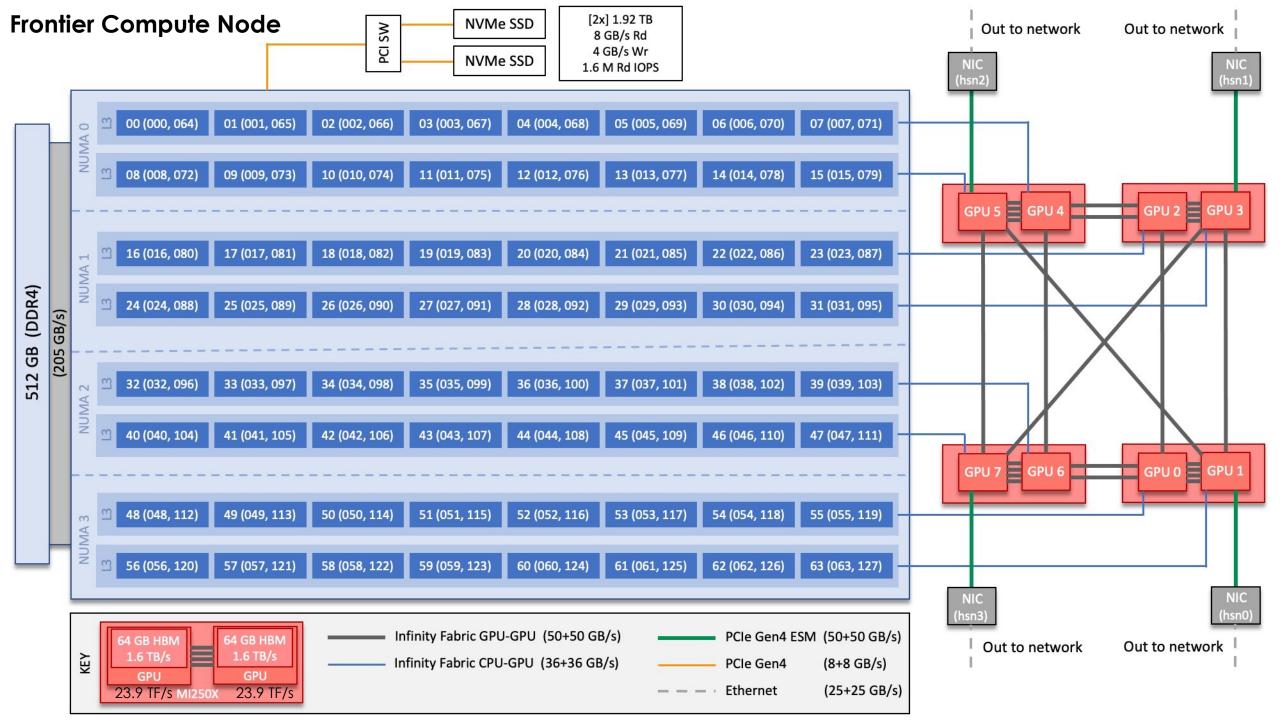


Frontier/Crusher Node Performance

Tom Papatheodore


HPC Engineer System Acceptance & User Environment Group Oak Ridge Leadership Computing Facility (OLCF) Oak Ridge National Laboratory (ORNL)

Frontier Training Workshop – February 16, 2023

ORNL is managed by UT-Battelle LLC for the US Department of Energy

Build and run environment

Unless specified otherwise, the results in these slides were obtained using the following modules on Frontier:

```
$ module -t list
craype-x86-trento
libfabric/1.15.2.0
craype-network-ofi
perftools-base/22.12.0
xpmem/2.5.2-2.4 3.20 gd0f7936.shasta
cray-pmi/6.1.8
cce/15.0.0
craype/2.7.19
cray-dsmml/0.2.2
cray-mpich/8.1.23
cray-libsci/22.12.1.1
PrgEnv-cray/8.3.3
DefApps/default
rocm/5.3.0
craype-accel-amd-qfx90a
```


CPU DRAM Bandwidth

CPU Stream Test					
Сору	A[i] = B[i]				
Scale	A[i] = n*B[i]				
Add	A[i] = B[i] + C[i]				
Triad	A[i] = B[i] + n*C[i]				

- Peak DRAM bandwidth: 205 GB/s
- Observed DRAM bandwidth: 82-90% of peak

NOTES:

