

Power

• Traditional voltage
 scaling is over
• Power now a major
 design constraint
• Cost of ownership
• Driving significant
 changes in architecture

Concurrency

• A billion operations per
 clock
• Billions of refs in flight
 at all times
• Will require huge
 problems
• Need to exploit all
 available parallelism

Programming
Difficulty

• Concurrency and new
 micro-architectures will
 significantly complicate
 software
• Need to hide this
 complexity from the users

Resiliency

• Many more components
• Components getting less
 reliable
• Checkpoint bandwidth
 not scaling

Cray Inc. SNL Workshop Apr 9-11 2

 Multi-core was a good first response to power issues

 Performance through parallelism

 Modest clock rate

 Exploit on-chip locality

 However, conventional processor architectures are optimized for single thread
performance rather than energy efficiency

 Fast clock rate with latency(performance)-optimized memory structures

 Wide superscalar instruction issue with dynamic conflict detection

 Heavy use of speculative execution and replay traps

 Large structures supporting various types of predictions

 Relatively little energy spent on actual ALU operations

 Could be much more energy efficient with multiple simple processors,
exploiting vector/SIMD parallelism and a slower clock rate

 But serial thread performance is really important (Amdahl’s Law):

 If you get great parallel speedup, but hurt serial performance, then you end up with
a niche processor (less generally applicable, harder to program)

Cray Inc. SNL Workshop Apr 9-11 3

 To achieve scale and sustained performance per {$,watt}, must adopt:

 …a heterogeneous node architecture

 fast cores for serial code

 many power-efficient cores for parallel code

 …a deep, explicitly managed memory hierarchy

 to better exploit locality, improve predictability, and reduce overhead

 …a microarchitecture to exploit parallelism at all levels of a code

 distributed memory, shared memory, vector/SIMD, multithreaded
 (related to the “concurrency” challenge—leave no parallelism untapped)

 Sounds a lot like GPU accelerators…

 NVIDIA FermiTM has made GPUs feasible for HPC
 Robust error protection and strong DP FP, plus programming enhancements

 Expect GPUs to make continued and significant inroads into HPC
 Compelling technical reasons
 High volume market
 It looks like they can credibly support both masters (graphics and compute)

 Two issues w/ GPU acceleration: STRUCTURAL and PROGRAMMING

Cray Inc. SNL Workshop Apr 9-11 4

 This is a short-lived situation

 NVIDIA Denver and AMD Fusion

 Try to keep kernel data structures resident in GPU memory

 Avoids copying b/w CPU and GPU; work on GPU-network communication

 May limit breadth of applicability over next 2-3 years

CPU
~100 GF

GPU
~665 GF

32GB
SDRAM

6 GB
GDDR

PCIe-2

8 GB/s

Memory

Capacity

~170 GB/s

Memory

Bandwidth

Flops
main()

~42 GB/s

Bandwidth

and Synchronization

Cray Inc. SNL Workshop Apr 9-11 5

GPU-
CPU

Lower GF

GPU
Higher GF

> 32GB
SDRAM

 < 16 GB
GDDR

Memory

Capacity

Faster GB/s

Memory

Bandwidth

Flops
main()

Slower GB/s

Cray Inc. SNL Workshop Apr 9-11

Slower GB/s

Slower GB/s

6

 Primary issues with programming for GPUs:

 Learn new language/programming model

 Maintain two code bases/lack of portability

 Tuning for complex processor architecture (and split CPU/GPU structure)

 Need a single programming model that is portable across machine types,
and also forward scalable in time

 Portable expression of heterogeneity and multi-level parallelism

 Programming model and optimization should not be significantly difference for
“accelerated” nodes and multi-core x86 processors

 Allow users to maintain a single code base

 Need to shield user from the complexity of dealing with heterogeneity

 High level language with good complier and runtime support

 Optimized libraries for heterogeneous multicore processors

 Directive-based approach makes sense (OpenACC)

 Getting the division of labor right:

 User should focus on identifying parallelism (we can help with good tools)

 Compiler and runtime can deal with mapping it onto the hardware
Cray Inc. SNL Workshop Apr 9-11 7

accelerators can play a legitimate role in the high performance market.

Cray Inc. SNL Workshop Apr 9-11
From Michael Wolfe’s HPC Article

8

Cray Inc. SNL Workshop Apr 9-11
From Michael Wolfe’s HPC Article

9

http://media.hpcwire.com/images/PGI+Fermi+Block+Diagram+full+size.png
http://media.hpcwire.com/images/PGI+Fermi+Block+Diagram+full+size.png

