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ORNL has a rich history leveraging Al for science
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Al fransforming science and national security
ORNL facilities, expertise enable Al revolution
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What is industry doing?
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The Gentle Singularity — Sam Aliman, 2025

 The Takeoff Has Begun
« Humanity has crossed the Al event horizon.
« Alsystems (e.g. GPT-4, 03) already outperform humans in key areas.
» Scientific breakthroughs behind them were the hardest part—
momentum is now self-reinforcing.
« Al's Transformative Impact
« 2025: Agents doing real cognitive work (coding, scientific discovery).
« By 2027: Robots may enter the physical world.
* Productivity, creativity, and research velocity are surging—scientists
report 2-3X output boosts.
» Self-Reinforcing Progress Loops
* Recursive Al research: Al used to build better Al.
« Economic flywheel: Al - Value — Infrastructure — More All.
« Automation of datacenters, supply chains, and robot manufacturing
looms ahead.
 Toward Abundant Intelligence & Energy
* Intelligence cost converging to energy cost.
« Exponential gains may redefine what we consider “real work™ or
“progress.”
 Wonders become routine—and then table stakes.

OAK RIDGE

National Laboratory




/uckerberg said the company plans on investing
"hundreds of billions of dollars” fo power Al

ata Center
~. over Manhattan
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' GE VERNOVA Businesses News Investors Sustainability Company
e

Home > Topics > Unleash American Energy Innovation > DOE Announces Site Selection for Al Data Center and Energy Infrastructure Development on Federal Lands

PRESS RELEASE * NUCLEAR POWER

Tennessee Valley Authority submits application for . .
construction of first BWRX-300 small modular DOE Announces Site Selection for Al
Data Center and Energy

reactor in the U.S.
Infrastructure Development on
Federal Lands

* 5 min read

The forthcoming solicitations will drive innovation in reliable energy technologies, contribute to lower energy costs, and strengthen
American leadership in artificial intelligence.

KNOXVILLE, Tenn. (May 20, 2025) - Tennessee Valley Authority (TVA) has submitted an application to

the U.S. Nuclear Regulatory Commission to construct a GE Vernova Hitachi Nuclear Energy (GVH) Energy.gov
BWRX-300 small modular reactor (SMR) at the Clinch River site in Oak Ridge, Tennessee. It is the first July 24,2025
construction permit application for a BWRX-300 in the U.S.
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Scientific Al demand richer world models

LLMs Today 4 years old child
« Trained on ~2.0E13 text tokens (~6.0E13 « 16K waking hours in 4 years
bytes) on static data « 1.1E14 bytes of multimodal, real-time data
« Reading equivalent would take a human . Vision, touch, language, causality
300,000 year
« Textinput along often lacks physical
grounding

Even a child’s learning is vastly more multimodal than today’s LLMs.
Science demands even more!!

OAK RIDGE Yann LeCun, Josiah Willard Gibbs Lecture, the 2025 Joint Mathematics Meetings
National Laboratory on “Mathematical Obstacles on the Way to Human-Level Al", 2025



How can we capitalizee
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ORNL's Al initiative
Secure, assured, and efficient
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Secure Assurance Efficient
Alignment Validation Scalability
and verification
Cybersecurity Edge
Uncertainty
Robustness qualifications Novel Al hardware

Causal reasoning

The initiative's portfolio comprises 15 advanced Al projects and involves
OAK RIDGE over 50 researchers from 5 different directorates across the lab.
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Foundation Al model(s) for science
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Graph representation of materials at different scales

Atomistic scale Mesoscale Continuum scale
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Nodes = vertices of the finite
element mesh

Nodes = atoms Nodes = Voronoi centers

Edges = interatomic bonds Edges = connection _ -
: Edges = edges of the finite
between Voronoi centers clement mesh

Graph structured data maps naturally onto graph neural networks
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Scalable training of graph foundation model for
marterials science

Periodic Table Heatmap of Element Frequencies 1e8
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Dataset Number of data samples Size

ANI1x [63]
QM7-X [64]
0C2020 [39]
0C2022 [40]
MPTrj [37]

4,956,005
4,195,237
134,929,018
8,847,031
1,580,395

5.3 GB
23 GB
4.3 TB
648 GB
17 GB

Total

154,507,686

5.2 TB
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Important to assess
chemical stability of an
atomistic structure

NN module for graph-level
v properties
Shared

Stacked GNN | =——>
module
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Important to assess
dynamical stability of an
atomistic structure
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NN module for node-level
properties

Input atomistic structure
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Strong scaling of HydraGNN multitasking pre-
training on a problem of 120 million graphs on
Frontier 16K GPUs and 2 million graphs on
Perimutter 2K GPUs with three GNN model sizes.



