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Much of our work requires big supercomputers

Includes emphasis on ‘VVUQ’ ==> trusting predictions, making them actionable

Increasing opportunities as high performance computing moves from petascale to exascale
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Human anatomical data and models




Organ Modelling: Cardiovasculature
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HemelB: Codesign of Software and Hardware

HemelLB and the Virtual Human

Blood flow networks through arteries and veins provide a natural
basis on which to build a virtual human

Separate organ models can be attached through the blood being
transferred to/from major vessels

Computationally requires a framework that can efficiently capture
the highly individual nature of vessel structures in high fidelity

HemelLB provides a platform to achieve this

See HemelLB.org

Our software release paper on HemelLB was recently published:

|. Zacharoudiou, J. W. S. McCullough, P. V. Coveney, "Development and
performance of HemelLB GPU code for human-scale blood flow simulation”,

H Computer Physics Communications, 282, 108548 6
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Simulation studies with HemelB

Stroke in circle of Willis Abdominal aortic aneurysm
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Frontier strong scaling plots

Full-hnuman scale simulation requirements
HemelB meets Frontier

- Lattice Boltzmann solver
- Massively paralleled high-

o 140 billion lattice sites (1.4 x 1019)
o Full deployment on Frontier .
o A few cardio cycles produce a high-fideli

performance code simulation
- Available on both CPU and GPU
(CUDA/Hipified) The world’s first exascale machine.
. ; ; a : i 5
_ Designed for sparse geometry, Our access to it has been'V|a a H. 2 f ‘
ideal for hemodynamics pathway that has gone via SNG, S W\ | ‘
Titan, BlueWaters, and Summit. P ! \ )

simulations
The lattice Boltzmann method
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Code Status HemelLB_GPU: Towards a platform agnostic HemeLB_GPU from
CUDA to HIP and oneAPI =

HemelB GPU code — Port to oneAPI

o Single HemelB collision-streaming CUDA kernel ported to Intel’s oneAPI (SYCL/DPC++)
o Ongoing efforts to port the full code to oneAPI

o Deploy HemelLB_GPU on NVIDIA, AMD and Intel GPUs

o Porting to Aurora (ALCF’s forthcoming exascale system) Human Readable

Comments

DEVELOPER'S CUDA*  COMPATIBILITY DPC++
SOURCE T00L SOURCE

Port to oneAPIl approach: -
o Both with Intel DCPT Porting tool Data Parallel C++ Compatibility Tool

* Testing on Sunspot (ALCF - 2x Intel Xeon CPU Max Series (Sapphire Rapids) and 6x Intel Data Center GPU Max Series

(codename Ponte Vecchio or PVC).
* Compiles — Unstable... Debugging... Step by step approach - Focus on Initialisation and then one kernel at a time...

o Using factor-based approach

* Factor out the CUDA-specific parts of the code into back-ends: - Single source files — Reduce code duplication
* Working for CUDA, HIP - Simplifies code maintenance
e SYCL/DPC++ up and running on Frontier (OLCF)
e Unstable on Sunspot... Debugging in progress... XCWJR
© Crown Copyright, Met Office 9



Image-based cardiac models




Digital Twin Reality

Coupling the Full Vascular Tree with the Heart

« Coupling with a full
electromechanical heart
model

 ALYA code is developed at
Barcelona Supercomputing
Center

Barcelona
Supercomputing

Center
Centro Nacional de Supercomputacion {

S.C.N.Lo et al, "A multi-component, multi-physics computational model for solving coupled cardiac
i\ electromechanics and vascular haemodynamics", Computer Methods in Applied Mechﬁﬁcs and

E n m F]Eiﬂ m E d . Engineering (2025) DOI: 10.1016/..cma.2025.118185


https://doi.org/10.1016/j.cma.2025.118185

Uncertainty in weather and climate prediction lglﬁUCL

90% accurate 80% accurate 50% accurate

Uncertainty eXiStS in the Same mOdeI Mon Tue Wed Fri Sat Sun Mon Tue Wed
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Decision-making with uncertainty l?-(l *UCL

. Why should we care about uncertainty?
. Model are used to inform high-level decision making.
. Simulations without error bars paint a very incomplete picture.

