

Aug 5, 2025

Advancing Scalable and
Trustworthy Foundational Models
for Science at
Oak Ridge National Laboratory

Prasanna Balaprakash

ORNL IS MANAGED BY UT-BATTELLE LLC FOR THE US DEPARTMENT OF ENERGY

ORNL has a rich history leveraging AI for science

1979
Oak Ridge
Applied Artificial
Intelligence
Project

1991 Automated machines

Current Frontier

- #2 HPL-MxP @10 exaflops for AI
- Scaled to 1T+ parameter Al model training

1980 1990 2000

1981

Al infrastructure supports spectroscopy, environmental management, nuclear fuel reprocessing, and programming assistance

1983
Robotics

2012Titan:
First GPU-powered supercomputer

Al transforming science and national security ORNL facilities, expertise enable Al revolution

What is industry doing?

The Gentle Singularity — Sam Altman, 2025

The Takeoff Has Begun

- Humanity has crossed the Al event horizon.
- Al systems (e.g. GPT-4, o3) already outperform humans in key areas.
- Scientific breakthroughs behind them were the hardest part momentum is now self-reinforcing.

Al's Transformative Impact

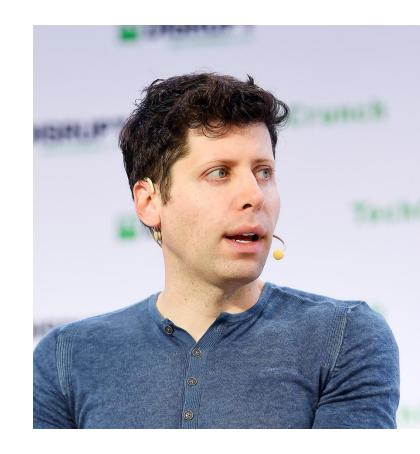
- 2025: Agents doing real cognitive work (coding, scientific discovery).
- By 2027: Robots may enter the physical world.
- Productivity, creativity, and research velocity are surging—scientists report 2–3X output boosts.

Self-Reinforcing Progress Loops

- Recursive AI research: AI used to build better AI.
- Economic flywheel: Al → Value → Infrastructure → More Al.
- Automation of datacenters, supply chains, and robot manufacturing looms ahead.

Toward Abundant Intelligence & Energy

- Intelligence cost converging to energy cost.
- Exponential gains may redefine what we consider "real work" or "progress."
- Wonders become routine—and then table stakes.



Zuckerberg said the company plans on investing "hundreds of billions of dollars" to power Al

Businesses News

tors Sustain

Company

PRESS RELEASE . NUCLEAR POWER

Tennessee Valley Authority submits application for construction of first BWRX-300 small modular reactor in the U.S.

5 min read

KNOXVILLE, Tenn. (May 20, 2025) – Tennessee Valley Authority (TVA) has submitted an application to the U.S. Nuclear Regulatory Commission to construct a GE Vernova Hitachi Nuclear Energy (GVH) BWRX-300 small modular reactor (SMR) at the Clinch River site in Oak Ridge, Tennessee. It is the first construction permit application for a BWRX-300 in the U.S.

0...141---1

New Horizon

ics v Consur

Services & Opportunities >

tome > Topics > Unleash American Energy Innovation > DOE Announces Site Selection for Al Data Center and Energy Infrastructure Development on Federal Lands

DOE Announces Site Selection for Al Data Center and Energy Infrastructure Development on Federal Lands

The forthcoming solicitations will drive innovation in reliable energy technologies, contribute to lower energy costs, and strengthen American leadership in artificial intelligence.

Energy.gov

July 24, 2025

Scientific AI demand richer world models

LLMs Today

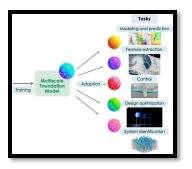
- Trained on ~2.0E13 text tokens (~6.0E13 bytes) on static data
- Reading equivalent would take a human 300,000 year
- Text input along often lacks physical grounding

4 years old child

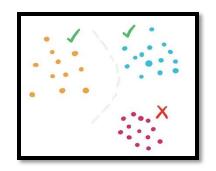
- 16K waking hours in 4 years
- 1.1E14 bytes of multimodal, real-time data
- Vision, touch, language, causality

Even a child's learning is vastly more multimodal than today's LLMs.
Science demands even more!!

How can we capitalize?



