *asynchronous* errors during kKernel execution
HIP_RC(C hipStreamSynchronize(mystream));
HIP_RC(hipDeviceSynchronize());

e Note that these last two will wait on all previous async calls, so may suppress your bug!

14

Reading a Crash:
SIGSEGV Means Something

K Payravi

15

https://commons.wikimedia.org/wiki/File:LED_traffic_light_on_red.jpg

Reading OS signals

o Compiler writers are succinct and often precise

Signal Abbreviation (Number) Signal Name

SIGSEGV (11) Segmentation Fault, AKA Seg Fault

What it means

You attempted to access memory that
technically exists on the machine but is
outside the virtual address space the
kernel gave you

SIGBUS (10,7) Bus error

You attempted fo access memory that
cannot possibly be accessed

SIGABT (6) Abort

Your application, or a library it uses,
realized something was wrong and
crashed intentionally

SIGFPE (8) Floating Point Exception

e See man 7 signal for a quick guide

E—

You did some dangerous floating point
math and asked to be notified about it

16

Common error messages related to AMD GPUs

* When an error is hit on the GPU it raises an exception
* The runtime will map the exception to the analogous signal and drop it

What you’ll see* Signal What it means

Memory access fault by GPU node-5 (Agent handle: 0x528e80) on address SIGSEGV You fried to access memory that the GPU
Ox7f223b7ad000. Reason: Page not present or supervisor privilege. could access but isn’t allowed to
HSA_STATUS_ERROR_MEMORY_FAULT: Agent attempted to access an SIGSEGV You tried to access memory that the GPU
inaccessible address. code: Ox2b can’t access
HSA_STATUS_ERROR_MEMORY_APERTURE_VIOLATION: The agent SIGBUS You fried to access memory that the GPU
attempted to access memory beyond the largest legal address. code: Ox29 cannot possibly access
HSA_STATUS_ERROR_EXCEPTION: An HSAIL operation resulted in a SIGABT The code realized something was wrong and
hardware exception. code: 0x1016 bailed out

* HSA errors will be prefaced by something like:
:0:rocdevice.cpp :2589: 109972314012 us: Device::callbackQueue aborting with error :

: | 17

Segfault/SIGBUS visualized

Toftal
system
memory

Segfault/SIGBUS visualized

A legal memory
access

Memory given to
your application by
the kernel

Total
system
memory

19

Segfault/SIGBUS visualized

A legal memory
access

Memory given to
your application by
the kernel

A legal access isn’t
necessarily a correct
access!

Total
system
memory

Segfault/SIGBUS visualized

A legal memory
access

Memory given to
your application by
the kernel

Total
system
memory

A segmentation fault

21

Segfault/SIGBUS visualized

A legal memory
access

Memory given to
your application by
the kernel

A bus error
Total
system
memory

A segmentation fault

22

Sipping From the Firehose:
Runtime Debug Information

U.S. Bureau of Reclamation

27

https://commons.wikimedia.org/wiki/File:Floodgate_clamshell.JPG

The Cray OpenMP Offload runtime

e The Cray OpenMP (cc, CC, ftn) and OpenACC (ftn) runtimes will print debug information
to stderr on demand; here’s how to control the level of output

« CRAY_ACC_DEBUG=1
« Concise, a good way to tell your offload regions are running
o Probably not useful for more complex debugging
e CRAY_ACC_DEBUG=2
o Designed to be user friendly and where you should start
« Shows what the runtime is doing but not nitty gritty details
« CRAY_ACC_DEBUG=3
« Very verbose, not designed for everyday users but very powerful in expert hands
o If you need to look at memory addresses, this is your level

28

Three views of an explosion

faces-tests> MPICH_GPU_SUPPORT_ENABLED=1 CRAY_ACC_DEBUG=0 srun -u -n 1 -N 1 —¢c 1 —
pty ——exclusive ./faces-mi200 < opt.in &

&testfaces 1x=1,1ly=1,1z=1,mx=15,my=14,mz=13,n=12,niface=1,niel=10,nshare=100 /

3*%1 tasks

15, 14, 13 local elements of size 12

1 face inits x 10 element inits x 100 shares

O© with node rank 0 using device @ (8 devices per node)

Initialized mugs: 15 x 14 x 13 elements of order 11 on 1 x 1 x 1 tasks
Initialized faces: 15 x 14 x 13 elements of order 11 on 1 x 1 x 1 tasks

© FAIL 1., 12, 5%1, 10101.010112, 1.28045515244161363E+34

time 3.6951122709999922 avg 3.6951122709999922 min 3.6951122709999922 max

What went wrong?

29

With CRAY_ACC_DEBUG=1

Initialized faces: 15 x 14 x 13 elements of order 11 on 1 x 1 x 1 tasks

ACC:
ACC:
ACC:
ACC:
ACC:
ACC:
ACC:

ACC:
ACC:
ACC:
ACC:
ACC:

@ F

Transfer 7 items (to acc 2737280 bytes, to host @ bytes) from faces.f90:109
Transfer 1 items (to acc 37739520 bytes, to host @ bytes) from main.f90:53
Execute kernel main_$ck_L53_5 async(auto) from main.f90:53

Wait async(auto) from main.f90:53

Transfer 1 items (to acc @ bytes, to host 37739520 bytes) from main.f90:53
Transfer 8 items (to acc 37739520 bytes, to host @ bytes) from faces.f90:194
Join async(auto) to async(@®) from faces.f90:237

Execute kernel share_faces$faces_$ck_L876_22 async(7) from faces.f90:876
Transfer 8 items (to acc @ bytes, to host @ bytes) async(7) from faces.f90:901
Synchronize

Wait async(auto) from faces.f90:908

Transfer 8 items (to acc @ bytes, to host @ bytes) from faces.f90:908

AIL 1., 12, 5*1, 10101.010112, 1.28045515244161363E+34

time 3.7711131959999875 avg 3.7711131959999875 min 3.7711131959999875 max

[::::::] | 30

With CRAY_ACC_DEBUG=2

ACC: Execute kernel share_faces$Facés_$tk_L876_22 blocks:1 threads:1 async(7) from faces.f90:876
ACC: Start transfer 8 items async(7) from faces.f90:901

ACC: free '$_acc_corner_T1002(:,:)' (128 bytes)

ACC: release present 'u(C:,:,:,:,:,:)" (37739520 bytes)
ACC: free '$_acc_xedge_T1008(:,:,:,:)" (11520 bytes)