. No error bars: only the yellow line was available to UK government : approx 10,000 deaths after 600 days
. However, the same model applied in the same setting can also predict 10,000 deaths after < 200 days
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Edeling, Sinclair, Groen, Coveney et al. Nature Computational Science (2021) 1, 128-135 13
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Molecular dynamics

« Newton’s equations of motion: complex interaction
potentials, N-body dynamics, non-linear
e Programming them on a computer
o Linking MD to thermodynamics: exploring macroscopic
behaviour through molecular interactions.
« Lyapunov instability leads to chaotic systems
o small errors, large deviations
o  sensitive to uncertainty, need to quantify it!
2
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Error, uncertainty and reproducibility
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" Errors uncontrolled:
—_ . Results unreliable and
| unreproducible.

Errors fully under control;
Results reliable and
reproducible.

15



Ensemble simulations lgl *UCL

o Performing ensemble simulations and obtaining An ensembile is far. far more effective and
averages leads to more reliable results computational efficient than seeking to do it

. . from a single one-off trajectory.
o« Ensemble averaging produces robust statistics from J JeCiory

chaotic simulations, e.g. in drug affinity ranking /}m\

-G u +G
Means and standard deviations of single simulations
(] 1

BAC: ensemble-based binding affinity calculator
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Vassaux et al., J. Chem. Theory Comp. (2021) 17 (8), 5187-5197 Coveney, Wan. Phys. Chem. Chem. Phys. (2016) 18, 30236-30240 16


https://doi.org/10.1021/acs.jctc.1c00526
https://doi.org/10.1021/acs.jctc.1c00526
https://doi.org/10.1021/acs.jctc.1c00526
https://doi.org/10.1021/acs.jctc.1c00526
https://doi.org/10.1021/acs.jctc.1c00526
https://doi.org/10.1021/acs.jctc.1c00526
https://doi.org/10.1021/acs.jctc.1c00526
https://doi.org/10.1021/acs.jctc.1c00526
https://doi.org/10.1021/acs.jctc.1c00526
https://doi.org/10.1021/acs.jctc.1c00526

Ensembles ensure actionable predictions l?-(l *UCL

To make routine and actionable predictions, for personalised medicine or for drug development, the
predictions need to be accurate, precise, and time-bound.

Ensemble approaches ensures accuracy, precision and quick turnaround.

Ligand
database

Actionable prediction in drug discovery and %&% N
personalised medicine identification

» Better prediction methods, better force fields and better
sampling to generate probabilistic predictions

Prescreening

» Fast computers to deliver results in a restricted “time-

Similarity search . g

critical” window of time. =

. . L . . Pharmacophore =

» Accurate binding affinity ranking to select the right drug : search B

VAN

for the right patient

* Choose the best drug candidates for the patient
specific target in drug discovery

b (2
uoRedyUIP| PeaT

New Lead Finding ~ 17



Binding free energy

A+B<+<—= AB

e Ligand binding driven by changes Gibbs free energy

» More negative AG = stronger binding

Drug Binding

Simulationsas

a Filtering
Tool

. Leads to

0 assay

18



Absolute binding FE: end-point approach l?-(l *UCL

ESMACS: enhanced sampling of molecular dynamics with approximation of
continuum solvent

Ranking binding affinities: AG,, 4, -
; + B3 —
e Evaluate large number of promising

compounds

e Structurally and chemically diverse

compounds ENSEMBLE MD
e Ranking of binding free energies G G G E

aoany ]

e Ensemble simulation for reliable ’ | gt T .
predictions PROTEIN EIE1 1~ ,'
E] E1LIEY)

Alejviec

e Lower computational cost .
DRUG

LxperereTy

S. Wan, B. Knapp, D. Wright, C. Deane, P. V. Coveney, J. Chem. Theory Comput., 11 (7), 3346-3356 (2015) 19



Relative binding FE: alchemical approach lgl *UCL

. v hincdin
Alchemical AG gt
methods '
ﬁG;:;;jr(fT T& G;gfrf;rﬂex
. e ) MG
®@ D @, () ) —
A=0 A=0.5 A=1

+hinding ~binding shinding valeh valcht
AAG =AG ligand2 ~ AG ligandl — AG ligand AG complex

Thermodynamic integration (TI) :

1 . . .
AG =J' <$> i TIES: thermodynamic integration with
0 enhanced sampling [1]:
Free energy perturbation (FEP) [3]: Use of ensemble averaging and the assuming
V(Aisl) — V(A a Gaussian random process (GRP), properties
AG(A; = Ajy1) = —kpTIn (EJCP (— kpT )) are computed from MD trajectories [2].

