
GPU Profiling:
Performance Timelines with Rocprof and Omnitrace

Suyash Tandon
HIP Lecture Series – 04

October 2nd, 2023

2 |

AMD Profilers

At
ta

in
ab

le
 F

LO
Ps

/s

1000

100

3 |

Agenda – AMD Profilers with timeline profiling support

At
ta

in
ab

le
 F

LO
Ps

/s

1000

100

*Will be covered in
HIP Training Series 05

4 |

Background – AMD Profilers

5 |

Background – AMD Profilers

*Will be covered in
HIP Training Series 05

6 |

Why use a timeline profile

GPU centric
• Visualize the application performance
• Understand the interactions between a program’s operations
• Reveal hidden data transfer and other implicit operations
• Understand multiple stream dependencies and performance

CPU and GPU timelines
• Understand interaction between CPU and GPU
• Understand MPI communication process
• Track memory usage
• See hardware temperatures and frequencies

7 |

What is ROC-Profiler?
• ROC-profiler (also referred to as rocprof) is the command line front-end for AMD's GPU profiling libraries

• Repo: https://github.com/ROCm-Developer-Tools/rocprofiler

• rocprof contains the central components allowing application traces and counter collection
• Under constant development

• Distributed with ROCm

• The output of rocprof can be visualized in the Chrome browser with Perfetto (https://ui.perfetto.dev/)

https://github.com/ROCm-Developer-Tools/rocprofiler
https://ui.perfetto.dev/

8 |

rocprof: Getting Started + Useful Flags

• To get help:
${ROCM_PATH}/bin/rocprof -h

• Useful housekeeping flags:
• --timestamp <on|off> - turn on/off gpu kernel timestamps
• --basenames <on|off> - turn on/off truncating gpu kernel names (i.e., removing template parameters and argument types)
• -o <output csv file> - Direct counter information to a particular file name
• -d <data directory> - Send profiling data to a particular directory
• -t <temporary directory> - Change the directory where data files typically created in /tmp are placed. This allows you to

save these temporary files.
• Flags directing rocprofiler activity:

• -i input<.txt|.xml> - specify an input file (note the output files will now be named input.*)
• --hsa-trace - to trace GPU Kernels, host HSA events (more later) and HIP memory copies.
• --hip-trace - to trace HIP API calls
• --roctx-trace - to trace roctx markers
• --kfd-trace - to trace GPU driver calls

• Advanced usage
• -m <metric file> - Allows the user to define and collect custom metrics. See rocprofiler/test/tool/*.xml on GitHub for

examples.

https://github.com/ROCm-Developer-Tools/rocprofiler/tree/amd-master/test/tool

9 |

rocprof: Kernel Information
• rocprof can collect kernel(s) execution stats

$ /opt/rocm/bin/rocprof --stats --basenames on <app with arguments>

• This will output two csv files:
• results.csv: information per each call of the kernel
• results.stats.csv: statistics grouped by each kernel

• Content of results.stats.csv provides the list of GPU kernels with their durations and percentage of total GPU time:

• In a spreadsheet viewer, it is easier to read:

10 |

rocprof: Collecting Application Traces

• rocprof can collect a variety of trace event types, and generate timelines in JSON format for use with Perfetto,
currently:

• You can combine modes like --hip-trace --hsa-trace
• If profiling OpenMP offload code, --hsa-trace is required to show HSA activity

Trace Event rocprof Trace Mode
HIP API call --hip-trace

GPU Kernels --hip-trace

Host <-> Device Memory copies --hip-trace

CPU HSA Calls --hsa-trace

User code markers --roctx-trace

11 |

rocprof + Perfetto: Collecting and Visualizing Application Traces
• rocprof can collect traces

$ /opt/rocm/bin/rocprof --hip-trace <app with arguments>
This will output a .json file that can be visualized using the chrome browser and Perfetto (https://ui.perfetto.dev/)

Perfetto – timeline visualization tool

• Both rocprof and Omnitrace currently use Perfetto for timeline presentation
• Perfetto is a built-in timeline visualization tool in the Chrome browser
• Original purpose was to profile android applications
• Open-source application from Google®
• Accessed through https://ui.perfetto.dev/ to invoke tool
Does not go over internet
Works even if off-line
No server interaction

• Opens file and reads local profile data in several formats

https://ui.perfetto.dev/
https://ui.perfetto.dev/

12 |

rocprof + Perfetto: Collecting and Visualizing Application Traces
• rocprof can collect traces