ACC: free '"$_acc_xface_T1014(C:,:,:,:,:,:)" (838656 bytes)
ACC: free '"$_acc_yedge_T1006(:,:,:,:)" (10752 bytes)

ACC: free '$_acc_yface_T1012(C:,:,:,:,:,:)" (898560 bytes)
ACC: free '$_acc_zedge_T1004(:,:,:,:)" (9984 bytes)

ACC: free '$_acc_zface_T1010(C:,:,:,:,:,:)" (967680 bytes)
ACC: End transfer (to acc @ bytes, to host @ bytes)

ACC: Synchronize
ACC: Wait async(Cauto) from faces.f90:908
ACC: Start transfer 8 items from faces.f90:908

ACC: release present 'corner_(:,:)' (128 bytes)

ACC: free "uC:,:,:,:,:,:)" (37739520 bytes)

ACC: release present 'xedge_(:,:,:,:)" (11520 bytes)

ACC: release present 'xface_(:,:,:,:,:,:)" (838656 bytes)
ACC: release present 'yedge_(:,:,:,:)"' (10752 bytes)

ACC: release present 'yface_(:,:,:,:,:,:)" (898560 bytes)
ACC: release present 'zedge_(:,:,:,:)" (9984 bytes)

ACC: release present 'zface_(:,:,:,:,:,:)" (967680 bytes)
ACC: End transfer (to acc @ bytes, to host @ bytes)

®@ FAIL 1., 12, 5%*1, 10101.010112, 1.28045515244161363E+34
time 3.9777042649998293 avg 3.9777042649998293 min 3.9777042649998293 max

E—

With CRAY_ACC_DEBUG=3

We should probably copy back that state vector...

e

194
195
196

I$omp target data map(to:u) &
!$omp use_device_ptr(xface_,yface_,zface_,xedge_,yedge_, zedge_,corner_)

ACC: Trans 2

ACC:
ACC:
ACC:
ACC:
ACC:
ACC:
ACC:
ACC:
ACC:

E—

Simple transfer of 'u(:,:,:,:,:,:)" (37739520 bytes)
host ptr 1000060580
acc ptr @
flags: FREE REL_PRESENT REG_PRESENT INIT_ACC_PTR
host region 1000060580 to 1000325e18@ found in present table index 8 (ref count 1)
last release acc 7f3c20000000 from present table index 8 (ref_count 1)
last release of conditional present (acc 7f3c20000000, base 7f3c20000000)
remove acc 7f3c20000000 from present table index 8
new acc ptr @

32

The AMD OpenMP Offload runtime

e Builds and contributes to LLVM OpenMP Target runtime
e Uses the mechanisms at https://openmp.llvm.org/design/Runtimes.html#libomptarget-info
e Compile with =g to get sensible name
e Set LIBOMPTARGET_INFO to control what is printed, but not how much
e This is a bitfield

 See the link above for fine grained details
« Set to -1 to get it all

e There is also LIBOMPTARGET_DEBUG, but that may be too much!
« If you really need a debug compiler, there’s a build in ${ROCM_PATH} /11lvm/1ib-debug

faces-tests> LIBOMPTARGET_INFO=-1 srun -n 1 ./a.out

Libomptarget device @ info: Entering OpenMP kernel at reduction.c:10:3 with 1 arguments:
Libomptarget device @ info: tofrom(a)[8&]

The result i1s correct on target = 499999500000!

Success!

E—

33

https://openmp.llvm.org/design/Runtimes.html#libomptarget-info

With LIBOMPTARGET_DEBUG

faces-tests> LIBOMPTARGET_DEBUG=2 srun -n 1 ./a.out

Libomptarget --> Init target library!

Libomptarget --> Loading RTLs...

Libomptarget --> Loading library '/opt/rocm/1lvm/lib-debug/libomptarget.rtl.x86_64.so0'...
Libomptarget --> Successfully loaded library '/opt/rocm/llvm/lib-debug/libomptarget.rtl.x86_64.s0"!
Libomptarget --> Registering RTL libomptarget.rtl.x86_64.so0 supporting 4 devices!
Libomptarget --> Loading library '/opt/rocm/1lvm/lib-debug/libomptarget.rtl.amdgpu.so’...
Target AMDGPU RTL --> Start initializing HSA-ATMI

Target AMDGPU RTL --> There are 8 devices supporting HSA.

Target AMDGPU RTL --> Device @: Initial groupsPerDevice 128 & threadsPerGroup 256

Target AMDGPU RTL --> Device 1: Initial groupsPerDevice 128 & threadsPerGroup 256

Target AMDGPU RTL --> Entry point @ maps to __omp_offloading_6f2771a4_4b002663_main_110

Libomptarget --> Entry 0: Base=0x00007ffea%9917550, Begin=0x00007ffea9917550, Size=8, Type=0x23, Name=unknown

Libomptarget --> Looking up mapping(HstPtrBegin=0x00007ffea9917550, Size=8)...

Target AMDGPU RTL --> Tgt alloc data 8 bytes, (tgt:00007fa8abad0000).

Libomptarget --> Creating new map entry: HstBase=0x00007ffea9917550, HstBegin=0x00007ffea9917550, HstEnd=0x00007ffea9917558, TgtBeg
1n=0x00007fa8abadd000

Libomptarget --> There are 8 bytes allocated at target address 0x00007fa8aba@@00d - is new

Libomptarget --> Moving 8 bytes (hst:0x00007ffea9917550) -> (tgt:0x00007fa8abadd000)

Target AMDGPU RTL --> Submit data 8 bytes, (hst:00007ffea9917550) -> (tgt:00007fa8abadd00@) .

Libomptarget --> Looking up mapping(HstPtrBegin=0x00007ffea9917550, Size=8)...

Libomptarget --> Mapping exists with HstPtrBegin=0x00007ffea9917550, TgtPtrBegin=0x00007fa8aba®@00@, Size=8, RefCount=1
Libomptarget --> Obtained target argument 0x00007fa8aba@@00@ from host pointer 0x00007ffea9917550

Libomptarget --> Launching target execution __omp_offloading_6f2771a4_4b002663_main_110 with pointer 0x000000000077f7dd (index=0).