A

[1] A. Bhati, S. Wan, D. Wright, P. V. Coveney, J. Chem. Theory Comput., 2017, 13, 210-222; [2] P.V. Coveney & S. Wan, Phys. Chem. Chem. Phys., 2016, 18,

30236-30240; [3] L. Wang, et al, J. Am. Chem. Soc. 2015, 137, 2695-2703. 20



o Absolute binding free energy (ABFE) is capable of
comparison of binding affinities of structurally and
chemically unrelated compounds.

e A thermodynamic cycle is employed, in which the binding
process is divided into a series of nonphysical
transformations.

e The binding free energy, AGy;ging, is the sum of all AG
values from the nonphysical step.

o Ensemble simulations, with relatively large number of
replicas, are required to attain the desired precision.

ABFE is ~10 times more expensive than RBFE

A. P. Bhati, S. Wan, P. V. Coveney, "Equilibrium and Non-equilibrium Ensemble Methods for Accurate, Precise and Reproducible Absolute Binding Free
Energy Calculations", ChemRxiv (2024) DOI: 10.26434/chemrxiv-2024-sslzp; J. Chem Theory & Computation, in press (2024).

A. Bhati, S. Wan, Y. Hu, B. Sherborne, P. V. Coveney, J. Chem. Theory Comput. (2018) 14 (6), 2867—2880.

21
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Real world applications

Personalised Medicine

Patient specific computer models are being developed to
predict the impact of treatments, improving clinical outcomes.
Here | will talk about one such scenario: accurate binding
affinity ranking to select the right drug for the right patient.

Virtual Drug Discovery

- Testing various candidate drugs against a target protein can be
done through computational models

- Candidates can be ranked according to their ability to interact
with the target — their binding affinity.

- Best candidates then chosen for the patient specific target




TIES Toolkit (openly available) 'ifl *UCL

TIES 20: Relative Binding Free Energy with a Flexible
Superimposition Algorithm and Partial Ring Morphing.
S https://ccs-ties.org/ e nn L VA
TIE ek
TIES 20 implements a flexible )»J\

topology superimposition algorithm . iL .1
Relative binding free energy to match drugs and build inputs for N N
relative binding affinity AM &
J:éQ calculations. raY w =N
Absolute binding free energy TIES MD: a co_llec_t|on of §of_tware package_s to |
calculate protein ligand binding free energies with
— physics based alchemical methods.
https://ucl-ccs.github.io/TIES _MD/

A. Bhati, et al., J. Chem. Theory Comput. (2017), 13(1), 210-222.
M. Bieniek, et al.,, J. Chem. Theory Comput., (2021) 17(2), 1250—-1265. 23



Sources of uncertainty lgl *UCL

parametric

aleatoric

Vassaux et al., J. Chem. Theory Comp. (2021) 17 (8), 5187-5197

a) sources of uncertainty in molecular dynamics
model uncertainty

( aleatoric uncertainty
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Statistical probability distributions l?-‘l *UCL

Non-Gaussian distributions are common in MD simulation
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Statistical probability distribution '13‘:1 *UCL

... and now found experimentally

from GSK >

e Compounds measured >100 times for their
activities to SMYD3. 1

e Compounds a and b do not show any drift in . | | . | | |
the assay over time, Compounds c and d show 5.0 5.2 plCSI;A 5.6 1.0 ?i::ICSG 7.4 76
a small amount of time dependency. c . d

a b I

41 A 41 11
Experimental binding affinity measurements Z/*S /’*gK
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I
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I

|

|

I
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e All distributions are skewed from a normal | .
distribution 31 1 3

|
|
|
. : 2z _?ﬁ\ oy Z’X,
e The excess kurtoses are all positive, meaning % 5. 1
that compared to a normal distribution, the / : X
tails are longer and heavier. 1] PH/% 1] 13N
1
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S. Wan, et al., J. Chem. Inf. Model., 62, 2561-2570 (2022) 20