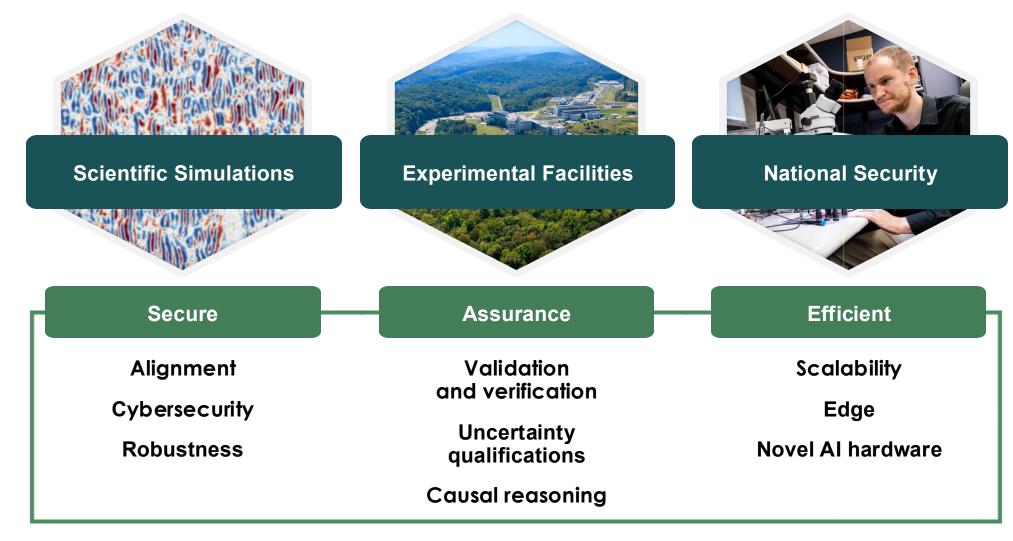




Exascale and Al Integration

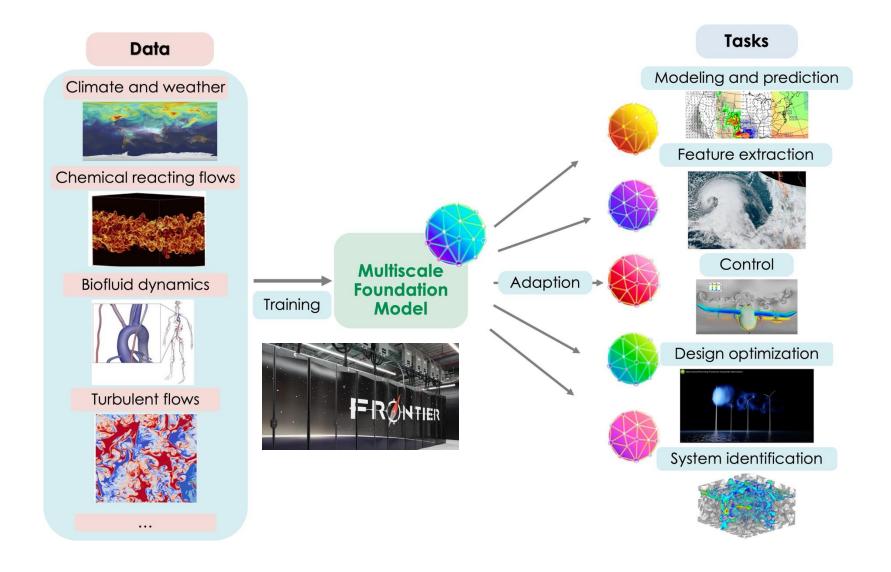
Multimodal Al Models Domain-Knowledge Robust Validation Frameworks Secure, Usable Al Infrastructure

ORNL's Al initiative Secure, assured, and efficient



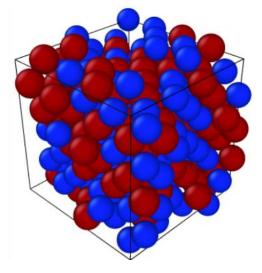
The initiative's portfolio comprises 15 advanced AI projects and involves over 50 researchers from 5 different directorates across the lab.