E—

34

AMD HIP and HSA runtimes

e |f the OpenMP runtimes are firehoses, the HIP runtime is an Ocean

e AMD_LOG_LEVEL environment variable Chigher is inclusive of lower)
e O-off
1 - print errors
2 — print warnings
3 — print info
4 - print detailed debugging information
o 7 —only a lumberjack wants these logs
 You can fine tune what gets logged with AMD_LOG_MASK
e Details at https://docs.amd.com/bundle/AMD_HIP_Programming_Guide/page/Programming_with_HIP.html

35

https://docs.amd.com/bundle/AMD_HIP_Programming_Guide/page/Programming_with_HIP.html

An example where AMD_LOG_LEVEL helps a lot

faces-tests> sh run-mi25@0x.sh 1 1 1 1
"hipErrorNoBinaryForGpu: Unable to find code object for all current devices!”
x1000c2s2b@n@: task @: Aborted

srun: error:
faces-tests> I

faces-tests> ROCR_VISIBLE_DEVICES=1 AMD_LOG_LEVEL=1
:15?3
1460
1461 :
1464
1468 :
1485
1483

:1:
:hip_code_object.
:hip_code_object.
:hip_code_object.
:hip_code_object.
:hip_code_object.
hip_code_object.
"hipErrorNoBinaryForGpu: Unable to find code object

e S SR S =

:1:

rocdevice.cpp

cpp
cpp
cpp
cpp
cpp
cpp

274572673160
274572673911
274572673917
274572673919
274572673920
274572673922
274572673923

srun: error: Ell@@c252b@n@ task @: Aborted

us:
us:
us:
us:
us:
us:
us:

sh run-mi250x.sh 1 1 1 1
HSA_AMD_AGENT_INFO_SVM_DIRECT_HOST_ACCESS query failed.
hipErrorNoBinaryForGpu: Unable to find code object for all current devices!
Devices:
amdgcn-amd-amdhsa--gfx9@a: sramecc+:xnack- - [Not Found]
Bundled Code Objects:
host-x86_64-unknown-1inux - [Unsupported]
hipv4-amdgcn-amd-amdhsa--gfx9@8 - [code object v4 1s amdgcn-amd-amdhsa--gfx908]
for all current devices!"

36

Turn up the firehose with caution!

faces-tests> ROCR_VISIBLE_DEVICES=1 AMD_LOG_LEVEL=4 sh run-mi2S0x.sh 1 1 1 1

:3:rocdevice.cpp 1432
:3:comgrctx. cpp 133
:3:rocdevice.cpp 1204
1d4@) for gpu agent=0x7fae76f70259
:1:rocdevice.cpp :1573:
:3:rocdevice.cpp :1577:
:4:rocdevice.cpp :1873:
:4:rocdevice.cpp :1873:
:4:rocdevice.cpp :1873:
:4:runtime.cpp 182
:3:hip_context.cpp 149
:1:hip_code_object.cpp 1460 :
:1:hip_code_object.cpp 1461 :
:1:hip_code_object.cpp 1464
:1:hip_code_object.cpp 1468 :
:1:h1p_code_object.cpp 1485 :
:1:h1p_code_object.cpp 1483 :
008]

"hipErrorNoBinaryForGpu:

274800763181

1 274800763231

274800763279

274800766022
274800766030

274800766067
274800766237
274800766382

: 274800766403
: 274800766407

274800766846
274800766850
274800766851
274800766852
274800766854
274800766855

srun: error: x1000c2sZ2b@n@: task @: Aborted

faces-tests> |

E—

us:
us:
us:

us:
us:

us:
us:
us:
us:
us:
us:
us:
us:
us:
us:
us:

Initializing HSA stack.
Loading COMGR library.
Numa selects cpu agent[3]=0x9605e0(fine=0x9607c0,coarse=0x960f40, kern_arg=0x96

HSA_AMD_AGENT_INFO_SVM_DIRECT_HOST_ACCESS query failed.
HMM support: 1, xnack: @, direct host access: 0

Allocate hsa host memory @x7fae77bca@@@d, size Ox28
Allocate hsa host memory @x7fae53000000, size 0x101000
Allocate hsa host memory @x7fae52e00000, size 0x101000
init
Direct Dispatch: 1
hipErrorNoBinaryForGpu: Unable to find code object for all current devices!
Devices:
amdgcn-amd-amdhsa--gfx90a: sramecc+:xnack- - [Not Found]
Bundled Code Objects:
host-x86_64-unknown-1inux - [Unsupported]
hipv4-amdgcn-amd-amdhsa--gfx908 - [code object v4 1s amdgcn-amd-amdhsa--gfx

Unable to find code object for all current devices!"

Other useful environment variables
Good for race conditions, and when you need to slow things down

e AMD_SERIALIZE_KERNEL
« 1 = Synchronize before launches (i.e. make sure everything is done on the GPU)
« 2 = Synchronize after launches (i.e. wait for kernel to finish before moving on)
e 3=Dobothland?2
e AMD_SERIALIZE_COPY
« 1 = Synchronize before copies (i.e. make sure everything is done on the GPU)

« 2 = Synchronize after copies (i.e. wait for copy to finish before moving on)

e 3=Doboth1and?2
e For a writeup and other tips see debugging sections of:

e https://docs.amd.com/bundle/AMD_HIP_Programming_Guide/page/Programming_with_HIP.html
e For raw flags, which may or may not do what you want:

o https://github.com/ROCm-Developer-Tools/ROCclr/blob/develop/utils/flags.hpp

E—

38

Diagnosing a synchronization error

faces-tests> sh run-mi250x.sh 4 4 4 4

@ with node rank @ using device @ (8 devices per node) (asked for @)
1 with node rank 1 using device 1 (8 devices per node) (asked for 1)
2 with node rank 2 using device 2 (8 devices per node) (asked for 2)

4.35055e+48 9.64172e+64 9.64172e+064 1

48 FAIL 1 (11,4,0 Q)
@) 5.55175e+48 9.64172e+64 9.64172e+64 1
2
31

0
y
32 FAIL 1 (11,4,0,0
30 FAIL 1 (11,4,0,0

’

’

, 4.35134e+48 9.64172e+64 9.64172e+64 1
time 4.07344 avg 4.0

9,
9,
9,
4031 min 4.12512 max

We’re running to completion but getting wrong results.
Can we figure out why by using environment variables?

39

Check for GPU and CPU synchronization issues

faces-tests> AMD_SERIALIZE_KERNEL=3 AMD_SERIALIZE_COPY=3 sh run-mi250x.sh 4 4 4 4
@ with node rank @ using device @ (8 devices per node) (asked for @)

16 with node rank @ using device @ (8 devices per node) (asked for 9)

32 with node rank @ using device @ (8 devices per node) (asked for @)

7 PASS

13 PASS

15 PASS

time 5.80683 avg 5.78838 min 5.83031 max

This is correct, so we probably have some race involving the GPU.
| know faces doesn’t do many Host<->Device copies, so can | rule that out?