X
Global ranking of the importance of force field parameters l;‘_(,l ﬁUCL

|dentify the sources of the dominant contributions to Qols
Most of the important ESMACS parameters are pNNrm and pNNev, representing the pairwise equilibrium
internuclear distance and well depth of vdW interactions for atoms with index NN.
These parameters are the most sensitive ones because:
« Many atoms close to the ligand are carbon and hydrogen atoms with these parameters.
» Most rotatable bonds involve sp? carbon atoms, which are mainly affected by these parameters.
* The third parameter is for the most common atom type (hydrogen) on the surface of the ligand.

c) | d)
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W. Edeling, M. Vassaux, Y. Yang, S. Wan, S. Guillas, P. V. Coveney, "Global ranking of the sensitivity of interaction potential contributions
within classical molecular dynamics force fields". npj Comput. Mater. 10, 87 (2024) DOI: 10.1038/s41524-024-01272-z



https://doi.org/10.1038/s41524-024-01272-z
https://doi.org/10.1038/s41524-024-01272-z
https://doi.org/10.1038/s41524-024-01272-z
https://doi.org/10.1038/s41524-024-01272-z
https://doi.org/10.1038/s41524-024-01272-z
https://doi.org/10.1038/s41524-024-01272-z
https://doi.org/10.1038/s41524-024-01272-z

Drug discovery, development and market pipe]lgliﬁUCL

Cycle time
% Cost per NME
Probability of success

FDA classifies a
drug as a New
Molecular Entity
(NME) if it contains
an active
ingredient that has
not been
previously
approved by the
FDA.

D. Sun, W. Gao, H. Hu, S. Zhou, Why 90% of clinical drug development fails and how to improve it, Acta Pharmaceutica Sinica B, 12(7), 3049-3062, 2022.

Target

validation

~ 1.5 year
~3%

Compound

screening

~ 1.5 year
~6%

>10.,000
candidates

Lead

optimization

~ 1.5 year
~17%

@

~250
candidates

Precinical  phase Phase II
test
~1year ~ L5 year ~ 2.5 year
~T7% ~15% ~21%
~66.4% ~48.6%

vl i (S
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Pre-clinical test

&

Lead optimization
Compound screening

Target validation

Phase Il & Phase 111

to launch
~ 2.5 year ~ 1.5 year
~26% ~5%
~59%

~6 :
10-20° candidates m _

Dose, Efficacy, Toxicity
PK, Dose escalation, Toxicity
SAR, Drug-like properties, Solubility

Permeability. ADME, Plasma PK
Efficacy, Toxicity

Visual screening, HTS

Disease models, Target identification, Target validation
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Artificial intelligence in drug discovery lgl *UCL
- A

Molecular Al techniques Candidate drugs Sequence Al techniques Structure

PAS

Predicted
Affinity

Encoding Al techniques Result Encoding Al techniques

Result j

W. Chen, X. Liu, S. Zhang, S. Chen, “Artificial intelligence for drug discovery: Resources, methods, and applications”
Molecular Therapy Nucleic Acids, 31, 691-702, 2023. 29
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Functions

How AlphaFold works:

- Couch the protein folding problem in
mathematical terms — a “spatial graph”
showing the amino acids and other
molecules close in space

_ ITWILL CHANGE EVERYTHING :
- Design the structure of the network to AIMAKES GIGANTIC LEAP IN

SOLVING PROTEIN STRUCTURES
learn from training what amino acids S S e
and other molecules lie near each AlphaFold 3
other & s
> -
. . ¥ 3¢ €
Accurate predictions for primary =&
sequences which are closely similar to ",._.;é) "3
: . -
the ones AF has been trained on, with no 0‘41
. . . AZTA_ =TI N S
idea of when others will be reliable or A7 @ :
simply fail. ‘ 7




Can AlphaFold3 predict interactions?

AlphaFold3 Server to model e.g. protein-protein structures and interactions:

“AlphaFold3 captures a more global effect of mutations by learning a smoother
energy landscape, but it lacks the modelling of full atomic details that are better
addressed by force field methods, which possess a more rugged energy
landscape”.