$ /opt/rocm/bin/rocprof --hip-trace <app with arguments>
This will output a .json file that can be visualized using the chrome browser and Perfetto (https://ui.perfetto.dev/)

Copy activity (H2D and D2H)

HIP API Activity

GPU activity

https://ui.perfetto.dev/

13 |

Perfetto: Visualizing Application Traces
• Zoom in to see individual events
• Navigate trace using WASD keys

14 |

Perfetto: Kernel Information and Flow Events
• Zoom and select a kernel, you can see the link to the HIP call launching the kernel
• Try to open the information for the kernel (button at bottom right)

15 |

Perfetto: Kernel Information and Flow Events

Kernel name and args

Stream where kernel
was launched in

Duration

16 |

rocprof: Collecting Application Traces with rocTX Markers and Regions

• rocprof can collect user defined regions or markers using rocTX
• Annotate code with roctx regions:

#include <roctx.h>
...

roctxRangePush("reduce_for_c");
reduce_function ();
roctxRangePop();

...

• Annotate code with roctx markers:
...

roctxMark("start of some code");
// some_code
roctxMark("end of some code");

...
• Add roctx and roctracer libraries to link line:

-L${ROCM_PATH}/lib -lroctx64 -lroctracer64

• Profile with --roctx-range option:
$ /opt/rocm/bin/rocprof --hip-trace --roctx-trace <app with arguments>

Roctx Range

Roctx Marker

17 |

rocprof: Collecting Hardware Counters
• rocprof can collect a number of hardware counters and derived counters

• $ /opt/rocm/bin/rocprof --list-basic
• $ /opt/rocm/bin/rocprof --list-derived

• Specify counters in a counter file. For example:
• $ /opt/rocm/bin/rocprof -i rocprof_counters.txt <app with args>
• $ cat rocprof_counters.txt

 pmc : Wavefronts VALUInsts VFetchInsts VWriteInsts VALUUtilization VALUBusy WriteSize
 pmc : SALUInsts SFetchInsts LDSInsts FlatLDSInsts GDSInsts SALUBusy FetchSize
 pmc : L2CacheHit MemUnitBusy MemUnitStalled WriteUnitStalled ALUStalledByLDS LDSBankConflict

• A limited number of counters can be collected during a specific pass of code
• Each line in the counter file will be collected in one pass
• You will receive an error suggesting alternative counter ordering if you have too many / conflicting counters on one line

• A csv file will be created containing all the requested counters for each invocation of every kernel

18 |

rocprof: Commonly Used GPU Counters

Full list at: https://github.com/ROCm-Developer-Tools/rocprofiler/blob/amd-master/test/tool/metrics.xml

https://github.com/ROCm-Developer-Tools/rocprofiler/blob/amd-master/test/tool/metrics.xml

19 |

Performance Counters Tips and Tricks
• GPU Hardware counters are global

• Kernel dispatches are serialized to ensure that only one dispatch is ever in flight
• It is recommended that no other applications are using the GPU when collecting performance counters

• Use --basenames on which will report only kernel names, leaving off kernel arguments

• How do you time a kernel’s duration?
• $ /opt/rocm/bin/rocprof --timestamp on -i rocprof_counters.txt <app with args>
• This produces four times: DispatchNs, BeginNs, EndNs, and CompleteNs
• Closest thing to a kernel duration: EndNs - BeginNs
• If you run with “--stats” the resultant results.stats.csv file will include a kernel duration column

• Note: the duration is aggregated over repeated calls to the same kernel

20 |

rocprof: Multiple MPI Ranks

• rocprof can collect counters and traces for multiple MPI ranks
• Say you want to profile an application usually called like this:

mpiexec –np <n> ./Jacobi_hip –g <x> <y>

• Invoke the profiler by executing:
mpiexec -np <n> rocprof <rocprof_options> ./Jacobi_hip -g <x> <y>
or
srun –-ntasks=n rocprof <rocprof_options> ./Jacobi_hip -g <x> <y>

• By directing output files from each rank to different directories, we can collect traces for each rank
separately
• Use a helper script for this, and run your program as shown below:
mpiexec -np <n> helper_rocprof.sh ./Jacobi_hip -g <x> <y>