Foundation AI model(s) for science

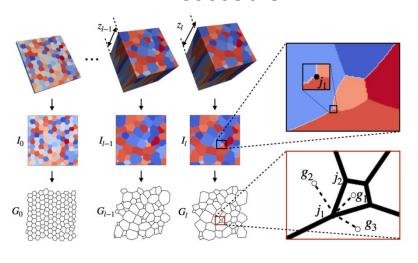


Graph representation of materials at different scales

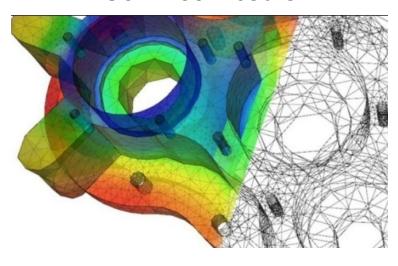
Atomistic scale



Mesoscale



Continuum scale



Nodes = atoms

Edges = interatomic bonds

Nodes = Voronoi centers

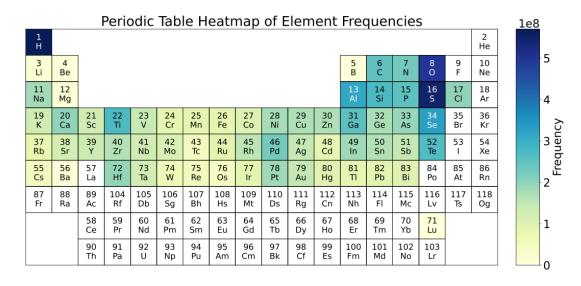
Edges = connection between Voronoi centers

Nodes = vertices of the finite element mesh

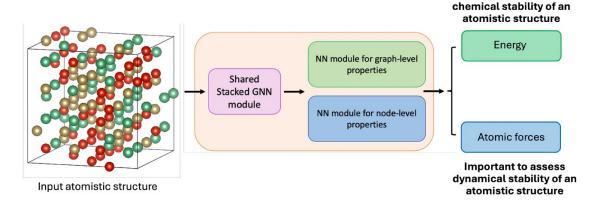
Edges = edges of the finite element mesh

Graph structured data maps naturally onto graph neural networks

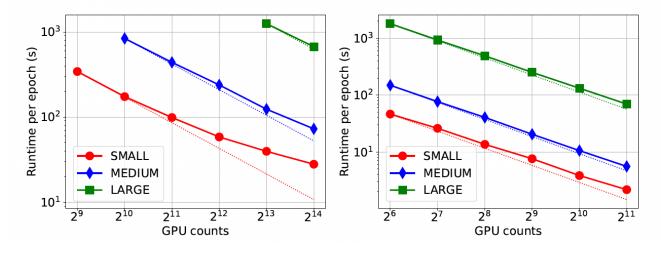
Scalable training of graph foundation model for materials science



Dataset	Number of data samples	Size
ANI1x [63]	4,956,005	5.3 GB
QM7-X [64]	4,195,237	23 GB
0C2020 [39]	134,929,018	4.3 TB
0C2022 [40]	8,847,031	648 GB
MPTrj [37]	1,580,395	17 GB
Total	154,507,686	5.2 TB

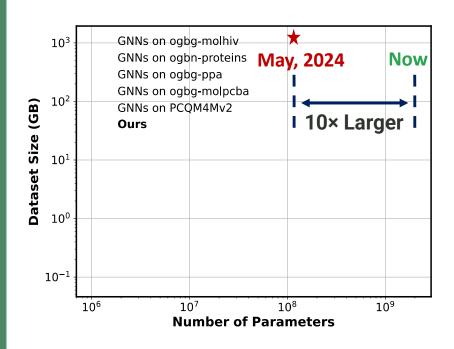


Important to assess



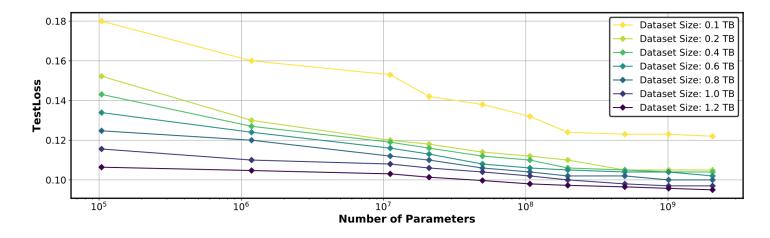
Strong scaling of HydraGNN multitasking pretraining on a problem of 120 million graphs on Frontier 16K GPUs and 2 million graphs on Perlmutter 2K GPUs with three GNN model sizes.