Comparison of AAG estimation results on our SKEMPI test set using three different metrics.

Category Method Pearson  Spearman AUC A more com plete
Force Field and Profile-based  SSIPe 0.68 062 078 picture of biomolecular
FlexddG 0.62 0.58 0.77 : :
BindProfX 0.56 0.58 0.74 interactions can be
EvoEF 0.55 051 0.72 -
FoldX 0.49 0.54 0.74 captured by physics
Structure-based Deep Learning DSMBind 0.62 0.53 0.73 based m0|eCUIar
AlphaFold AF3 ranking_score 0.49 0.51  0.71
AF3 iptm 0.49 0.50 0.72
AF3 ptm 0.36 033  0.63
AF3 mean_pae 0.32 0.37 0.64 o _ )
AF2 ranking_score 0.21 023 057 AlphaFold3, a secret sauce for predicting mutational effects on protein-
Effective Strain 0.18 031 061 L :
AF2 mean_pae 0.05 022 0.54 protem mteraptlons, _
bioRxiv preprint https://doi.org/10.1101/2024.05.25.595871
Protein Language-based ESM2 0.27 0.35 0.68
ESMI1v -0.02 0.06 0.52
ProGen2 -0.09 0.01 0.47
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IMPECCABLE workflow ¥ *UCL

Integrate machine learning and physics-based methods to accelerate
drug discovery

Compound  Lead The full preclinical workflow

screening  optimization

lj(:j" Ij,;(/" e No single algorithm or method can achieve the necessary accuracy with required efficiency to sample
such huge chemical spaces. [MPECCABLE 2.0
¢ Physics and machine learning base Bt /" Coarse-grained
methods are used symbiotically to e Dimileiten Docking t e v R
test drugs with required accuracy M :
and efficiency. Wl
ML-based docking . ‘!\ / '/ ML-based binding
e The pipeline combines ML and PB SUTOgNS - pose optimiser
i i into a unified workflow, allowing g »» S, L

both upstream and downstream
exchange of information in the
iterative loop.

ML-based »
generative models /

Fine-grained binding’ ~
affinity-based okl

Chemical Libraries filtering

A. Al Saadi, D. Alfe, Y. Babuji, A. Bhati, B. Blaiszik, A. Brace, T. Brettin, K. Chard, R. Chard, A. Clyde, P. V. Coveney, I. Foster, T. Gibbs, S. Jha, K. Keipert, T. Kurth, D. Kranzimdller, H. Lee, Z. Li, H. Ma, A.
Merzky, G. Mathias, A. Partin, J. Yin, A. Ramanathan, A. Shah, A. Stern, R. Stevens, L. Tan, M. Titov, A. Trifan, A. Tsaris, M. Turilli, H. Van Dam, S. Wan, D. Wifling, “IMPECCABLE: Integrated Modgl?g
PipelinE for COVID Cure by Assessing Better LEads”, 50" International Conference on Parallel Processing (ICPP '21), August 9-12 (2021), DOL: 10.1145/3472456.3473524


https://doi.org/10.1145/3472456.3473524

IMPECCABLE ¥ *UCL

Physics-based methods:

» Docking: structure generation for ligand-protein complexes
« ESMACS: precise and reliable approximation of absolute binding free energies for compound screening
« LOMAP: plan efficient relative free energy
calculations between potential ligands Singi2 ,
. ) ) L High-throughput docking | | Training 4 Keys: N
« TIES: accurate, precise and reliable relative binding

D ML task compute inkens e

Subset chosen as [ P8 task compute intensive

. . . . rainin Stepl Step3
free energies for lead optimisation the treining <<t 0w
Chemical Libraries | | Screen chemical | P4 _ ML docking surrogate | | —— setus phase - non-torative
libraries K‘I?b Production phase - Il.ara-l'iw/a‘,
Machine learning methods: _
Top |10k ML pose optimiser
compounds i Stepl0
. enSa chosen as the gpa e
« REINVENT 2.0 and ChemProp: generative Al to e wainingset T EA /%p fu\ mpg[F
arative U
produce small molecules with optimal binding Dock-Min-MMPBSA EMTCS ;t‘“”“ E:;:;y Docking
T . - . StepEal Stepbb = e £
affinities, synthesisability, toxicity, etc. e T S [ ore gemerator] o |
* Docking surrogate model: Al-accelerated protein- Step7a

ligand docking

« AMPL.: ligand pose optimisation model
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IMPECCABLE-2