Scaling laws for GNNs

Dataset Size (GB)

103 - GNNs on ogbg-molhiv * "
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Scaling law of GNN accuracy as a function of model size

Dataset Size: 0.1 TB
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—o— Dataset Size: 0.4 TB
—&— Dataset Size: 0.6 TB
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Scaling law of GNN accuracy as a function of data size
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Bl-objective optimization and ensemble uncertainty
quantification

Hyperparameter Type Admissible values ner ner
Type of MPNN layer Categorical | {PNA, EGNN, SchNet} ENENgy ENETgy
# MPNN layers Integer {1,...,6} v | v #
; S5 1 35 g ra
# neurons in MPNN layers Integer {100, ..., 2,000} = =
# FC layers Integer {2,3} > >
# neurons in FC layers Integer {300, ..., 1,000} 8 8
# batch size Integer {16, ..., 128} 5] 0 o 0
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https://huggingface.co/mlupopa/HydraGNN_Predictive_GFM_2024

Accelerated materials discovery via trustworthy Al
models on Frontier

. Chromophores
Traditional Biomedical, MRIs,
approach can — i Quantum circuits
take several years BN
Billions of ¢ o Tens or | | Y
potential ° o.a o° O'? ) .o ° ‘....oo.o. — hundreds pvios  Remend i
candidates Qe % ° °°Q°@ 00000070 of promising |
. OO" candidates
Trustworthy Al foundation
model to filter
in mins or hours _
High-entropy
alloy
Aerospace,
mechanical
manufacturing,
biomedicine
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Massimiliano Lupo Pasini and team




Spatiotemporal data

4D+X
longitude, latitude, fime, (#height, #weather/climate variables) (91)
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2D visuadlization for a weather variable at
a fixed height and time point
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Challenges tor scaling up foundation models for
spatiotemporal data

Temporally dependent

Data Challenge:

« 95D (4D+X) spatial-temporal data

* Non-linear memory and computing
increase with resolution

« Complex spatial and temporal
dependency

Model Challenge: Spatiall
« Larger activations, parameters, gradients, P y
I~ M dependent
optimization states
« Non-linear memory and computing
Increase
Industry solutions: Pipeline, Tensor, FSDP
« Not optimized for this modality
« Limited scalability

80° 150" -120° 90" 607 307 00 3T 60 9% 1200 1507 1807

Implications:
(1) Much more expensive than LLM
(2) Small Vision Transformer Model Size
OAKRIDGE largest dense Vil has 22 billion parameters
1 FNuewibenoy @ |lArgest climate VIT Al model has 115 to 500 million parameters




Hybrid sharded fensor-orthogonal parallelism

4 ™
Y1
= Y2
o Tensor parallelism to ensure that compute-heavy vs
layers don't bottleneck. N AL Az A3 Y,
— Dividing a single matrix multiplication across
G P US Fully sharded data parallel training
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 Fully Sharded Data Parallelism to eliminate replicas

— Every GPU holds just a slice of the model’s
weights

uuuuuu
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 Pipeline Parallelism to minimize GPUs idleness

- the modelis sliced into stages. While GPU 1 is Pipeline Parallelism
working on Layer 1 of Batch A, GPU 2 s

crunching Layer 2 of Batch B o
Model
GPUO
=
m
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Pretraining achieves ExaFLOP throughput with CMIP

OAK RIDGE

National Laboratory

Strong Scaling at 48 Channel Variables

2.E-01 -=-113 billion —~10 billion
100% 1 billion -o-115 million

4.E-02

8.E-03

59%

92%

Walltime per Hourly Data Point (sec)

512 1,024 2,048 4,096 8,192 16,384 32,765% 49,152,
Number of GPUs 7

684 petaFLOP

1.6 exaFLOP

20




ORBIT inferencing enables near real-time prediction

Model Size 115 milion | 1bilion _____[10bilion | 113bilion ____

8 GPUs
0.16 sec

GPUs 1 GPU 1 GPU
Inference Speed 0.04 sec 0.24 sec
(sec)