Scaling laws for GNNs

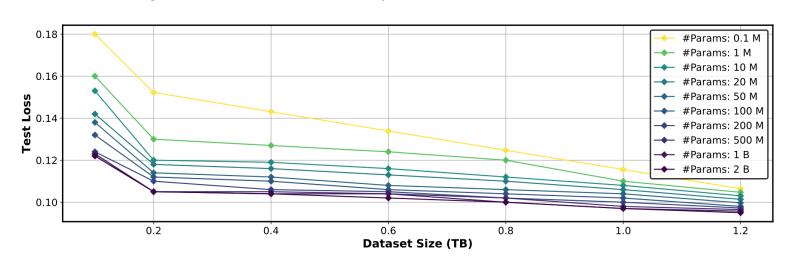


HydraGNN with 2 billion (10× larger than previous state-of-the-art) parameters on 1.2 TB of data.

Scaling law of GNN accuracy as a function of model size

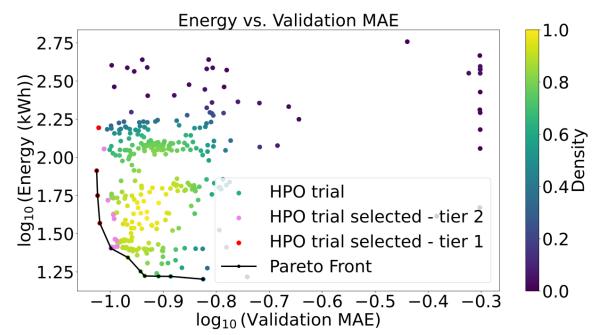


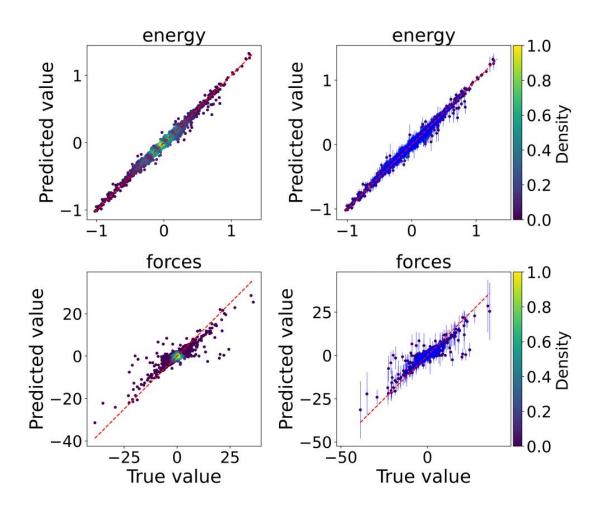
Scaling law of GNN accuracy as a function of data size



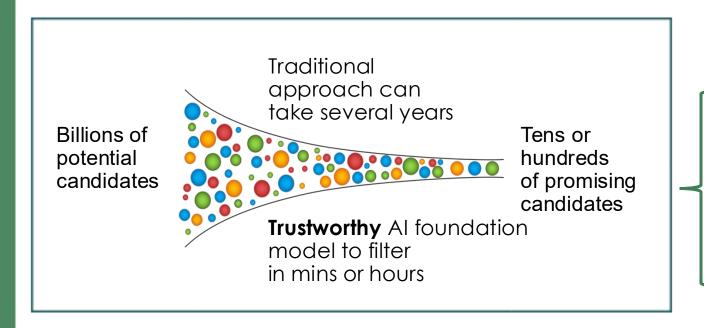
Bi-objective optimization and ensemble uncertainty quantification

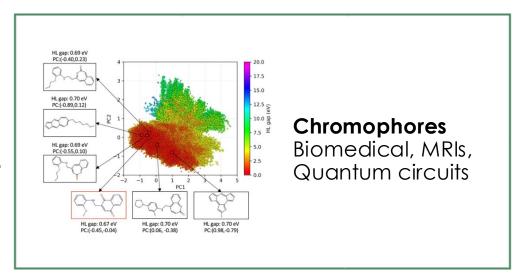
Hyperparameter	Type	Admissible values	
Type of MPNN layer	Categorical	{PNA, EGNN, SchNet}	
# MPNN layers	Integer	$\{1, \dots, 6\}$	
# neurons in MPNN layers	Integer	$\{100, \ldots, 2{,}000\}$	
# FC layers	Integer	$\{2,3\}$	
# neurons in FC layers	Integer	$\{300, \ldots, 1{,}000\}$	
# batch size	Integer	$\{16, \ldots, 128\}$	