• Multi-node profiling currently isn’t supported

21 |

$cat helper_rocprof.sh

#!/bin/bash
set -euo pipefail
depends on ROCM_PATH being set outside; input arguments are the output directory & the name
outdir="$1"
name="$2"
if [[-n ${OMPI_COMM_WORLD_RANK+z}]]; then

 # mpich
 export MPI_RANK=${OMPI_COMM_WORLD_RANK}

elif [[-n ${MV2_COMM_WORLD_RANK+z}]]; then
 # ompi
 export MPI_RANK=${MV2_COMM_WORLD_RANK}

elif [[-n ${SLURM_PROCID+z}]]; then
 export MPI_RANK=${SLURM_PROCID}

else
 echo "Unknown MPI layer detected! Must use OpenMPI, MVAPICH, or SLURM"
 exit 1

fi
rocprof="${ROCM_PATH}/bin/rocprof"

pid="$$"
outdir="${outdir}/rank_${pid}_${MPI_RANK}"
outfile="${name}_${pid}_${MPI_RANK}.csv"
${rocprof} -d ${outdir} --hsa-trace -o ${outdir}/${outfile} "${@:3}"

Profiling Multiple MPI Ranks

AMD Confidential – Provided under NDA to CINES

Filenames annotated with rank as well

Application and its arguments

Output directory per rank

Trace mode

22 |

rocprof: Profiling Overhead
• As with every profiling tool, there is an overhead
• The percentage of the overhead depends on the profiling options used

• For example, tracing is faster than hardware counter collection
• When collecting many counters, the collection may require multiple passes
• With rocTX markers/regions, tracing can take longer and the output may be large

• Sometimes too large to visualize
• The more data collected, the more the overhead of profiling

• Depends on the application and options used

23 |

Summary

• rocprof is the open source, command line AMD GPU profiling tool distributed with ROCm
• Many other tools are built over rocprof
• rocprof provides tracing of GPU kernels, HIP API, HSA API and Copy activity
• rocprof can be used to collect GPU hardware counters with additional overhead
• JSON Traces can be viewed in Perfetto UI
• Other output files are in text/CSV format

24 |

Agenda – AMD Profilers with timeline profiling support

At
ta

in
ab

le
 F

LO
Ps

/s

1000

100

25 |

Omnitrace: Application Profiling, Tracing, and Analysis

Repository: https://github.com/AMDResearch/omnitrace

Not part of ROCm stack

Refer to current documentation for recent updates

https://github.com/AMDResearch/omnitrace
https://amdresearch.github.io/omnitrace/features.html

26 |

Installation (if required)

export OMNITRACE_VERSION=latest
export ROCM_VERSION=5.6.0
export OMNITRACE_INSTALL_DIR=</path/to/your/omnitrace/install>
wget https://github.com/AMDResearch/omnitrace/releases/${OMNITRACE_VERSION}/download/omnitrace-install.py
python3 omnitrace-install.py -p ${OMNITRACE_INSTALL_DIR} --rocm ${ROCM_VERSION}

Set up environment:
source ${OMNITRACE_INSTALL_DIR}/share/omnitrace/setup-env.sh

To use pre-built binaries, select the version
that matches your operating system, ROCm
version, etc.

Select OpenSuse/RHEL operating system
for HPE/AMD system:

omnitrace-1.10.1-rhel-9.0-ROCm-50500-PAPI-
OMPT-Python3.sh

There are .rpm and .deb fpackages along with .sh scripts for installation.

Full documentation: https://amdresearch.github.io/omnitrace/

Note: If installing from source, remember to clone the omnitrace repo recursively

https://github.com/AMDResearch/omnitrace/releases/$%7bOMNITRACE_VERSION%7d/download/omnitrace-install.py
https://amdresearch.github.io/omnitrace/

27 |

Omnitrace instrumentation Modes

For problems, create an issue here: https://github.com/AMDResearch/omnitrace/issues
Documentation: https://amdresearch.github.io/omnitrace/

$ omnitrace [omnitrace-options] -- <CMD> <ARGS>

For more information or help use -h/--help/? flags:

Can also execute on systems using a job scheduler. For example, with
SLURM, an interactive session can be used as:

$ omnitrace -h

$ srun [options] omnitrace [omnitrace-options] -- <CMD> <ARGS>

https://github.com/AMDResearch/omnitrace/issues
https://amdresearch.github.io/omnitrace/