E— | 40

Check only kernel synchronization

faces-tests> AMD_SERIALIZE_KERNEL=3 sh run-mi250x.sh 4 4 4 4

@ with node rank @ using device @ (8 devices per node) (asked for 0)
1 with node rank 1 using device 1 (8 devices per node) (asked for 1)
2 with node rank 2 using device 2 (8 devices per node) (asked for 2)

21 PASS
20 PASS
28 PASS
time 5.84433 avg 5.82545 min 5.8607 max

We are probably missing a synch between two kernels or
between the host and a kernel.

Can we learn more?

41

Synchronize before kernel launches

faces-tests> AMD_SERIALIZE_KERNEL=1 sh run-mi250x.sh 4 4 4 4

@ with node rank @ using device @ (8 devices per node) (asked for 0)
1 with node rank 1 using device 1 (8 devices per node) (asked for 1)
2 with node rank 2 using device 2 (8 devices per node) (asked for 2)

3.64285e+47 9.74609%e+64 9.74609%e+04 1

44 FAIL 1 (0,0 2)
Q) 1.70276e+167 9.74609%9e+64 1.70276e+167 1
)
70

60 FAIL 1 (0,0
47 FAIL 1 (1,1

» !@

] !@

» !@
time 4.02045 av

4.18e+87 7.00591e+34 4.18e+87 1

8 min 4.08269 max

2,0,0,
2,0,0,
2,0,0,
g 3.98

This still fails.
We are probably not having two kernels racing.

42

Synchronize after kernel launches

faces-tests> AMD_SERIALIZE_KERNEL=2 sh run-mi250x.sh 4 4 4 4

@ with node rank @ using device @ (8 devices per node) (asked for 0)
1 with node rank 1 using device 1 (8 devices per node) (asked for 1)
2 with node rank 2 using device 2 (8 devices per node) (asked for 2)

16 PASS
25 PASS
17 PASS

time 5.8051 avg 5.79262 min 5.82121 max

283
284
285
286
287
288

-

E—

// send in use order
Why did we comment that out again?

//CHECK (hipStreamSynchronize(stream_[©8]));

MPI_Isend(zfs.data(®,®,0,@,0),nface_[2],MPI_DOUBLE,iface_[4],tag,MPI_COMM_WORLD, reqs_+0);
MPI_Isend(zfs.data(®,0,0,@,1),nface_[2],MPI_DOUBLE,iface_[5],tag,MPI_COMM_WORLD, reqs_+1);

Searching the Warehouse:
Sifting Through Core Dumps

Axisadman, CC-BY-SA-3.0

| 4z

https://commons.wikimedia.org/wiki/File:Modern_warehouse_with_pallet_rack_storage_system.jpg

Core files for post-mortem analysis

e Most crashing signals will drop a (large) core file containing the process memory

e Seeman 7 signal for tables |
SIGSEGV 11 Core Invalid memory reference

e Your user limits need to allow core files

faces-tests> ulimit -c
unlimited

e Start a debug session with

gdb —core core

45

Limitations of core dumps

e Are the size of the process’s occupied CPU memory
e Depending on system will either:

« Only dump one core file -> maybe not enough information
« Dump one core file for every failing process -> takes up a lot of space and is slow

e Don’t contain AMD GPU memory state
e Are only postmortem

46

Loading a core from a CPU crash

faces-tests>gdb faces core

Copyright (C) 2021 Free Software Foundation, Inc.

(gdb) bt

#0 (this=<optimized out>, u=...) at Mugs.cpp:382

#1 0x000000000025586b 1in (argc=<optimized out>, argv=<optimized out>) at main.cpp:152
(gdb) 1

377 for (int jz = @; jz < mz_; jz++) {

378 for (int 1z = 0; 1z < n_; 1z++) {

379 u(e,0,iz,0,0,jz) += rzedge_(iz,jz,0);

380 u(nml,@,iz,mxml,@,jz) += rzedge_(iz,jz,1);

381 u(@,nml,iz,@,myml, jz) += rzedge_(1iz,jz,2);

382 u(nml,nml,iz,mxml,myml, jz+1@) += rzedge_(iz,jz,3);
383 }

384 }

385 }

386

(gdb) p u

$1 = (Array<double, 6> &) @Ox7fffb45cd688: {sizes_ = {12, 12, 12, 15, 14, 13}, strides_ = {12,
144, 1728, 25920, 362880, 4717440}, values_ = 0x34a6770}

(gdb) p jz
$2 = 4

E—

47

Loading a core from a GPU crash

faces-tests>sh run-mi250x.sh 2 1 1 1

@ with node rank @ using device @ (8 devices per node) (asked for @)

2 1 1 tasks

15 14 13 local elements of size 12

1@ face inits x 1@ element inits x 100 shares

1 with node rank 1 using device 1 (8 devices per node) (asked for 1)
Initialized Mugs: 15 x 14 x 13 elements of order 11 on 2 x 1 x 1 tasks
Initialized Faces: 15 x 14 x 13 elements of order 11 on 2 x 1 x 1 tasks

:@:rocdevice.cpp :2003: 185159763839 us: 35283: [tid:0x7f7b27df1700] Device::callbackQueue aborting with error
: HSA_STATUS_ERROR_MEMORY_FAULT: Agent attempted to access an inaccessible address. code: @xZb
:0:rocdevice.cpp :2003: 185159763855 us: 35284: [tid:0x7f13c61c7700] Device::callbackQueue aborting with error

: HSA_STATUS_ERROR_MEMORY_FAULT: Agent attempted to access an inaccessible address. code: @xZb
srun: error: x1000c2sZ2b@n@: task @: Aborted
srun: error: x1000c2s2b@n@: task 1: Aborted (core dumped)

Loading a core from a GPU crash

faces-tests>rocgdb faces core

(gdb) bt
#0 0x00007f13d428f18b in (O from /1ib64/11ibc.so0.6
#1 0x00007f13d4290585 1in (O from /1ib64/11ibc.so0.6
#2 0x000071f13d981c889 1in (O from /global/opt/rocm-5.0.2/1ib/1ibamdhip64.s0.5
#3 0x00007f13cc69420c in O
from /global/opt/rocm-5.0.2/1ib/1libhsa-runtime64.s0.1
#4 0x00007f13ccodl46b in O
from /global/opt/rocm-5.0.2/1ib/1libhsa-runtime64.s0.1
#5 0x00007f13cc6765c7 1in (O from /global/opt/rocm-5.0.2/1ib/1ibhsa-runtime64.so0.1
#6 0x00007f13cc@20ala in (O from /1ib64/1libpthread.so.@
#7 0x00007f13d4355d0f in () from /1lib64/1ibc.so0.6
(gdb) info thread
Id Target Id Frame
B 1 Thread 0x7f13c6lc7700 (LWP 35289) 0x00007f13d428f18b 1in (O from /1ib64/1ibc.so.6