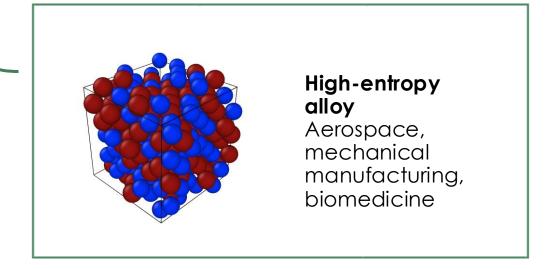




Accelerated materials discovery via trustworthy Al models on Frontier

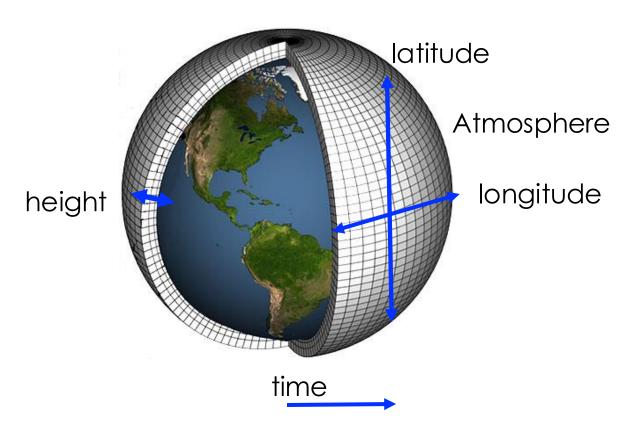


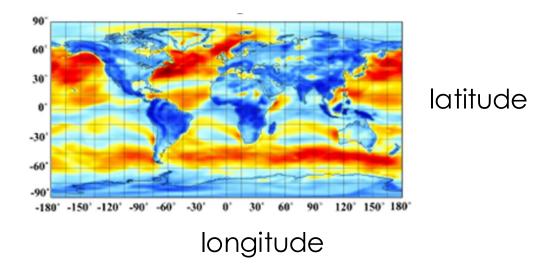




Spatiotemporal data

4D+X longitude, latitude, time, (#height, #weather/climate variables) (91)





2D visualization for a weather variable at a fixed height and time point

Challenges for scaling up foundation models for spatiotemporal data

Data Challenge:

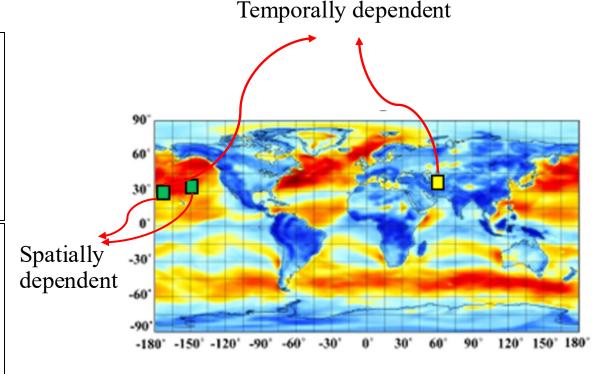
- 95D (4D+X) spatial-temporal data
- Non-linear memory and computing increase with resolution
- Complex spatial and temporal dependency

Model Challenge:

- Larger activations, parameters, gradients, optimization states
- Non-linear memory and computing increase

Industry solutions: Pipeline, Tensor, FSDP

- Not optimized for this modality
- Limited scalability

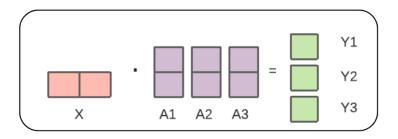


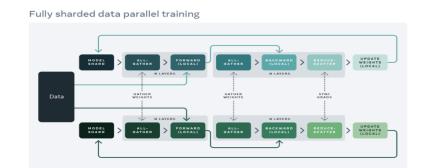
Implications:

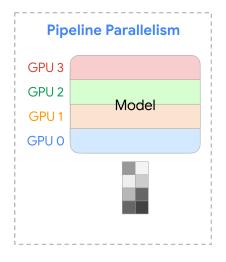
- (1) Much more expensive than LLM
- (2) Small Vision Transformer Model Size
- largest dense ViT has <u>22 billion</u> parameters
- largest climate ViT AI model has <u>115 to 500 million</u> parameters

