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ORNL has a rich history leveraging AI for science

20201980 1990 2000

The dawn of AI  
and the birth of 
the Turing Test

The onset of generative AI

Decade of AI ascendancy 
and revolutionary 
innovations

Generative AI: 
Expanding frontiers 
and ethical 
considerations

AI history 
over the years

1981
AI infrastructure 
supports 
spectroscopy, 
environmental 
management, 
nuclear fuel 
reprocessing, 
and programming 
assistance

1983
Robotics

2012
Titan: 
First GPU-powered 
supercomputer

1979
Oak Ridge 
Applied Artificial 
Intelligence 
Project

1991
Automated
machines

Current
Frontier

• #2 HPL-MxP @10 exaflops 
for AI

• Scaled to 1T+ parameter 
AI model training
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AI transforming science and national security
ORNL facilities, expertise enable AI revolution

Oak Ridge Leadership 
Computing Facility 

Cyber Science 
Research Facility

High Flux 
Isotope Reactor

Spallation 
Neutron Source

Manufacturing 
Demonstration Facility

Center for Structural 
Molecular Biology
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What is industry doing?
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The Gentle Singularity — Sam Altman, 2025

• The Takeoff Has Begun
• Humanity has crossed the AI event horizon.

• AI systems (e.g. GPT-4, o3) already outperform humans in key areas.

• Scientific breakthroughs behind them were the hardest part—
momentum is now self-reinforcing.

• AI’s Transformative Impact
• 2025: Agents doing real cognitive work (coding, scientific discovery).

• By 2027: Robots may enter the physical world.

• Productivity, creativity, and research velocity are surging—scientists 
report 2–3X output boosts.

• Self-Reinforcing Progress Loops
• Recursive AI research: AI used to build better AI.

• Economic flywheel: AI → Value → Infrastructure → More AI.

• Automation of datacenters, supply chains, and robot manufacturing 
looms ahead.

• Toward Abundant Intelligence & Energy
• Intelligence cost converging to energy cost.

• Exponential gains may redefine what we consider “real work” or 

“progress.”
• Wonders become routine—and then table stakes.
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Zuckerberg said the company plans on investing 
"hundreds of billions of dollars" to power AI



77



88

Scientific AI demand richer world models

LLMs Today
• Trained on ~2.0E13 text tokens (~6.0E13 

bytes) on static data 
• Reading equivalent would take a human 

300,000 year
• Text input along often lacks physical 

grounding

Even a child’s learning is vastly more multimodal than today’s LLMs. 
Science demands even more!!

Yann LeCun, Josiah Willard Gibbs Lecture, the 2025 Joint Mathematics Meetings 
on “Mathematical Obstacles on the Way to Human-Level AI”, 2025

4 years old child
• 16K waking hours in 4 years
• 1.1E14 bytes of multimodal, real-time data
• Vision, touch, language, causality
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How can we capitalize?

Exascale and 
AI Integration

Multimodal 
AI Models

Domain-
Knowledge

Robust 
Validation 

Frameworks

Secure, 
Usable AI 

Infrastructure
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ORNL’s AI initiative
Secure, assured, and efficient

Scientific Simulations Experimental Facilities National Security

Secure

Alignment

Cybersecurity

Robustness

Assurance

Validation 
and verification

Uncertainty 
qualifications

Causal reasoning

Efficient

Scalability

Edge

Novel AI hardware

The initiative's portfolio comprises 15 advanced AI projects and involves 
over 50 researchers from 5 different directorates across the lab.
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Foundation AI model(s) for science



1212

Graph representation of materials at different scales

Atomistic scale Mesoscale Continuum scale

Nodes = atoms

Edges = interatomic bonds

Nodes = Voronoi centers

Edges = connection 
between Voronoi centers

Nodes = vertices of the finite 
element mesh

Edges = edges of the finite 
element mesh

Graph structured data maps naturally onto graph neural networks
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Scalable training of graph foundation model for 
materials science

Strong scaling of HydraGNN multitasking pre-
training on a problem of 120 million graphs on 
Frontier 16K GPUs and 2 million graphs on 
Perlmutter 2K GPUs with three GNN model sizes.
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Scaling laws for GNNs

Scaling law of GNN accuracy as a function of model size

Scaling law of GNN accuracy as a function of data size

May, 2024 Now

10× Larger

HydraGNN with 2 billion (10× larger 
than previous state-of-the-art) 
parameters on 1.2 TB of data.
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Bi-objective optimization and ensemble uncertainty 
quantification

Model weights: https://huggingface.co/mlupopa/HydraGNN_Predictive_GFM_2024 

https://huggingface.co/mlupopa/HydraGNN_Predictive_GFM_2024
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Accelerated materials discovery via trustworthy AI 
models on Frontier