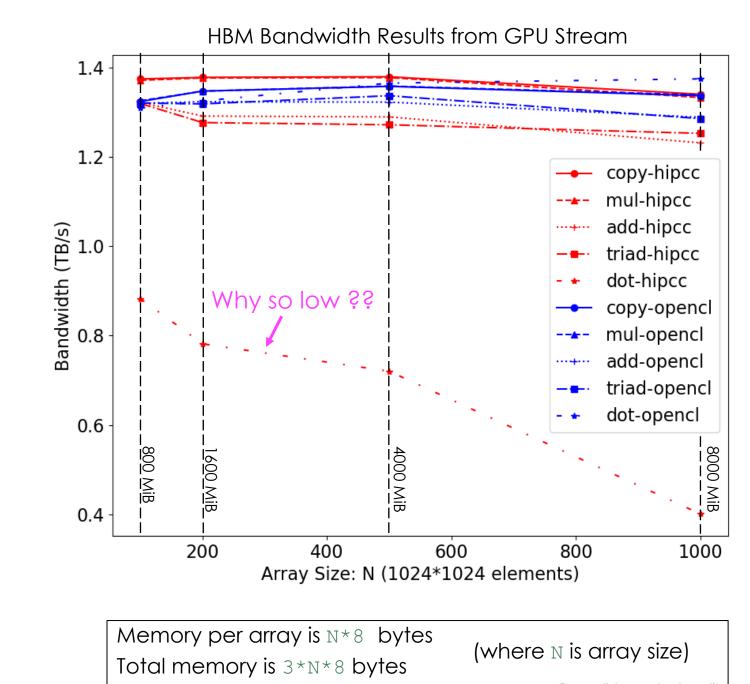
CAK RIDGE National Laboratory

OMP NUM THREADS='8'

Each kernel will be executed 35 times.

The *best* time for each kernel (excluding the first iteration) will be used to compute the reported bandwidth.

GPU HBM Bandwidth

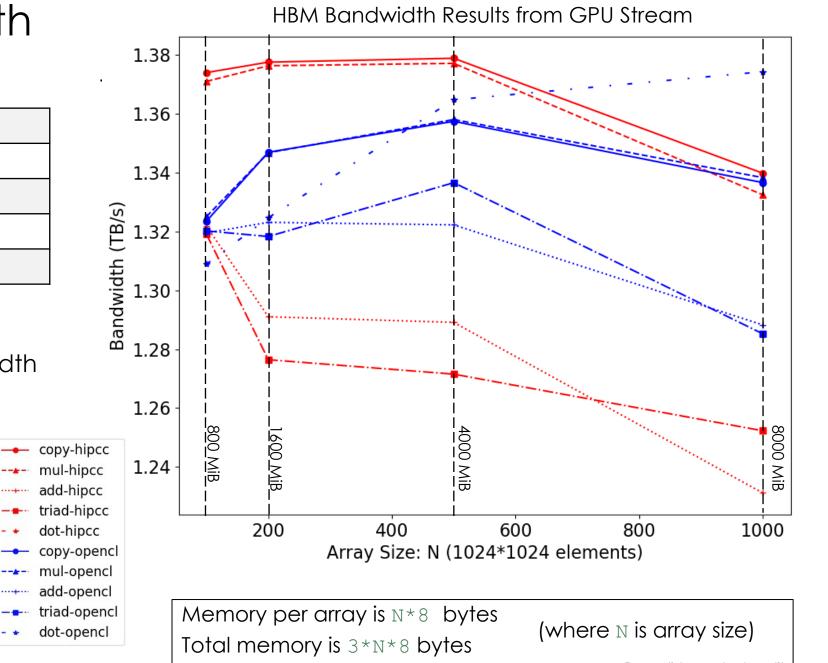

GPU Stream Test					
Сору	A[i] = B[i]				
Scale	A[i] = n*B[i]				
Add	A[i] = B[i] + C[i]				
Triad	A[i] = B[i] + n*C[i]				
Dot	A[i] = B[i] * C[i]				

- Peak HBM bandwidth: 1.6 TB/s
- Not sure why hipcc dot bandwidth is so low when OpenCL is not...