Hybrid sharded tensor-orthogonal parallelism

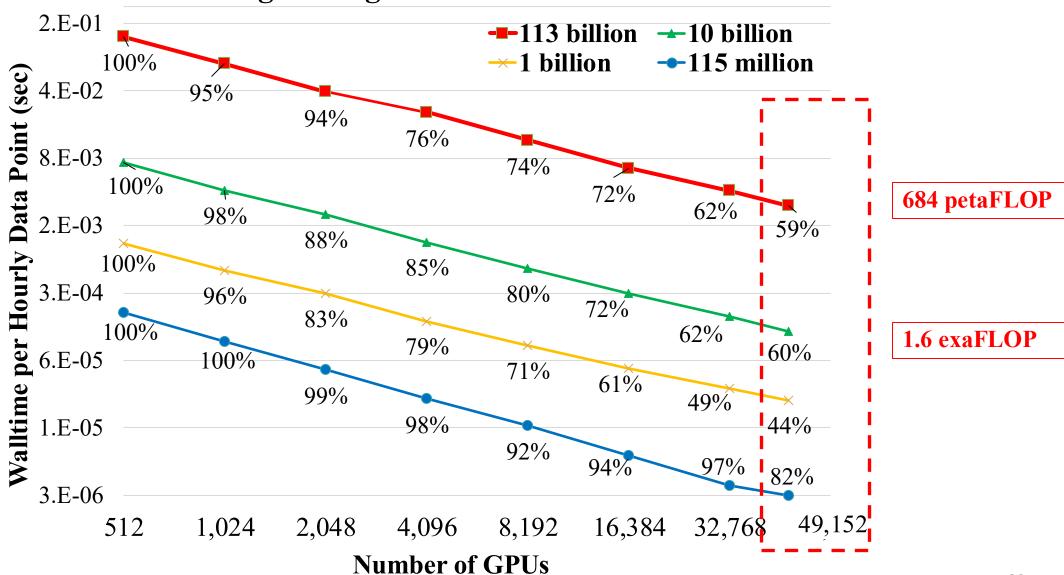
- Tensor parallelism to ensure that compute-heavy layers don't bottleneck.
 - Dividing a single matrix multiplication across GPUs.
- Fully Sharded Data Parallelism to eliminate replicas
 - Every GPU holds just a slice of the model's weights
- Pipeline Parallelism to minimize GPUs idleness
 - the model is sliced into stages. While GPU 1 is working on Layer 1 of Batch A, GPU 2 is crunching Layer 2 of Batch B







Pretraining achieves ExaFLOP throughput with CMIP



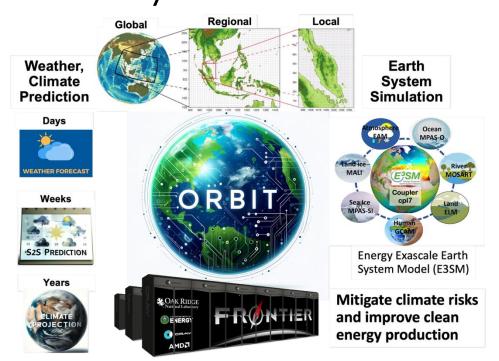
ORBIT inferencing enables near real-time prediction

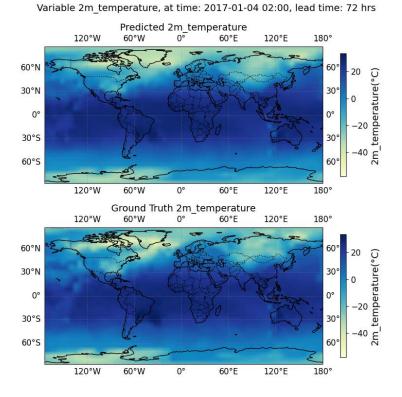
Model Size	115 million	1 billion	10 billion	113 billion
GPUs	1 GPU	1 GPU	8 GPUs	80 GPUs
Inference Speed (sec)	0.04 sec	0.24 sec	0.16 sec	0.5 sec

E3SM Atmosphere Model 1.26 simulated year per day on Frontier supercomputer Potential for 500x speedup on limited resource

