

Power

Å Traditional voltage
 scaling is over
Å Power now a major
 design constraint
Å Cost of ownership
Å Driving significant
 changes in architecture

Concurrency

Å A billion operations per
 clock
Å Billions of refs in flight
 at all times
Å Will require huge
 problems
Å Need to exploit all
 available parallelism

Programming
Difficulty

Å Concurrency and new
 micro-architectures will
 significantly complicate
 software
Å Need to hide this
 complexity from the users

Resiliency

Å Many more components
Å Components getting less
 reliable
Å Checkpoint bandwidth
 not scaling

Cray Inc. SNL Workshop Apr 9-11 2

·Multi-core was a good first response to power issues

· Performance through parallelism

· Modest clock rate

· Exploit on-chip locality

· However, conventional processor architectures are optimized for single thread
performance rather than energy efficiency

· Fast clock rate with latency(performance)-optimized memory structures

· Wide superscalar instruction issue with dynamic conflict detection

· Heavy use of speculative execution and replay traps

· Large structures supporting various types of predictions

· Relatively little energy spent on actual ALU operations

· Could be much more energy efficient with multiple simple processors,
exploiting vector/SIMD parallelism and a slower clock rate

·.ǳǘ ǎŜǊƛŀƭ ǘƘǊŜŀŘ ǇŜǊŦƻǊƳŀƴŎŜ ƛǎ ǊŜŀƭƭȅ ƛƳǇƻǊǘŀƴǘ ό!ƳŘŀƘƭΩǎ [ŀǿύΥ

· If you get great parallel speedup, but hurt serial performance, then you end up with
a niche processor (less generally applicable, harder to program)

Cray Inc. SNL Workshop Apr 9-11 3

· To achieve scale and sustained performance per {$,watt}, must adopt:

Á Χŀ heterogeneous node architecture

· fast cores for serial code

· many power-efficient cores for parallel code

Á Χŀ ŘŜŜǇΣ ŜȄǇƭƛŎƛǘƭȅ ƳŀƴŀƎŜŘ ƳŜƳƻǊȅ ƘƛŜǊŀǊŎƘȅ

· to better exploit locality, improve predictability, and reduce overhead

Á Χŀ ƳƛŎǊƻŀǊŎƘƛǘŜŎǘǳǊŜ ǘƻ ŜȄǇƭƻƛǘ ǇŀǊŀƭƭŜƭƛǎƳ ŀǘ ŀƭƭ ƭŜǾŜƭǎ ƻŦ ŀ ŎƻŘŜ

· distributed memory, shared memory, vector/SIMD, multithreaded
·όǊŜƭŀǘŜŘ ǘƻ ǘƘŜ άŎƻƴŎǳǊǊŜƴŎȅέ ŎƘŀƭƭŜƴƎŜτleave no parallelism untapped)

Á{ƻǳƴŘǎ ŀ ƭƻǘ ƭƛƪŜ Dt¦ ŀŎŎŜƭŜǊŀǘƻǊǎΧ

Á NVIDIA FermiTM has made GPUs feasible for HPC
Á Robust error protection and strong DP FP, plus programming enhancements

Á Expect GPUs to make continued and significant inroads into HPC
Á Compelling technical reasons
Á High volume market
Á It looks like they can credibly support both masters (graphics and compute)

Á Two issues w/ GPU acceleration: STRUCTURAL and PROGRAMMING

Cray Inc. SNL Workshop Apr 9-11 4

· This is a short-lived situation

· NVIDIA Denver and AMD Fusion

· Try to keep kernel data structures resident in GPU memory

· Avoids copying b/w CPU and GPU; work on GPU-network communication

·May limit breadth of applicability over next 2-3 years

CPU
~100 GF

GPU
~665 GF

32GB
SDRAM

6 GB
GDDR

PCIe-2

8 GB/s

Memory

Capacity

~170 GB/s

Memory

Bandwidth

Flops
main()

~42 GB/s

Bandwidth

and Synchronization

Cray Inc. SNL Workshop Apr 9-11 5

GPU-
CPU

Lower GF

GPU
Higher GF

> 32GB
SDRAM

 < 16 GB
GDDR

Memory

Capacity

Faster GB/s

Memory

Bandwidth

Flops
main()

Slower GB/s

Cray Inc. SNL Workshop Apr 9-11

Slower GB/s

Slower GB/s

6

· Primary issues with programming for GPUs:

· Learn new language/programming model

· Maintain two code bases/lack of portability

· Tuning for complex processor architecture (and split CPU/GPU structure)

· Need a single programming model that is portable across machine types,
and also forward scalable in time

· Portable expression of heterogeneity and multi-level parallelism

· Programming model and optimization should not be significantly difference for
άŀŎŎŜƭŜǊŀǘŜŘέ ƴƻŘŜǎ ŀƴŘ Ƴǳƭǘƛ-core x86 processors

· Allow users to maintain a single code base

· Need to shield user from the complexity of dealing with heterogeneity

· High level language with good complier and runtime support

· Optimized libraries for heterogeneous multicore processors

· Directive-based approach makes sense (OpenACC)

·Getting the division of labor right:

· User should focus on identifying parallelism (we can help with good tools)

· Compiler and runtime can deal with mapping it onto the hardware
Cray Inc. SNL Workshop Apr 9-11 7

accelerators can play a legitimate role in the high performance market.

Cray Inc. SNL Workshop Apr 9-11
From Michael Wolfeôs HPC Article

8

Cray Inc. SNL Workshop Apr 9-11
From Michael Wolfeôs HPC Article

9

http://media.hpcwire.com/images/PGI+Fermi+Block+Diagram+full+size.png
http://media.hpcwire.com/images/PGI+Fermi+Block+Diagram+full+size.png

 Intel MIC NVIDIA Fermi

 MIMD Parallelism 32 32

 SIMD Parallelism 16 16

 Instruction-Level Parallelism 2 1

 Thread Granularity coarse fine

 Multithreading 4 24

 Clock 1.2GHz 1.1GHz

 L1 cache/processor 32KB 64KB

 L2 cache/processor 256KB 24KB

 programming model posix threads/ Directives CUDA kernels/Directives

 virtual memory yes no

 memory shared with host no no

 hardware parallelism
support

no yes

 mature tools yes yes

From Michael Wolfeôs HPC Article
10

·Massively Parallel System with high powered nodes
that exhibit

·Multiple levels of parallelism
·Shared Memory parallelism on the node

·SIMD vector units on each core or thread

·Potentially disparate processing units
·Host with conventional X86 architecture

·Accelerator with highly parallel ς SIMD units

·Potentially disparate memories
·Host with conventional DDR memory

·Accelerator with high bandwidth memory

11

·All MPI may not be best approach

·Memory per core will decrease

·Injection bandwidth/core will decrease

·Memory bandwidth/core will decrease

·Hybrid MPI + threading on node may be able to

·Save Memory

·Reduce amount of off node communication
required

·Reduce amount of memory bandwidth required

12

Blending the
best-of-the-best
into a true hybrid
supercomputer

AMD Series 6200 16-core
Interlagos processors

�E�s�/���/��� ���d���•�o���¡���î�ì-series
many-core processors

Cray Gemini High-
Performance Interconnect

���>�������v�������W���U�����Œ���Ç�[�•���•�����o�����o����
software environment

All this in order
to create a

Production, scalable,
adaptive supercomputer �v
putting our customers on

the road to productive
exascale computing

Cray Inc. SNL Workshop Apr 9-11 13