IMPECCABLE Framework Application Modules: Application modules represent

Application Modules Workflow Modules / Steps application executables, tools, and functions. These
AMBER Step-1 7 are building blocks for IMPECCABLE workflows.
antechamber, tleap, MM-FBSA —

AMPL \ Step-2 L] Workflow Modules: Workflow modules represent
ML Docking Step-3 — independent workflows as part of the IMPECCABLE
IR AR campaign. Each workflow corresponds to a particular
ESMACS, NAMD - - -
squillbration, simulation Step-4 step of the campaign (e.g., high-throughput docking,
OpenEyeDocking training a surrogate model, ensemble simulations).
docking, pose F Step-5 Iﬂ
REINVENT 4 Step-6 lﬁ Orchestrator Component: Orchestrator governs the
— execution of a sequence of steps and adapts the
i}— initiation of a new sequence based on resources
Orchestrator / Steps Management ml availability. It might launch multiple instances of a
Q/Ei particular workflow.
Runtime System (RADICAL-Pilot) Task Runtime System: The task runtime system
Execution Backends [SRUN1 [FLUX | I launches heterogeneous tasks, monitors their

execution, and gather final states. It addresses

limitations of the native resource manager.



IMPECCABLE-2 | Effective resource occupation

Resource occupation represents the percentage of resources being assigned to and occupied by tasks as a function

of time. NOTE: the actual resource utilization (CPU/GPU load) should be captured by a corresponding third-party tool.

Using SRUN and FLUX as execution backends to run the IMPECCABLE campaign with null workloads on 256 and
1024 nodes. Runs with SRUN as a backend shows lower resource occupation (underutilized) in comparison to FLUX.

CPU (%)

GPU (%)

CPU (%)

1]
[1]
00

"Zh

booisirap BN exec_task
256 Modes - 575 Tasks

T

0

S000 10 1 5000 LY 250000
Time (s)
1024 Nodes - 1746 Tasks

Wd L]

M I ,JI Ll ] I

10000 20000 30000 40000
Time (s)

Resources
occupation
for SRUN runs

256 nodes
CPU - 30%
GPU - 20%

1024 nodes
CPU - 15%
GPU - 14%

CPU (%)

GPU (%)

bootsirap N exec_task
256 Modes - 523 Tasks

000 106000 15000 200000

2500

Timee ()

1024 Nodes - 1812 Tasks

5000 7500 10000 12500 15000 17500
Time (s)

Resources
occupation
for FLUX runs

256 nodes
CPU - 68%
GPU - 33%

1024 nodes
CPU - 69%
GPU -43%



IMPECCABLE-2 | Concurrency and throughput

Left Y-axis presents the number of tasks being scheduled (blue) and running (green) concurrently. Right Y-axis presents the

launching rate for the tasks execution using SRUN and FLUX as execution backends.
Corresponding plots show lower concurrency and launching rate for SRUN in comparison to FLUX.
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IMPECCABLE

X *UCL

Implement "plug and play" for more modules and functions into IMPECCABLE

REINVENT produces small
molecules with optimal properties

Binding affinity
Absorption
Distribution
Metabolism
Excretion
Toxicity
Druglikeness

Generatlve HO

:> NH

COOH

Qo°

ocq3

ocq1

Lead optimisation Validation
Ji.-' O' | = | 1T/ 4 relerenceced
Mol2Mol fEﬁ Q e i
@ )L 1 L L —
L"’.
r [ ;‘ a7 o *x J
K=y 3
™ T — 'x:.i_b_,f
e ) o )( ~— ]
A f‘:\"':: : :\:\“ e
P 16 ————
| S '_
“« x
oG 5
@ e &
[ - . /
g W e
TIES20 — } ® v il
- o ’ " Caoraanin .ﬂ"m -
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X

IMPECCABLE: complex and heterogeneous X *UCL

Table 2: Normalized computational costs on Summit.