Billions of 
potential 
candidates

Tens or 
hundreds  
of promising 
candidates

Traditional 
approach can 
take several years

Trustworthy AI foundation 
model to filter 
in mins or hours

Chromophores
Biomedical, MRIs, 
Quantum circuits

High-entropy 
alloy 
Aerospace, 
mechanical 
manufacturing, 
biomedicine

Massimiliano Lupo Pasini and team
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Spatiotemporal data

4D+X
longitude, latitude, time, (#height, #weather/climate variables) (91)

longitude

latitude

height

latitude

longitude

2D visualization for a weather variable at 
a fixed height and time point

Atmosphere 

17

time
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Challenges for scaling up foundation models for 
spatiotemporal data

18

Implications: 
(1) Much more expensive than LLM
(2) Small Vision Transformer Model Size
• largest dense ViT has 22 billion parameters
• largest climate ViT AI model has 115 to 500 million parameters

Model Challenge:

• Larger activations, parameters, gradients, 

optimization states

• Non-linear memory and computing 

increase 
Industry solutions: Pipeline, Tensor, FSDP
• Not optimized for this modality
• Limited scalability

Data Challenge:

• 95D (4D+X) spatial-temporal data

• Non-linear memory and computing 

increase with resolution

• Complex spatial and temporal 
dependency

Spatially 
dependent

Temporally dependent
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Hybrid sharded tensor-orthogonal parallelism

• Tensor parallelism to ensure that compute-heavy 
layers don’t bottleneck.

– Dividing a single matrix multiplication across 
GPUs. 

• Fully Sharded Data Parallelism to eliminate replicas

– Every GPU holds just a slice of the model’s 
weights

• Pipeline Parallelism to minimize GPUs idleness

– the model is sliced into stages. While GPU 1 is 
working on Layer 1 of Batch A, GPU 2 is 
crunching Layer 2 of Batch B
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1.6 exaFLOP

684 petaFLOP

100%

95%
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60%
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100%
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Strong Scaling at 48 Channel Variables

113 billion 10 billion
1 billion 115 million

49,152

Pretraining achieves ExaFLOP throughput with CMIP 
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ORBIT inferencing enables near real-time prediction

Model Size 115 million 1 billion 10 billion 113 billion

GPUs 1 GPU 1 GPU 8 GPUs 80 GPUs

Inference Speed 

(sec)

0.04 sec 0.24 sec 0.16 sec 0.5 sec

E3SM Atmosphere Model
1.26 simulated year per day on Frontier 
supercomputer

Potential for 500x 
speedup on limited 
resource
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● Developed AI foundation model (FM), pretrained on CMIP6 model simulation data and adaptable to various 
Earth system modeling tasks.

● Using 49,152 GPUs on 6,144 Frontier nodes, ORBIT achieves 70% scaling efficiency with a computing throughput of 

1.6 exaflops (finalist for the 2024 and 2025 Gordon Bell Prize for Climate Modelling; 2025 SC best paper 
nomination).

● ORBIT-2 achieves competitive or better accuracy for super resolution task

ORBIT: Oak Ridge Base Foundation Model for Earth System 
Predictability

Xiao Wang, Dan Lu, and team
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MATEY: multiscale adaptive foundation models for 
spatiotemporal physical systems

Fusion Energy

Wind Energy

Climate and weather

Stellar Evolution
Wildfire

Aerodynamics

Ocean mixing

Urban Wind 

C = 3
[� , � , � � ]

IncompNS

C = 4
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compNS

C = 2
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diffre2d

C = 1
[ℎ]

swe

thermalcollision2d

C = 4
[� , � , � , � ]

liquidMetalMHD

C = 4
[� , � , � , � ]

Pretraining Fine-tuning

PDEBench

MATEY

Diverse applications characterized by the same 

core physics: turbulence

Pei Zhang and team
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The DOE American Science Cloud 
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AI-driven autonomy is reshaping the scientific workflow

AI Agent drive autonomous decisions
Robotic Platforms automate experiments

Humans in/out of the workflow loop

Generate
hypotheses

Iteratively 
repeat

Design
Experiments

Conduct 
experiments 
across labs

Analyze results 
in real time 

with AI, theory, 
and simulation

Interconnected AI 
tools, mod-sim, 

theory, and 
analysis 

Multi-Domain 
research hubs cut 

across user 
facilities and labs

Scientist 
Controlled Flexible 
Automation and 

Autonomy

Interoperable AI 
Driven Workflows 

Across 
Directorates

Labs of the future: Interconnected network of multi-domain research hubs to drive new 
investigative approaches that combine human creativity with evolving artificial 
intelligence (AI) 

Self-optimizing 
protocols, digital 

twins, cross 
knowledge 
integration

Autonomous 
Collection and 

Curation of Data
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