28 |

$ omnitrace-avail -c perfetto
|------------------------------------|-----------------|--|
ENVIRONMENT VARIABLE	VALUE	CATEGORIES
OMNITRACE_PERFETTO_BACKEND	inprocess	custom, libomnitrace, omnitrace, perfetto
OMNITRACE_PERFETTO_BUFFER_SIZE_KB	1024000	custom, data, libomnitrace, omnitrace, perfetto
OMNITRACE_PERFETTO_FILL_POLICY	discard	custom, data, libomnitrace, omnitrace, perfetto
OMNITRACE_TRACE_DELAY	0	custom, libomnitrace, omnitrace, perfetto, profile, timemory, trace
OMNITRACE_TRACE_DURATION	0	custom, libomnitrace, omnitrace, perfetto, profile, timemory, trace
OMNITRACE_TRACE_PERIODS		custom, libomnitrace, omnitrace, perfetto, profile, timemory, trace
OMNITRACE_TRACE_PERIOD_CLOCK_ID	CLOCK_REALTIME	custom, libomnitrace, omnitrace, perfetto, profile, timemory, trace
OMNITRACE_USE_PERFETTO	true	backend, custom, libomnitrace, omnitrace, perfetto
------------------------------------	-----------------	--

Shows all runtime settings that may be tuned for perfetto

Omnitrace Configuration
$ omnitrace-avail --categories [options]

Get more information about run-time settings, data collection capabilities, and available
hardware counters. For more information or help use -h/--help flags:

Collect information for omnitrace-related settings using shorthand -c for --categories :

$ omnitrace-avail -h

$ omnitrace-avail –c perfetto

29 |

Omnitrace Configuration
$ omnitrace-avail --categories [options]

Get more information about run-time settings, data collection capabilities, and available
hardware counters. For more information or help use -h/--help/? flags:

Collect information for omnitrace-related settings using shorthand -c for --categories :

For brief description, use the options:

$ omnitrace-avail -h

$ omnitrace-avail –c omnitrace

$ omnitrace-avail –bd

Create a config file in $HOME:

To add description of all variables and settings, use:

Modify the config file $HOME/.omnitrace.cfg as desired to
enable and change settings:

<snip>
OMNITRACE_USE_PERFETTO = true
OMNITRACE_USE_TIMEMORY = true
OMNITRACE_USE_SAMPLING = false
OMNITRACE_USE_ROCTRACER = true
OMNITRACE_USE_ROCM_SMI = true
OMNITRACE_USE_KOKKOSP = false
OMNITRACE_USE_CAUSAL = false
OMNITRACE_USE_MPIP = true
OMNITRACE_USE_PID = true
OMNITRACE_USE_ROCPROFILER = true
OMNITRACE_USE_ROCTX = true
<snip>

Declare which config file to use by setting the environment:

$ omnitrace-avail –G $HOME/.omnitrace.cfg

$ omnitrace-avail –G $HOME/.omnitrace.cfg --all

$ export OMNITRACE_CONFIG_FILE=/path-
to/.omnitrace.cfg

Contents of the config file

Dynamic Instrumentation
Runtime Instrumentation

31 |

Dynamic Instrumentation – Jacobi Example
Clone jacobi example:

Requires ROCm and MPI install, compile:

Run the non-instrumented code on a single GPU as:

$ make

$ time .mpirun -np 1 ./Jacobi_hip -g 1 1
real 0m2.115s

$ git clone https://github.com/amd/HPCTrainingExamples.git
$ cd HPCTrainingExamples/HIP/jacobi

$ time mpirun -np 1 omnitrace-instrument -- ./Jacobi_hip
-g 1 1

real 1m45.742s

Extra time is the overhead of dyninst reading every binary that
is loaded, not overhead of omnitrace during app execution

Parsing libraries

Functions instrumented

Outputs that will be created

https://github.com/amd/HPCTrainingExamples.git

32 |

$ time mpirun -np 1 omnitrace-instrument -- ./Jacobi_hip
-g 1 1

real 1m45.742s

Here, -v gives a verbose output from omnitrace

$ mpirun -np 1 omnitrace-instrument -v 1 --simulate --
print-available functions -- ./Jacobi_hip -g 1 1

Dynamic Instrumentation – Jacobi Example
Clone jacobi example:

Requires ROCm and MPI install, compile:

Run the non-instrumented code on a single GPU as:

$ make

$ time .mpirun -np 1 ./Jacobi_hip -g 1 1
real 0m2.115s

$ git clone https://github.com/amd/HPCTrainingExamples.git
$ cd HPCTrainingExamples/HIP/jacobi

Functions found in each module
detected by omnitrace

The simulate flag does not run the executable, but only
demonstrates the available functions

https://github.com/amd/HPCTrainingExamples.git

33 |

Dynamic Instrumentation – Jacobi Example
Clone jacobi example:

Requires ROCm and MPI install, compile:

Run the non-instrumented code on a single GPU as:

$ make

$ time .mpirun -np 1 ./Jacobi_hip -g 1 1
real 0m2.115s

$ git clone https://github.com/amd/HPCTrainingExamples.git
$ cd HPCTrainingExamples/HIP/jacobi

Only these two functions
are shown to be
instrumented

Custom include/exclude functions* with -I or -E, resp. For e.g:
$ mpirun -np 1 omnitrace-instrument -v 1 -I

'Jacobi_t::Run' 'JacobiIteration' -- ./Jacobi_hip -g 1 1

$ time mpirun -np 1 omnitrace-instrument -- ./Jacobi_hip
-g 1 1

real 1m45.742s

Include two functions to instrument

$ mpirun -np 1 omnitrace-instrument -v 1 --simulate --
print-available functions -- ./Jacobi_hip -g 1 1

https://github.com/amd/HPCTrainingExamples.git

Dynamic Instrumentation
Binary Rewrite

35 |

Generating a new executable/library with instrumentation built-in:

Binary Rewrite – Jacobi Example

$ omnitrace-instrument [omnitrace-options] –o <new-name-
of-exec> -- <CMD> <ARGS>

This new binary will have instrumented functions

$ omnitrace-instrument -o Jacobi_hip.inst -- ./Jacobi_hip

Path to new instrumented binaryDefault instrumentation is main function and functions of 1024
instructions and more (for CPU)

To instrument routines with 50 or more cycles, add option "-i 50" (more
overhead)

36 |

Binary Rewrite – Jacobi Example

Generates traces for application run

Default instrumentation is main function and functions of 1024
instructions and more (for CPU)

To instrument routines with 50 or more cycles, add option "-i 50"
(more overhead)

Generating a new /library with instrumentation built-in:

Run the instrumented binary:

$ omnitrace-instrument [omnitrace-options] –o <new-
name-of-exec> -- <CMD> <ARGS>

$ omnitrace-instrument -o Jacobi_hip.inst --
./Jacobi_hip

$ mpirun -np 1 omnitrace-run -- ./Jacobi_hip.inst -g
1 1

Binary rewrite is recommended for runs with multiple ranks as
omnitrace produces separate output files for each rank

37 |

List of Instrumented GPU Functions
$ cat omnitrace-Jacobi_hip.inst-output/2023-03-15_13.57/roctracer-0.txt

Roctracer-0.txt shows duration of
HIP API calls and GPU kernels

38 |

Visualizing Trace

Copy perfetto-trace-0.proto to your laptop, go to https://ui.perfetto.dev/, click "Open trace file", select perfetto-trace-0.proto

Traces of CPU functions

CPU metrics

https://ui.perfetto.dev/

39 |

Visualizing Trace

Zoom in to investigate regions of interest

Zoomed in

40 |

Visualizing Trace

Zoom in to investigate regions of interest

Flow Events

Select metrics of interest to view
close together

GPU characteristics

Hardware Counters

42 |

Hardware Counters – List All
$ mpirun –np 1 omnitrace-avail --all

A very small subset of the counters shown here

CPU Hardware Counters
GPU Hardware Counters

Environment
Variables

Components, Categories

43 |

Commonly Used GPU Counters

Full list at: https://github.com/ROCm-Developer-Tools/rocprofiler/blob/amd-master/test/tool/metrics.xml

Create a config file in $HOME:

Modify the config file $HOME/.omnitrace.cfg to add
desired metrics and for concerned GPU#ID:

To profile desired metrics for all participating GPUs:

$ omnitrace-avail –G $HOME/.omnitrace.cfg

…
OMNITRACE_ROCM_EVENTS = GPUBusy:device=0,
Wavefronts:device=0, MemUnitBusy:device=0
…

…
OMNITRACE_ROCM_EVENTS = GPUBusy, Wavefronts,
MemUnitBusy
…

https://github.com/ROCm-Developer-Tools/rocprofiler/blob/amd-master/test/tool/metrics.xml