2 Thread @x7f13da63be@@ (LWP 35284) warning: Section " .reg-xstate/35284' in core file too small.

Ox00007f13ccbbedfc in
(O from /global/opt/rocm-5.0.2/1ib/1ibhsa-runtime64.so0.1
3 Thread Ox7f13abfff700 (LWP 35292) warning: Section " .reg-xstate/35292' in core file too small.
@x@@@@ZF13d4340099 in (O from /1lib64/1ibc.so.6

AMD GPU memory state is not currently part of the core dump!

E—

49

Interactive Debugging:
Tools and Practice

Henk Monster, CCA3.0

59

https://commons.wikimedia.org/wiki/File:Cigales_have_extreme_camouflage_and_are_thus_rather_difficult_to_find_-_panoramio.jpg

gdb

e The “Gnu Debugger” helps locate the source of problems during CPU execution
e Run it on a binary until the crash (gdb mybinary)
« Set breakpoints and step through critical code
« Attach to an already-running process (gdb —-pid PID)
e Investigate a core dump (gdb —core core, typically)
» Typical debugging session:

1. srun .. —pty will get you onto the compute node

2. gdb ./mybinary runs gdb, inherits environment

3. break filename.cpp:1l24 (optional) sets a break point

4. run [your command-line options] begins execution of your program

5. CRASH, or breakpoint reached, gdb will go to the appropriate thread

6. info threads see the top of each thread’s call stack, * marks the current thread
7. td jump to thread 4

8. bt “backtrace”. examine the stack, with summary
9. £ 5 jump fo frame 5 in the call stack

10. info locals look at local variables and their values

11. print x[7] print the value of an array element

E—

60

rocgdb

e Rocgdb is just gdb extended to debug HIP programs on AMD GPUs

e Notable enhancements or changes to standard gdb:
« Each wavefront is represented as a single thread
o A thread will have 64 lanes (like a CPU thread with 4 doubles in a SIMD register)
« Non-stop mode works across both CPU and GPU
e |t has some shortcomings:
» To get locals you need to compile with no optimization —00
e It's not multiprocess (or not more than gdb is)
« The debugger version requires the driver version match for GPU debugging (so use rocm 5.3.0, not 5.4.0)
e The native thread representation can get a bit overwhelming
e Documentation is sections 20 and 22.4.10 in rocgdb manual
e On your system: ${ROCM_PATH} /share/doc/rocgdb/
e Online: https://docs.amd.com/bundle/ROCDebugger-User-Guide-v5.4/page/AMD-GPU.html|

E—

61

https://docs.amd.com/bundle/ROCDebugger-User-Guide-v5.4/page/AMD-GPU.html

rocgdb - Details

e The HIP runtime currently performs deferred code object loading by default. AMD GPU code objects are
not loaded until the first kernel is launched.

o Set breakpoints normally, just confirm [y]
« Avoid a breakpoint that many threads or lanes will see
e Some convenience vars are available
- print $_wave_id shows workgroup x,y,z and work group thread index
- print $_lane_workgroup_pos shows work item x,y,z

e Examine GPU registers

- info registers [scalar | vector | system]
e print/f $v20

e Step and next will jump to another thread/lane that hit the breakpoint
e Avoid this with set scheduler-locking step
e Most gdb commands should work normally

E— | 6

rocgdb - Set breakpoint and run

For help, type "help".

Type "apropos word" to search for commands related to "word"...
Reading symbols from ngHip05.bin...

(gdb) break ngHip05.cpp:96

No compiled code for line 96 in file "ngHip05.cpp".

Make breakpoint pending on future shared library load? (y or [n]) vy
Breakpoint 1 (ngHip05.cpp:96) pending.

(gdb) run -n=10000 -g=1

Starting program: /autofs/nccs-svml_homel/mstock/code/nvortexHip/RelDbg_amd540/ngHip@®5.bin —n=1000€
-g=1

[Thread debugging using libthread_db enabled]

Using host libthread_db library "/libé6u/libthread_db.so.1".

performing 3D gravitational summation on 10000 points

[New Thread 0Ox7fffelb92700 (LWP 106873)]

[New Thread Ox7ff7ce7ff700 (LWP 106874)]

[Thread Ox7ff7ce7ff700 (LWP 106874) exited]

[Switching to thread 4, lane @ (AMDGPU Lane 6:1:1:1/0 (0,0,0)[0,0,0]1)]

Thread 4 "ngHip05.bin" hit Breakpoint 1, with lanes [0-63], () at /ccs/home/ms
tock/code/nvortexHip/src/ngHip05.cpp:98

98 FLOAT dx = s_sx[j] - tx[i];

(gdb) |

E—

63

rocgdb - Looking around

(gdb) info queues

Id Target Id Type Read Write Size Address
* 1 AMDGPU Queue 6:1 (QID 1) HSA (Multi) 4 6 262144 Ox0EOQT7fffcfoLUOOO0
2 AMDGPU Queue 6:2 (QID ©) HSA (Multi) 4 4 1496 Ox00007fffed818000
3 AMDGPU Queue 6:3 (QID 2) DMA 1048576 0Ox00007ff7b5a00000
(gdb) info dispatches
Id Target Id Grid Workgroup Fence Kernel Function