NOTES:

CAK RIDGE National Laboratory

BabelStream Version: 4.0 Implementation: HIP Running kernels 100 times Precision: double Using HIP device Driver: 50120531


GPU HBM Bandwidth

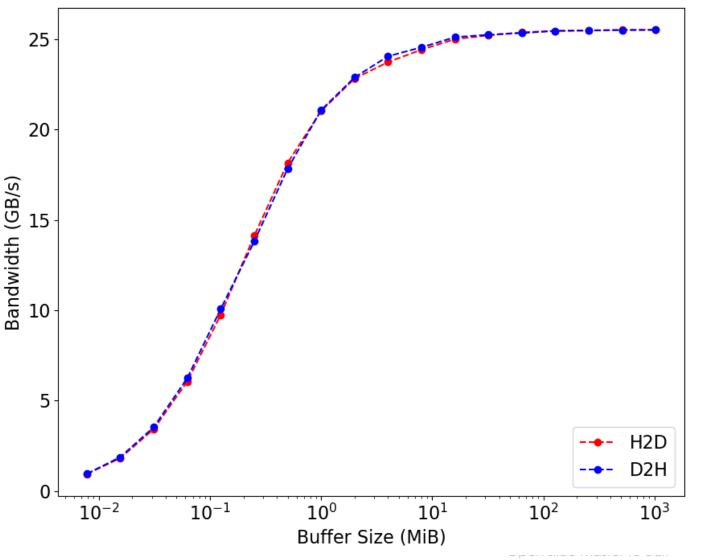
GPU Stream Test					
Сору	A[i] = B[i]				
Scale	A[i] = n*B[i]				
Add	A[i] = B[i] + C[i]				
Triad	A[i] = B[i] + n*C[i]				
Dot	A[i] = B[i] * C[i]				

- Peak HBM bandwidth: 1.6 TB/s
- Not sure why hipcc dot bandwidth is so low when OpenCL is not...
- Observed DRAM bandwidth: 77-86% of peak

NOTES:

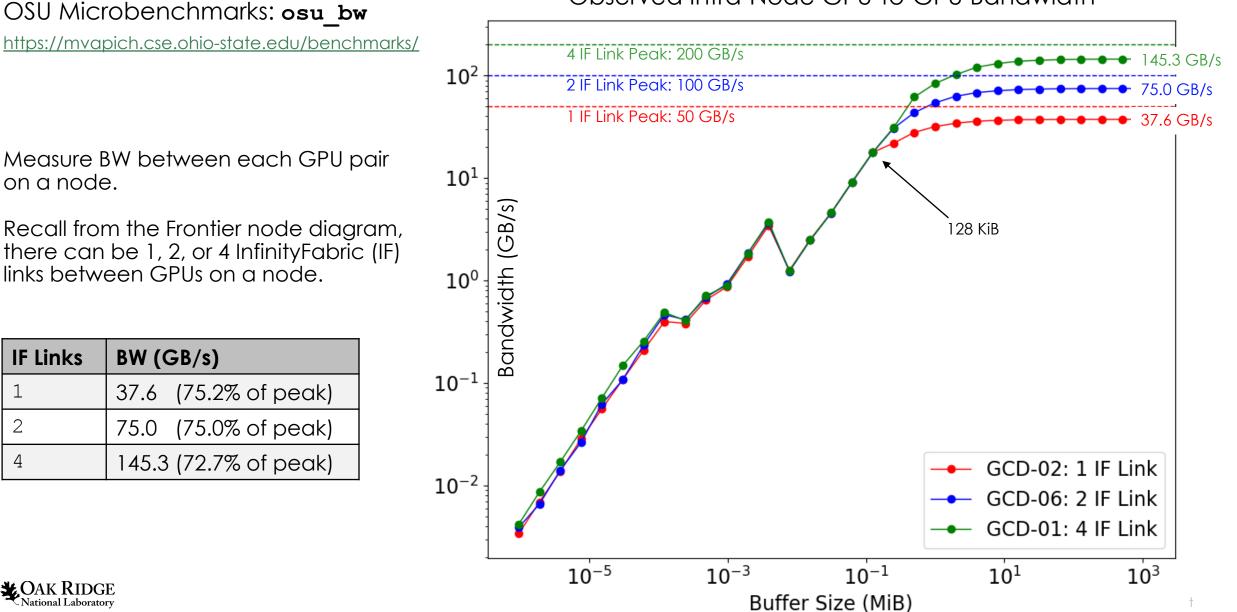
BabelStream Version: 4.0 Implementation: HIP Running kernels 100 times Precision: double Using HIP device Driver: 50120531 **CAK RIDGE** National Laboratory