44 |

Execution with Hardware Counters
(after modifying cfg file to set up OMNITRACE_ROCM_EVENTS with GPU metrics)
$ mpirun -np 1 omnitrace-run -- ./Jacobi_hip.inst -g 1 1

GPU hardware
counters

45 |

Visualization with Hardware Counters

GPU hardware counters

CPU activity

GPU activity

ROCTX Regions

Tracing Multiple Ranks

47 |

Profiling Multiple MPI Ranks – Jacobi Example

All output files are generated for each rank

Generating a new /library with instrumentation built-in:

Run the instrumented binary with 2 ranks:

$ omnitrace-instrument -o Jacobi_hip.inst --
./Jacobi_hip

$ mpirun -np 2 omnitrace-run --./Jacobi_hip.inst -g
2 1

48 |

Visualizing Traces from Multiple Ranks - Separately

Statistical Sampling

50 |

Sampling Call-Stack (I)

OMNITRACE_USE_SAMPLING = false

OMNITRACE_USE_SAMPLING = true; OMNITRACE_SAMPLING_FREQ = 100 (100 samples per second)

Scroll down all the way in Perfetto to see the sampling output!

Each sample shows the
call stack at that time

51 |

Sampling Call-Stack (II)

Zoom in call-stack sampling

Sampling data is annotated with (S)

Other Features

53 |

Kernel Durations
$ cat omnitrace-Jacobi_hip.inst-output/2023-03-15_13.57/wall_clock-0.txt

If you do not see a wall_clock.txt dumped by omnitrace, try modify the config file $HOME/.omnitrace.cfg and
enable OMNITRACE_USE_TIMEMORY:
…
OMNITRACE_USE_PERFETTO = true
OMNITRACE_USE_TIMEMORY = true
OMNITRACE_USE_SAMPLING = false
…

Text file is for quick reference. JSON output is easy to script for and can be read by Hatchet,
a Python package (https://hatchet.readthedocs.io/en/latest/)

Call Stack

Durations

https://hatchet.readthedocs.io/en/latest/

54 |

Kernel Durations (flat profile)

OMNITRACE_USE_TIMEMORY = true
OMNITRACE_FLAT_PROFILE = true

Edit in your omnitrace.cfg:
Use flat profile to see aggregate duration of kernels and
functions

55 |

User API

Omnitrace provides an API to control the instrumentation

API Call Description
int omnitrace_user_start_trace(void) Enable tracing on this thread and all

subsequently created threads
int omnitrace_user_stop_trace(void) Disable tracing on this thread and all

subsequently created threads
int omnitrace_user_start_thread_trace(void) Enable tracing on this specific thread. Does

not apply to subsequently created threads
int omnitrace_user_stop_thread_trace(void) Disable tracing on this specific thread. Does

not apply to subsequently created threads
int omnitrace_user_push_region(void) Start user defined region

int omnitrace_user_pop_region(void) End user defined region, FILO (first in last
out) is expected

All the API calls: https://amdresearch.github.io/omnitrace/user_api.html

https://amdresearch.github.io/omnitrace/user_api.html

56 |

OpenMP®

We use the example omnitrace/examples/openmp/

Build the code with CMake:

Use the openmp-lu binary, which can be executed with:

Create a new instrumented binary:

Execute the new binary:

$ cmake -B build

$ export OMP_NUM_THREADS=4
$ srun –n 1 –c 4 ./openmp-lu

$ srun -n 1 omnitrace-instrument -o openmp-lu.inst --
./openmp-lu

$ srun -n 1 –c 4 omnitrace-run -- ./openmp-lu.inst

57 |

OpenMP® Visualization

58 |

Python™

Python documentation: https://amdresearch.github.io/omnitrace/python.html

The omnitrace Python package is installed in
/path/omnitrace_install/lib/pythonX.Y/site-packages/omnitrace

Setup the environment:

We use the Fibonacci example in
omnitrace/examples/python/source.py

Execute the python program with:

Profiled data is dumped in output directory:

$ export PYTHONPATH=/path/omnitrace/lib/python/site-
packages/:${PYTHONPATH}

$ omnitrace-python ./external.py

$ cat omnitrace-source-output/timestamp/wall_clock.txt

59 |

Visualizing Python™ Perfetto Tracing

60 |

Kokkos
Omnitrace can instrument Kokkos applications too.