* 1 AMDGPU Dispatch 6:1:1 (PKID 4) [1e02u0,64,1] [256,1,1] B|As|Rs

(gdb) info agents

Id State Target Id Architecture Device Name Cores Threads Location
1 A AMDGPU Agent (GPUID 5829u) gfx90a aldebaran uye 3520 ce:00.0
2 A AMDGPU Agent (GPUID 60925) gfx90a aldebaran uye 3520 c6:00.0
3 A AMDGPU Agent (GPUID 34574) gfx90a aldebaran e 3520 de:00.0
4 A AMDGPU Agent (GPUID 39007) gfx90a aldebaran uye 3520 dl:00.0
5 A AMDGPU Agent (GPUID 35483) gfx90a aldebaran 44e 3520 c9:00.0
* 6 A AMDGPU Agent (GPUID 62663) gfx90a aldebaran uuye 3520 cl:00.0
7 A AMDGPU Agent (GPUID ud4u563) gfx90a aldebaran u4e 3520 d9:00.0
8 A‘ AMDGPU Agent (GPUID 61770) gfx90a aldebaran uue 3520 d6:00.0
(gdb)

rocgdb - Viewing threads

(gdb) info threads

&

I
1

2

5

6

d Target Id Frame
Thread Ox7fffed8e3du® (LWP 6110) "ngHip05.bin" 0Ox00007fffe2b58eud5 in @)
from /opt/rocm-5.3.0/hsa/lib/libhsa-runtimeéd.so.1
Thread Ox7fffelb92700 (LWP 6117) "ngHip05.bin" Ox00007fffeaf2dcld7 in @
from /lib6ud/libc.so0.6
Thread 0x7ffecf5cf700 (LWP 6120) "ngHip®5.bin" 0x00007fffeaf2dcd7 in ()
from /lib6ud/libc.so.6
AMDGPU Wave 6:1:1:1 (0,0,0)/0 "ngHip05.bin" C
nSrc=16384, sx=0x7ffecd0BOO00, sy=0x7ffecd0lOO00, sz=0xT7ffecd020000,
ss=0x7ffecd030000, sr=0x7ffecdBUOOBO, tOffset=0, tx=0x7ffecdOBOOOO,
ty=0x7ffecd010000, tz=0x7ffecd020000, tr=0x7ffecdOUd@EOOO, tu=Ex7ffecd®50000,
tv=0xT7ffecd05a000, tw=0x7ffecd®6L000)
at /ccs/home/mstock/code/nvortexHip/src/ngHip05.cpp:103
AMDGPU Wave 6:1:1:2 (0,0,0)/1 "ngHip05.bin" C
nSrc=16384, sx=0x7ffecd0BOO00, sy=0x7ffecd0lOO00, sz=0xT7ffecd020000,
ss=0x7ffecdd30000, sr=0x7ffecdBUBOOO, tOffset=0, tx=0x7ffecddOOBOO,
Ly=0x7ffecd01l0000, tz=0x7ffecd®20000, tr=0x7ffecdOUd@EOO, tu=Ex7ffecd@50000,
tv=0xT7ffecd05a000, tw=0x7ffecdd6L000)
at /ccs/home/mstock/code/nvortexHip/src/ngHip05.cpp:103
AMDGPU Wave 6:1:1:3 (0,0,0)/2 "ngHip05.bin" C

nSrc=16384, sx=0x7ffecd0BOO00, sy=0x7ffecdBlO000, sz=0xT7ffecd020000,
ss=0x7ffecdd30000, sr=0x7ffecddUBOOO, tOffset=0, tx=0x7ffecddOOBOO,

E—

65

rocgdb - Viewing lanes

(gdb) info lanes

&

Id
0]

State Target Id Frame

A AMDGPU Lane 6:1:1:1/0 (0,0,0)[0,0,0] (nSrc=16384,
sx=0xT7ffecdOOOOOO, sy=0x7ffecd0lOOO0, sz=0xT7ffecd@20000, ss=0x7ffecdd30000),
sr=0x7ffecdOUOBOO, tOffset=0, tx=0x7ffecd@BOORO, ty=0x7ffecd0l0000,
tz=0xT7ffecdB20000, tr=0x7ffecdOUBOOO, tu=0x7ffecdO@50000, tv=0x7ffecd®5aB00,
tw=0x7ffecdO6UBBOO) at /ccs/home/mstock/code/nvortexHip/src/ngHip05.cpp:103

A AMDGPU Lane 6:1:1:1/1 (0,0,0)[1,0,0] (nSrc=16384,
sx=0x7ffecdBOOBOO, sy=0xT7ffecddlOOO0, sz=0x7ffecd@20000, ss=0x7ffecdO30000,
sr=0x7ffecdOUOBOO, tOffset=0, tx=0x7ffecdB@BOOOO, ty=0x7ffecd0l0000,
tz=0xTffecdB20000, tr=0x7ffecdOUBOO0, tu=0x7ffecd050000, tv=0x7ffecd®5ab00,
tw=0xT7ffecd0@b6UBEO) at /ccs/home/mstock/code/nvortexHip/src/ngHipB5.cpp:103

A AMDGPU Lane 6:1:1:1/2 (0,0,0)[2,0,0] (nSrc=16384,
sx=0x7ffecd0OOBOO, sy=0xT7ffecd01l0000, sz=0x7ffecd@20000, ss=0xT7ffecdO30000,
sr=0x7ffecdOUOBOO, tOffset=0, tx=0x7ffecd@OOOBO, ty=0x7ffecd010000,
tz=0x7ffecdd20000, tr=0x7ffecdOUOO00, tu=0x7ffecdd050000, tv=0xT7ffecd®5a000,
tw=0xT7ffecd@bUBBO) at /ccs/home/mstock/code/nvortexHip/src/ngHipB5.cpp:103

A AMDGPU Lane 6:1:1:1/3 (0,0,0)[3,0,0] (nSrc=16384,
sx=0xT7ffecdOOOOOO, sy=0x7ffecd0lOOO0, sz=0xT7ffecd@20000, ss=0x7ffecdd30000),
sr=0x7ffecdOUBBOO, tOffset=0, tx=0x7ffecdB@BOOBO, ty=0x7ffecd0lOOO0,
tz=0xT7ffecdB20000, tr=0x7ffecdOUBOOO, tu=0x7ffecdO@50000, tv=0x7ffecd®5aB00,
tw=0x7ffecdO6UBBOO) at /ccs/home/mstock/code/nvortexHip/src/ngHip05.cpp:103

A AMDGPU Lane 6:1:1:1/4 (0,0,0)[4,0,0] (nSrc=16384,
sx=0x7ffecdBOOBOO, sy=0xT7ffecddlOOO0, sz=0x7ffecd@20000, ss=0x7ffecdO30000,

E—

66

rocgdb - Lane-local variables

(gdb) info locals
distsqg = 0.138792753

dz = 0
dx = @
factor
dy = 0
1 =0
gidx =
b =
1 =
locu =
Locv =
locw =

0
e

0
]
0]

=7.20498705

tr2 = 0.138792753
Jjcount = 256

jstart

0

(gdb) print ss[gidx
$1 = 0.0042145527
(gdb) print sr[gidjp]
$2 = -0.3725uU8997

(gdb) |

E—

Why is my particle radius negative?

hipMemcpyAsync (dsz[i], hsz.data(), srcsize, hipMemcpyHostToDevice, stream[i]);
hipMemcpyAsync (dss[i], hss.data(), srcsize, hipMemcpyHostToDevice, stream[i]);

//hipMemcpyAsync (dsr[i], hsr.data(), srcsize, hipMemcpyHostToDevice, stream[i]);

Maybe because | didn’t copy that array to the device!