CPU-GPU Bandwidth


https://github.com/tom-papatheodore/h2d_d2h_bandwidth

- Simple bandwidth test
- Measures host-to-device and deviceto-host bandwidth using 50 iterations of hipMemcpy in each direction.
- Timing measured with hipEvent

Peak CPU-GPU bandwidth: 36 GB/s


Max. observed bandwidth: 25.6 GB/s (71% of peak)

GPU-GPU Bandwidth

Observed Intra-Node GPU-to-GPU Bandwidth

https://mvapich.cse.ohio-state.edu/benchmarks/

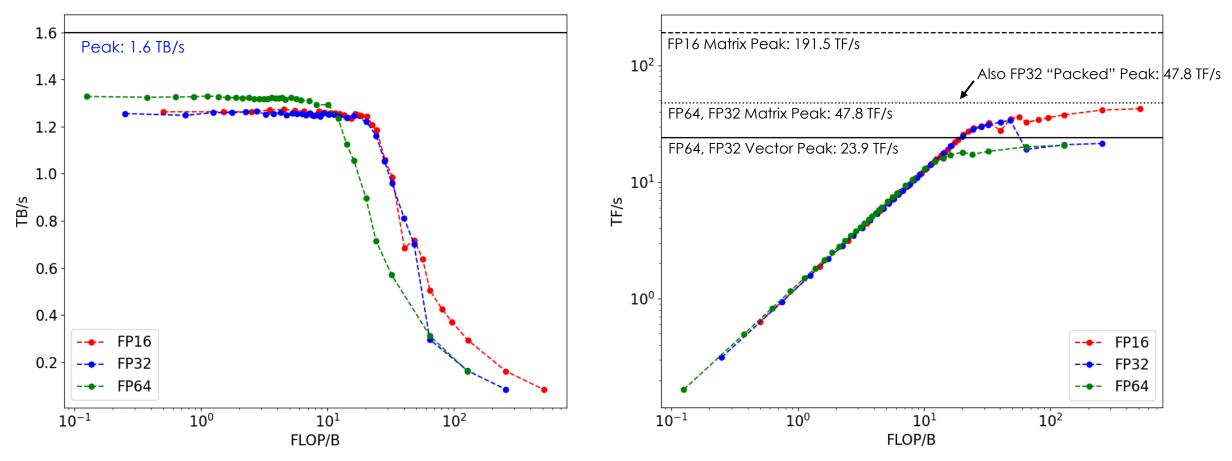
Measure BW between each GPU pair on a node.

Recall from the Frontier node diagram, there can be 1, 2, or 4 InfinityFabric (IF) links between GPUs on a node.

IF Links	BW (GB/s)				
1	37.6 (75.2% of peak)				
2	75.0 (75.0% of peak)				
4	145.3 (72.7% of peak)				

CAK RIDGE National Laboratory

Mixbench


9

https://github.com/ekondis/mixbench

Measures FLOP/s and GB/s vs FLOP/B

- Buffer size stays fixed while compute iterations increase
- FP64, FP32, and FP16 results

	Device specifications
Device:	
CUDA driver version:	50322.61
GPU clock rate:	1700 MHz
WarpSize:	64
L2 cache size:	8192 KB
Total global mem:	65520 MB
Total SPs:	7040 (110 MPs x 64 SPs/MP)
Compute throughput:	23936.00 GFlops (theoretical single precision FMAs)
Memory bandwidth:	1638.40 GB/sec
Total GPU memory 687 Buffer size:	256MP
	compute with global memory (block strided)
Elements per thread:	1 5 1
Thread fusion degree	
Infoad faston degree	· ·

For details on the peak values and packed FP32 operations: https://www.amd.com/system/files/documents/amd-cdna2-whitespaper:pdfoear