ORBIT: Oak Ridge Base Foundation Model for Earth System

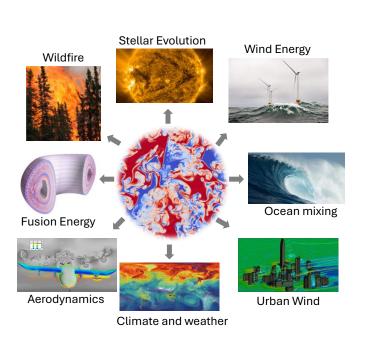
Predictability



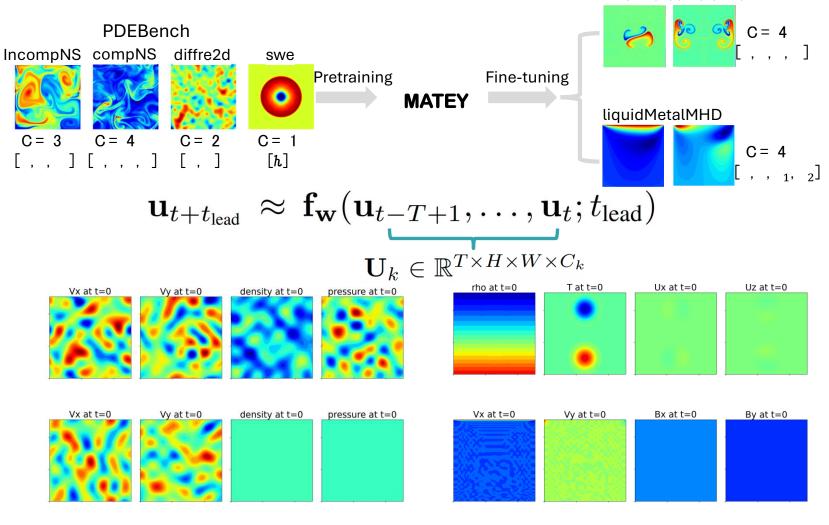


- Developed AI foundation model (FM), pretrained on CMIP6 model simulation data and adaptable to various Earth system modeling tasks.
- Using 49,152 GPUs on 6,144 Frontier nodes, ORBIT achieves 70% scaling efficiency with a computing throughput of 1.6 exaflops (finalist for the 2024 and 2025 Gordon Bell Prize for Climate Modelling; 2025 SC best paper nomination).
- ORBIT-2 achieves competitive or better accuracy for super resolution task

MATEY: multiscale adaptive foundation models for spatiotemporal physical systems



Diverse applications characterized by the same core physics: turbulence



thermalcollision2d

The DOE American Science Cloud

OBBB also includes forward-looking provisions that position government data as a strategic asset for American competitiveness:

The American Science Cloud: The Department of Energy's \$150 million investment aims to
mobilize National Laboratories to structure and preprocess scientific data for AI and machine
learning applications. Importantly, the legislation requires these models to be made available
to the broader scientific community through a cloud-based platform—embodying the
principles of open data and collaborative innovation.

Al-driven autonomy is reshaping the scientific workflow

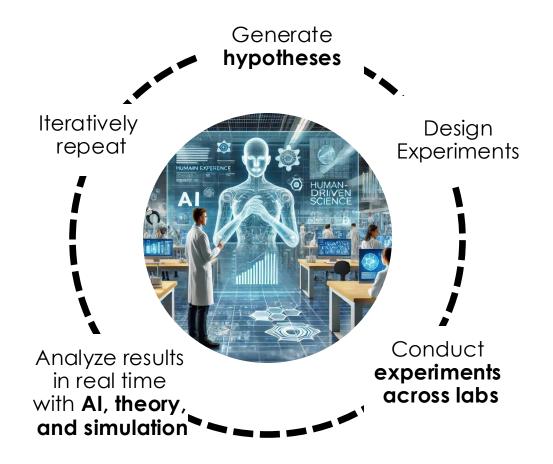
Labs of the future: Interconnected network of multi-domain research hubs to drive new investigative approaches that combine human creativity with evolving artificial

intelligence (AI)

Scientist
Controlled Flexible
Automation and
Autonomy

Self-optimizing protocols, digital twins, cross knowledge integration

Multi-Domain research hubs cut across user facilities and labs



Interconnected AI tools, mod-sim, theory, and analysis

Autonomous
Collection and
Curation of Data

Interoperable AI
Driven Workflows
Across
Directorates

Al Agent drive autonomous decisions

Robotic Platforms automate experiments

Humans in/out of the workflow loop