67

rocgdb - Shared memory (LDS)

This is the LDS declaration in our kernel code:

#define THREADS_PER_BLOCK 256 (gdb) x/f local#® Print float starting at byte O
__shared__ float s_sx[THREADS_PER_BLOCK]; local#0x0: 0.191519454
__shared__ float s_sy[THREADS_PER_BLOCK]; (gdb) x/f localtl Print float starting at byte 1 - bad!
__shared__ float s_sz[THREADS_PER_BLOCK]; local#@xl: -12177.0283
(gdb) x/f local#u Print float starting at byte 4
LDS starts at Local byte O local#0x4: ©0.497663677

(gdb) x/f local#s
local#0x8: 0.622108757
(gdb) x/f local#512

Each array here is 1024 bytes, so
s_sXx starts at Ox0

S_sy sfarts at 1024, or Ox400 local#0x200: 0.382317u5U
(gdb) x/f local#0x200 Same address as above, but in hex
You can’t print values from LDS in gdb yet local#0x200: ©.382317454
Use x to view an address as an integer
Use x/f 1o view as a 4-byte float (gdb) x/8f local#0x0 Print 8 floats starting at byte O
Use x/gf 1o view as a double-precision float local#6x0: ©.191519454 0.497663677 0.622108757 0.817838uU3
local#0x10: ©.437727749 0.612111866 0.785358608 0.771359921

: | 68

gdb4hpc

e A parallel harness and aggregator around gdb / rocgdb / cuda-gdb

e Load the module to have it in your path and the man pages available
« module load gdbihpc
« man gdbdhpc

e gdb4hpc will allocate and srun for you, but you need to unload xalt first
« module unload xalt

 Find help inside gdb4hpc by utilizing the help command

* help list all the commands
« help [command] print detailed help about a particular command
e« help info threads display information on the info threads command.

e You can still debug your application at non-zero optimization levels although you might not be
getting all the information that you desire when debugging

e gdb4hpc supports launching and attaching, and side-by-side debugging

E— | 70

gdb4hpc - Anatomy of a launch

launch $a{16} Cr————————— |_gUnNCh process set “a” with 8 ranks
-—gpu —————————————————\\|© Want 10 use a GPU debugger

——env="MPICH_GPU_SUPPORT_ENABLED=1" < 9dDb4hpcwilluse your environment,
- B but set any additional values here

—g "-N2 -nl6 —--gpu-bind=closest" ———— Pass job launcher arguments

—a "512 512 512" rrmm— (O Ul APP’S arguments
-i opt.in Cr——— A iNPUT file to hand to stdin

./faces r——————————————— | D@ DiNAry to debug

: | 72

gdb4hpc - Launching your app

faces-tests> gdb4hpc

gdbdhpc 4.14.1 - Cray Line Mode Parallel Debugger

With Cray Comparative Debugging Technology.

Copyright 2007-2021 Hewlett Packard Enterprise Development LP.
Copyright 1996-2016 University of Queensland. All Rights Reserved.

Type "help" for a list of commands.

Type "help <cmd>" for detailed help about a command.

dbg all> launch $a{16} --gpu -g "-N2 -nl6é --gpus—-per-task=1 --gpu-bind=closest" -i opt.in ./faces
Starting application, please wait...

Creating MRNet communication network...

sbcast: error: No compression library available, compression disabled.

sbcast: error: No compression library available, compression disabled.

Waiting for debug servers to attach to MRNet communications network...

Timeout 1n 400 seconds. Please wait for the attach to complete.

Number of dbgsrvs connected: [1]; Timeout Counter: [0]

Number of dbgsrvs connected: [1]; Timeout Counter: [1]

Number of dbgsrvs connected: [16]; Timeout Counter: [@]

Finalizing setup...

Launch complete.

q{@..lS}:IInitial breakpoint, main at /lus/cflus@2/sabbott/faces/hip/gpu_subtle/main.cpp:103
dbg all>

E—

73

gdb4hpc - Thread aggregation

a{@..15}: Initial breakpoint, main at /lus/cflus@2/sabbott/faces/hip/gpu_subtle/main.cpp:103
dbg all> c

<$a>: @ with node rank @ using device @ (8 devices per node) (asked for @)

<$a>: 8 with node rank @ using device @ (8 devices per node) (asked for @)

dbg all> info thread

a{8}: Debugger error: Gdb get thread info failed.
a{0..5,7,9..10,13}: *** The application 1s running
a{11..12,14..15}: Id Frame

a{11l..12,14..15}: * 1-3 "faces" (running)
a{ll..12,14..15}: 4-2313 AMDGPU "faces" void gpuRun2x3<Faces: :share(DArray<double, 6>&)::{lambda(int, int,
int, int, int)#1}>(Faces::sha DArray<double, 6>&)::{lambda(int, int, int, int, int)#1}, int, int, int, in
t, int) [clone .kd] (O from file:///lusie£flus@2/sabbott/faces/hip/gpu_subtle/faces#offset=77824&s1ze=267392
a{ll..12,14..15}:

el * 13 “race
a{6}: * 1-3 "faces" (running) gdb4hpc tries its best to aggregate information

a{6}: 4-443 AMDGPU "faces" 7?7 ()

a{6}:
dbg all> l (but sometimes aggregation does break down)