Edit the $HOME/.omnitrace.cfg file and enable omnitrace:

Use the openmp-lu binary, which can be executed with:

Profiling with omnitrace produces *kokkos*.txt files:

...
OMNITRACE_USE_KOKKOSP = true
...

$ cat kokkos_memory0.txt

61 |

Visualizing Kokkos with Perfetto Trace

• Visualize perfetto-trace-0.proto (with sampling enabled)

62 |

Other Executables
• omnitrace-sample

• For sampling with low overhead, use omnitrace-sample
• Use omnitrace-sample --help to get relevant options
• Settings in the OmniTrace config file will be used by omnitrace-sample
• Example invocation to get a flat tracing profile on Host and Device (-PTHD), excluding all components (-E all) and

including only rocm-smi, roctracer, rocprofiler and roctx components (-I ...)
mpirun -np 1 omnitrace-sample -PTHD -E all -I rocm-smi -I roctracer -I rocprofiler -I roctx -- ./Jacobi_hip -g 1 1

• omnitrace-causal
• Invokes causal profiling

• omnitrace-critical-trace
• Post-processing tool for critical-trace data output by omnitrace

Current documentation: https://amdresearch.github.io/omnitrace/development.html#executables

https://amdresearch.github.io/omnitrace/development.html

63 |

Tips & Tricks

• My Perfetto timeline seems weird how can I check the clock skew?
• Set OMNITRACE_VERBOSE=1 or higher for verbose mode and it will print the timestamp skew

• It takes too long to map rocm-smi samples to kernels.
• Temporarily set OMNITRACE_USE_ROCM_SMI=OFF

• What is the best way to profile multi-process runs?
• Use OmniTrace's binary rewrite (-o) option to instrument the binary first, run the instrumented binary with

mpirun/srun
• If you are doing binary rewrite and you do not get information about kernels, set:

• HSA_TOOLS_LIB=libomnitrace.so in the env. and set OMNITRACE_USE_ROCTRACER=ON in the cfg file
• My HIP application hangs in different points, what do I do?

• Try to set HSA_ENABLE_INTERRUPT=0 in the environment, this changes how HIP runtime is notified when GPU
kernels complete

• My Perfetto trace is too big, can I decrease it?
• Yes, with v1.7.3 and later declare OMNITRACE_PERFETTO_ANNOTATIONS to false

• I want to remove the many rows of CPU frequency lines from the Perfetto trace
• Declare the OMNITRACE_USE_PROCESS_SAMPLING = false

64 |

Summary

• OmniTrace is a powerful tool to understand CPU + GPU activity
• Ideal for an initial look at how an application runs

• Leverages several other tools and combines their data into a comprehensive output file
• Some tools used are AMD uProf, rocprof, rocm-smi, roctracer, perf, etc.

• Easy to visualize traces in Perfetto

• Includes several features:
• Dynamic Instrumentation either at Runtime or using Binary Rewrite
• Statistical Sampling for call-stack info
• Process sampling, monitoring of system metrics during application run
• Causal Profiling
• Critical Path Tracing

Questions?

66 |

DISCLAIMERS AND ATTRIBUTIONS

The information contained herein is for informational purposes only and is subject to change without notice. While every precaution has been taken
in the preparation of this document, it may contain technical inaccuracies, omissions and typographical errors, and AMD is under no obligation to
update or otherwise correct this information. Advanced Micro Devices, Inc. makes no representations or warranties with respect to the accuracy or
completeness of the contents of this document, and assumes no liability of any kind, including the implied warranties of noninfringement,
merchantability or fitness for particular purposes, with respect to the operation or use of AMD hardware, software or other products described
herein. No license, including implied or arising by estoppel, to any intellectual property rights is granted by this document. Terms and limitations
applicable to the purchase or use of AMD’s products are as set forth in a signed agreement between the parties or in AMD's Standard Terms and
Conditions of Sale. GD-18

THIS INFORMATION IS PROVIDED ‘AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE
CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY
APPEAR IN THIS INFORMATION. AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR
ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY
INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
© 2023 Advanced Micro Devices, Inc. All rights reserved.
AMD, the AMD Arrow logo, Radeon™, Instinct™, EPYC, Infinity Fabric, ROCm™, and combinations thereof are trademarks of Advanced
Micro Devices, Inc. Other product names used in this publication are for identification purposes only and may be trademarks of their
respective companies.