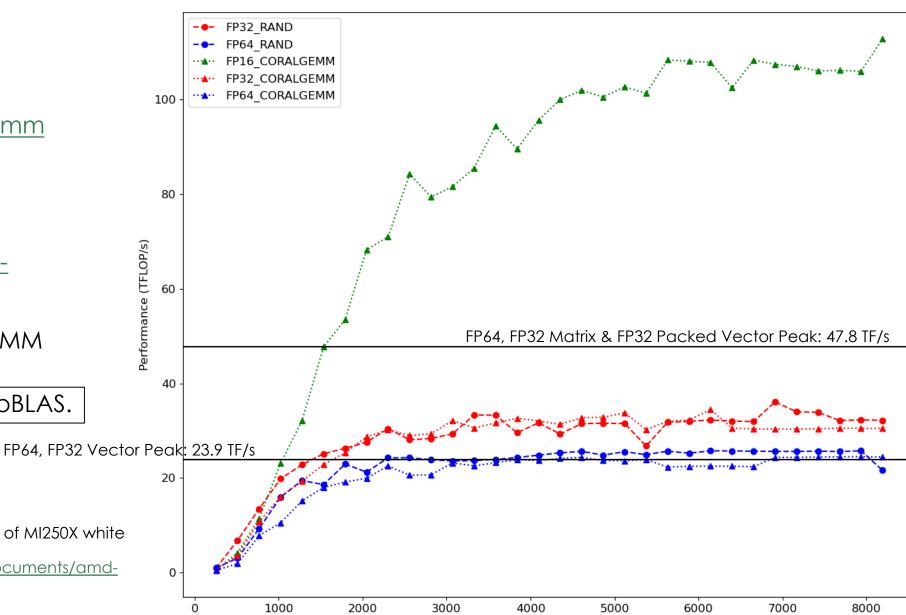
FP16 Matrix Peak: 191.5 TF/s

GPU Compute – Dense DGEMM

gpu_xgemm https://github.com/tompapatheodore/gpu_xgemm

• FP32/64_RAND

CORALGEMM


https://github.com/AMD-HPC/CoralGemm

• FP16/32/64_CORALGEMM

Both of these tests use hipBLAS.

Values for peak obtained from Table 1 of MI250X white paper:

https://www.amd.com/system/files/documents/amdcdna2-white-paper.pdf

Matrix Size (N)

10

Expected Performance (Summit-to-Frontier)

Performance expectations on Frontier relative to Summit

- Is your application GPU-bound or data-transfer-bound?
 - If GPU-bound, is it compute-bound or memory-bound?
 - Compute-bound: compute performance
 - Memory-bound: HBM, HBM bandwidth, L1 cache
 - This is where kernel profiling can be helpful
 - If data-transfer-bound, consider CPU-to-GPU bandwidth in table.

	V100	MI250X (GCD)	MI250X (GCD) / V100	Summit Node	Crusher Node	Crusher Node / Summit Node
Compute performance	~7.8 TF	~23.9 TF	~3.1X	~47 TF	~191 TF	~4.1X
HBM	16 GB	64 GB	4X	96 GB	512 GB	~5.3X
HBM bandwidth	0.9 TB/s	1.6 TB/s	~1.8X	5.4 TB/s	12.8 TB/s	~2.4X
CPU-to-GPU bandwidth	50 GB/s	36 GB/s	~0.7X	300 GB/s	288 GB/s	~0.96X
L1 cache	Up to 128 KB	16 KB	0.125X – 0.5X			
L2 cache	6 MB	8 MB	1.3X			
Network bandwidth				25 GB/s	100 GB/s	4X

Summary

- Regarding raw FP64 FLOP/s, it's possible to achieve most of the peak performance out of the MI250X although this is of course dependent on your application.
 - And in some cases, perhaps even more than expected when libraries take advantage of the matrix cores.
- Observed DRAM bandwidth: 82-90% of peak
- Observed DRAM bandwidth: 77-86% of peak
- Observed CPU-GPU bandwidth: 71% of peak
- Observed GPU-GPU bandwidth: 72-75% of peak
- When comparing Frontier results to Summit (or another system), it's important to understand how all the differences in speeds-and-feeds affect **your application**.
- Other considerations:
 - Warp size is 64 on MI250X, but 32 on V100.
 - L1 cache is smaller on MI250X
 - Register usage can affect performance
 - HW atomics must be enabled to use: <u>https://docs.olcf.ornl.gov/systems/crusher_quick_start_guide.html#floating-point-fp-atomic-operations-and-coarse-fine-grained-memory-allocations</u>
 - GPU page migration w/managed memory must be enabled to use: <u>https://docs.olcf.ornl.gov/systems/crusher_quick_start_guide.html#enabling-gpu-page-migration</u> **RIDGE**

papatheodore@ornl.gov

OAK RIDGE National Laboratory