We're in non-stop mode by default, so some threads

halting doesn’t necessarily stop everything

[:::::::] | 74

gdb4hpc - Focus on what matters

e The focus command lets you isolate specific processes/ranks

dbg all> focus $a{2..3}

0(2..3}: Id Frame Focus to ranges or comma separated lists of processes

a{2..3}: 1-2 "faces" (running)

af{2..3}: * 4 3 5-197 AMDGPU "faces" Faces::share(DArray<double, 6>&)::{lambda(int, int, int, int)#2}::operator(Q(int, int, int, int) co
nst (this=<optimized out>, ia=<optimized out>, ib=<optimized out>, ja=<optimized out>, jb=<optimized out>) at Faces.cpp:336

a{2..3}:

dbg a_temp> thread 4

dbg a_temp> bt

a{2}: #1 gpuRun3xl<Faces::share at /lus/cflus@2/sabbott/faces/hip/base/gpu.hpp:131

a{2}: #0 Faces::share at /lus/cflus@2/sabbott/faces/hip/base/Faces.cpp:336

a{3}: #1 gpuRun3xl<Faces::share at /lus/cflus@2/sabbott/faces/hip/base/gpu.hpp:131
a{3}: #0 Faces::share at /lus/cflus@2/sabbott/faces/hip/base/Faces.cpp:336

dbg a_temp> focus $all

dbg all> info thread
a{0..7}: Id Frame And unfocus when you're done
a{@..7}: 1-2 "faces" (running)

a{@..7}: * 4 3 5-197 AMDGPU "faces" Faces::share(DArray<double, 6>&)::{lambda(int, int, int, int)#2}::operator(Q(int, int, int, int) co
nst (this=<optimized out>, ia=<optimized out>, ib=<optimized out>, ja=<optimized out>, jb=<optimized out>) at Faces.cpp:336
a{0..7}:

: | 75

gdb4hpc - Halt it all

dbg

a{0.
a{0.
a{0.

nst

a{0.

dbg
dbg

a{0.

dbg

a{2.
a{0.

dbg
a{@
a{@

We’re in non-stop mode by default, so some threads

all> info thread halting doesn’t necessarily stop everything
.7} Id Frame

7} 1-2 "faces" (running)
.7}: * 4 3 5-197 AMDGPU "faces" Faces::share(DArray<double, 6>&)::{lambda(int, int, int, int)#2}::operator(Q(int, int, int, int) co
(this=<optimized out>, ia=<optimized out>, ib=<optimized out>, jo=<optimized out>, jb=<optimized out>) at Faces.cpp:336

.7}

all> thread 1

all> info locals e g .
.7}: Debugger error: Selected thread is running. You can halt individual threads or processes, or

all> halt -a just stop it all with -a

.4,6..7}: Halt could not report a location
.1,5}: Application halted in rocr::core::InterruptSignal::WaitRelaxed

all> bt
..7}: #13 main at /lus/cflus@2/sabbott/faces/hip/base/main.cpp:165
..7}: #12 Faces::share at /lus/cflus@2/sabbott/faces/hip/base/Faces.cpp:454

gdb4hpc - Dig deeper with gdbmode

gdb4hpc doesn’t have commands for everything

dbg all> info args gdb can do
Undefined info command: "args". Try "help info".

dbg all> gdbmode

Entering gdb pass-thru mode."Typa.lend” to exit mode...

GNU gdb (rocm-rel-4.5-164) 11.1 We can drop to “gdbmode” to get raw access to
Copyright (C) 2021 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>

the backends

> info args

a{7}:

this = @x7ffc338373e0

u = @Ax7ffc338372d0: {strides_ = {12, 144, 1728, 25920, 363008, 4719104}, values_ = Ox
7f7530000000, first_ = Ox7ffc338372d@}

> end Make sure to end gdbmode before moving on!

Ending gdb pass-thru mode. If program location has changed (i.e. continue) debugger is

1in an unknown state.
dbg all>

E—

77

gdb4hpc - mini-gdbmode for inline prints

e You can do mini-gdbmode inline for some things

dbg all> focus $a{l}

dbg a_temp> p u

af{l}: {strides_ = [12,144,1728,25920,363008,4719104], values_ = {*values_ = 14.000011}
, first_ = (DArray<double, 6> *) [1]}

dbg a_temp> p u->values_[0]@10

syntax error, unexpected INT, expecting STRING

dbg a_temp> p "u->values_[0]@10"

a{l}: [14.000011,1e-06,2e-06,3e-00\4e-06,5e-06,6e-06,7e-06,8e-06,9e-06]

dbg a_temp> I

Quotation marks evaluate the

expression in GDB mode

gdb4hpc - Focus on a single print

e You don’t have to focus to focus

99,99

Use " operator to specify a process set
as part of an expression

dbg all> p $a{2..3}::"u->values_[0]@10"

a{2}: [1300.0011,1300.001102,1300.001104,1300.001106,1300.001108,1300.00111,1300.00111
2,1300.001114,1300.001116,1300.001118]

a{3}: [2628.002222,1300.001102,1300.001104,1300.001106,1300.001108,1300.00111,1300.001
112,1300.001114,1300.001116,1300.001118]

dbg all> i

79

Debugging takeaways

e Understand what your bug could be before you go
looking for it

« A few well-designed tests may illuminate its location

e Understand what tools are at your disposal and what
they can be used for

o Keep this PDF around for reference

e Try to remember that every debugging session is a
learning experience

o If you knew what the bug was, you wouldn’t need to debug
e There are tools we didn’t talk about here

« Address sanitizers

o Thread sanitizers

 Visualizers

E—

University of Texas at Austin, CCO

88

https://commons.wikimedia.org/wiki/File:Assorted_Coleoptera_in_the_University_of_Texas_Insect_Collection_cropped.jpg

Where to go for help

e Manual pages
e Notably: intro_mpi, infro_openmp, CC
e OLCF
o Frontier User Guide: https://docs.olcf.ornl.gov/systems/frontier_user_guide.html

 Training archive (slides and videos): https://docs.olcf.ornl.gov/training/training_archive.html
e OLCF help email: help@olcf.ornl.gov

e AMD

« rocgdb PDF manuals and references: $ROCM_PATH/share/doc/rocgdb/
or online: https://docs.amd.com/bundle/ROCDebugger-User-Guide-v5.4/page/Summary.html

« Lab Notes: https://gpuopen.com/learn/amd-lab-notes/
e HPE Support Documents
o https://support.hpe.com/connect/s/
e “Fortran reference manual” “Cray Programming Environment User Guide”

E—

89

https://docs.olcf.ornl.gov/systems/frontier_user_guide.html
https://docs.olcf.ornl.gov/training/training_archive.html
mailto:help@olcf.ornl.gov
https://docs.amd.com/bundle/ROCDebugger-User-Guide-v5.4/page/Summary.html
https://gpuopen.com/learn/amd-lab-notes/
https://support.hpe.com/connect/s/

Thank you

Mark Stock
mark.stock@hpe.com

Special thanks to:
Steve Abboft, Trey White, Kostas Makrides, Srinath Vadlamani (HPE), Tom Papatheodore (OLCF)

: © 2023 Hewlett Packard Enterprise Development LP

mailto:mark.stock@hpe.com