E3SM Atmosphere Model

1.26 simulated year per day on Fronftier
supercomputer

OAK RIDGE
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80 GPUs
0.5 sec

Potential for 500x
speedup on limited
resource

21



ORBIT: Oak Ridge Base Foundation Model for Earth System
P re d i C 'l- q b I | I 'l-y A e TS A SRS D DS TS
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Ground Truth 2m_temperature
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Energy Exascale Earth 0 2
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‘ <208
. 3 = = . . 30°S 30° @
LOKR Mitigate climate risks a0 ¢!
EEUE pn ANAARRISA)  and improve clean 60°S 60° N

0~ e energy production

AMDI1

e Developed Al foundation model (FM), pretrained on CMIPé6 model simulation data and adaptable to various
Earth system modeling tasks.

e Using 49,152 GPUs on 6,144 Frontier nodes, ORBIT achieves 70% scaling efficiency with a computing throughput of

1.6 exaflops (finalist for the 2024 and 2025 Gordon Bell Prize for Climate Modelling; 2025 SC best paper
nomination).

e ORBIT-2 achieves competitive or better accuracy for super resolution task

OAK RIDGE

National Laboratory

Xiao Wang, Dan Lu, and team




MATEY: mulfiscale adaptive foundation models for
spatiotemporal physical systems

thermalcollision2d

|
o G =
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Aerodynamics b = Urban Wind

Climate and weather

Diverse applications characterized by the same ®
core physics: turbulence
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The DOE American Science Cloud
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0BBB also includes forward-looking provisions that position government data as a strategic asset
for American competitiveness:

» The American Science Cloud: The Department of Energy's $150 million investment aims to
mobilize National Laboratories to structure and preprocess scientific data for Al and machine
learning applications. Importantly, the legislation requires these models to be made available
to the broader scientific community through a cloud-based platform—embodying the

OAK RIDGE principles of open data and collaborative innovation.

National Laboratory



Al-driven autonomy is reshaping the scientific workflow
Labs of the future: Interconnected network of multi-domain research hulbs to drive new

investigative approaches that combine human creativity with evolving artificial

intelligence (Al)

Scientist
Conftrolled Flexible
Automation and
Autonomy

Self-optimizing
protocols, digital
twins, cross
knowledge
integration

Multi-Domain
research hubs cut
QCross user
facilities and labs

OAK RIDGE

National Laboratory
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Iteraftively Design
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Analyze resultfs Conduct
in real tfime experiments
across labs

with Al, theory,
and simulation™ = ey o ==

'1
Al Agent drive autonomous decisions
Robotic Platforms automate experiments

Humans in/out of the workflow loop

Inferconnected Al
tools, mod-sim,

theory, and
analysis

Autonomous
Collection and
Curation of Data

Interoperable Al
Driven Workflows
ACross
Directorates



	Slide 1
	Slide 2: ORNL has a rich history leveraging AI for science
	Slide 3: AI transforming science and national security ORNL facilities, expertise enable AI revolution 
	Slide 4
	Slide 5: The Gentle Singularity — Sam Altman, 2025 
	Slide 6: Zuckerberg said the company plans on investing "hundreds of billions of dollars" to power AI
	Slide 7
	Slide 8: Scientific AI demand richer world models
	Slide 9: How can we capitalize?
	Slide 10: ORNL’s AI initiative Secure, assured, and efficient 
	Slide 11: Foundation AI model(s) for science
	Slide 12: Graph representation of materials at different scales
	Slide 13: Scalable training of graph foundation model for materials science
	Slide 14: Scaling laws for GNNs
	Slide 15: Bi-objective optimization and ensemble uncertainty quantification
	Slide 16: Accelerated materials discovery via trustworthy AI models on Frontier
	Slide 17: Spatiotemporal data
	Slide 18: Challenges for scaling up foundation models for spatiotemporal data
	Slide 19: Hybrid sharded tensor-orthogonal parallelism
	Slide 20: Pretraining achieves ExaFLOP throughput with CMIP 
	Slide 21: ORBIT inferencing enables near real-time prediction
	Slide 22
	Slide 23: MATEY: multiscale adaptive foundation models for spatiotemporal physical systems 
	Slide 24: The DOE American Science Cloud 
	Slide 25: AI-driven autonomy is reshaping the scientific workflow  