_ ] _ . Method Nodes per Hours per Node-hours
No turnkey solutions! Why is this challenging? ligand  ligand per ligand
(approx)

e Heterogeneous: High-throughput function calls, Docking (S1) /6 0.0001  ~0.0001

_ BFE-CG ($3-CG) 1 0.5 0.5

ensembles of MPI tasks, coupled Al-HPC Ad. Sampling (S2) ) , i

BFE-FG (S3-FG 4 1.25 5

o Producers of data (PB) and consumers (ML) BFETI {fmtime}gmem 64 10 640

“‘Supercomputers will become merely rapid , -

generators of data for powerful ML models” 10°x variation in cost across

L _ workflows
o Adaptivity at multiple levels
Table 3: Throughput and performance measured as peak flop

® Workload: Task mix varies over Campaign per second (mixed precision, measured over short but time in-
. . terval) per Summit node (6 NVIDIA V100 GPU).
o Tasks: Run for varying duration

Comp. [ #GPUs Tflop/s Throughput

o Collective versus single-task performance MLI | 1536 7539 319674 ligands/s
. e ” ] S1 6000 112.5 14252 ligands/s

o Campaigns are “integrated” workflows differ by $3-CG | 6000 2779 2000 ligand/s
107x in computational cost S3-FG | 6000 7324 200ligand/s

1000x variation in workflow
throughput
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IMPECCABLE workflow - performance

o Pilot-based task execution frameworks implemented using
RADIAL-Pilot allow for the execution of complex workflows . Sumenit Launch node
large heterogeneous HPC. R Agent Bootstapper

PRTEJSRUN

IIIII”%III llll
e The infrastructure has supported a campaign utilizing 2.5%106 Oore bs _
node-hours on diverse HPC platforms for: | Compue Node 1§ Compuse Mode n

G | PRTELSRUN -.lj pRTELSRUN [ |

GPUs

CPUs

e docking ~10"" ligands with a peak docking rate of ~150%10°6
docks/hr, e ——

e computing binding free energies on ~10° ligand-protein T @
complexes, including 104 concurrently.

e These methods and infrastructure have enabled the
screening of more than 4.2 billion molecules against over %.0K Ribs1
a dozen drug targets in SARS-CoV-2. So far, over 1000 5 smm B | U,U INHHER
compounds have been identified and experimentally
validated, resulting in advanced testing for dozens of hits

e Recently implemented using ~8000 nodes on Frontier

X *UCL

Summil Launch node

?ﬁqm Bootsvapper  (3) ]

- re scheauter [ |3SH ‘.—‘ IJ-SRUNI:::”:”

Mosde 1

[Jsb.luanmn |:|l

]m

Imw lllllll

Exgcitor lcpus | GPus CPuUs GPUg '
=] B

() ) = =

LL L .y o

L.

()

Summil Launch node

?Awl Bootstrapper

s O - = -3 [mmgj

e}

Lee, H., Merzky, A., Tan, L., Titov, M., Turilli, M., Alfe, D., Bhati, A., Brace, A., Clyde, A., Coveney, P. and Ma, H., 2021, July. Scalable

HPC & Al infrastructure for COVID-19 therapeutics. In Proceedings of the Platform for Advanced Scientific Computing Conference (pp. 1-
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ML and free energy calculation for lead optimisation

Method:

AGbmd - Optimization —

Free Energy
Calculator

m SMILES (seed), AGging

REINVENT

Generative Al
Model

Density

I I {- 1T 3l SMILES (new), AG estimates

Binding Affinity: AG

% OAK RIDGE

%) ENERGY | I‘W}N =1\




Al and free energy calculations for lead optimisation

Molecular System:

Human tankyrase 2
(TNKS2)

_ /m L % . ;3;% )
o dy & %d, ‘

‘ I
AP N
Hit compound Kg=6+2 ul\/l Hit compound, IC50 = 167 + 60 M

cl QGH Modifications

Nﬂ S*an/g’

O 1% O

WD40 repeat-containing protein 91




Conclusions l?-(l *UCL

> Exascale enables all kinds of combinations of computation to take place
serially and concurrently

» Combine with artificial intelligence methods

> Particularly suitable for the construction of biomedical digital twins
> Including uncertainty quantification (VVUQ)

> Requires advanced workflow management

> Produces actionable and explainable decisions
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