 Intel MIC NVIDIA Fermi

 MIMD Parallelism 32 32

 SIMD Parallelism 16 16

 Instruction-Level Parallelism 2 1

 Thread Granularity coarse fine

 Multithreading 4 24

 Clock 1.2GHz 1.1GHz

 L1 cache/processor 32KB 64KB

 L2 cache/processor 256KB 24KB

 programming model posix threads/ Directives CUDA kernels/Directives

 virtual memory yes no

 memory shared with host no no

 hardware parallelism
support

no yes

 mature tools yes yes

From Michael Wolfe’s HPC Article
10

 Massively Parallel System with high powered nodes
that exhibit

 Multiple levels of parallelism
 Shared Memory parallelism on the node

 SIMD vector units on each core or thread

 Potentially disparate processing units
 Host with conventional X86 architecture

 Accelerator with highly parallel – SIMD units

 Potentially disparate memories
 Host with conventional DDR memory

 Accelerator with high bandwidth memory

11

 All MPI may not be best approach

 Memory per core will decrease

 Injection bandwidth/core will decrease

 Memory bandwidth/core will decrease

 Hybrid MPI + threading on node may be able to

 Save Memory

 Reduce amount of off node communication
required

 Reduce amount of memory bandwidth required

12

Blending the
best-of-the-best

into a true hybrid
supercomputer

AMD Series 6200 16-core
Interlagos processors

NVIDIA® Tesla™ 20-series
many-core processors

Cray Gemini High-
Performance Interconnect

CLE and CPE, Cray’s scalable
software environment

All this in order
to create a

Production, scalable,
adaptive supercomputer —
putting our customers on

the road to productive
exascale computing

Cray Inc. SNL Workshop Apr 9-11 13

Cray Inc. SNL Workshop Apr 9-11 14

AMD Series
6200 CPU

NVIDIA Tesla GPU
with 665GF DPFP

1600 MHz DDR3;
16, 32 or 64 GB

6GB GDDR5;
138 GB/s

Cray Gemini High
Speed Interconnect

 Current MICs have 32 Intel processors moving to 50
processors, both of these systems have vector length of 512
bits (8 – 64 bit words of 16-32 bit words)

 While Intel is saying that codes can be compiled directly for
the MIC (Including MPI), one has to be concerned about

 The scalar performance of one of those cores

 The amount of memory on the MIC

 If there is too much scalar code and/or too much memory
required, then the MIC will necessarily be treated like the
other accelerators

 Two disparate memories

 Two disparate computational engines

Cray Inc. SNL Workshop Apr 9-11 15

16 Cray Inc. SNL Workshop Apr 9-11

Cray Inc. SNL Workshop Apr 9-11 17

High density form factor
at less than 225 W

665 GF double precision
floating point with ECC
protection

6 GB of GDDR5
memory available at
138 GB/s

Field upgradeable to Kepler in 2012 for
over 1 TF of peak double precision performance

18 Cray Inc. SNL Workshop Apr 9-11

19 Cray Inc. SNL Workshop Apr 9-11

Pre Upgrade Configuration

Name Jaguar

Architecture XT5

Processor 6-Core AMD

Cabinets 200

Nodes 18,688

Cores/node 12

Total Cores 224,256

Memory/Node 16 GB

Memory/Core 1.3 GB

Interconnect SeaStar2+

GPUs 0

Cray Inc. SNL Workshop Apr 9-11 20

Cray Inc. SNL Workshop Apr 9-11 21

2011 Configuration

Name Jaguar

Architecture XK6

Processor 16-Core AMD

Cabinets 200

Nodes 18,688

Cores/node 16

Total Cores 299,008

Memory/Node 32 GB

Memory/Core 2 GB

Interconnect Gemini

GPUs 960

Cray Inc. SNL Workshop Apr 9-11 22

Final Configuration

Name Titan

Architecture XK6

Processor 16-Core AMD

Cabinets 200

Nodes 18,688

Cores/node 16

Total Cores 299,008

Memory/Node 32 GB

Memory/Core 2 GB

Interconnect Gemini

GPUs TBD(.GE. 20PF)

Customer Documentation and Training

Interlagos

Interlagos Core Definition

• In order to optimize the utilization of the shared and dedicated

resources on the chip for different types of applications, modern

x86 processors offer flexible options for running applications. As a

result, the definition of a core has become ambiguous.

• Definition of a Core for Blue Waters:

– Equivalent to an AMD “Interlagos” Compute Unit, which is an

AMD Interlagos “Bulldozer module” consisting of: one instruction

fetch/decode unit, one floating point scheduler with two FMAC

execution units, two integer schedulers with multiple pipelines

and L1 Dcache, and a L2 cache. This is sometimes also called a

“Core Module.” A “core” = “compute unit” = “core module.”

• Interlagos is composed of a

number of “Bulldozer

modules” or “Compute Unit”

– A compute unit has shared

and dedicated components

 There are two independent

integer units; shared L2 cache,

instruction fetch, Icache; and a

shared, 256-bit Floating Point

resource

– A single Integer unit can

make use of the entire

Floating Point resource with

256-bit AVX instructions

 Vector Length

• 32 bit operands, VL = 8

• 64 bit operands, VL = 4

Interlagos Processor Architecture

Shared L2 Cache

Fetch

Decode

Shared L3 Cache and NB

FP

Scheduler

1
2
8
-b

it
 F

M
A

C

L1 DCache L1 DCache

1
2
8
-b

it
 F

M
A

C

P
ip

e
li
n

e

P
ip

e
li
n

e

P
ip

e
li
n

e

P
ip

e
li
n

e

P
ip

e
li
n

e

P
ip

e
li
n

e

P
ip

e
li
n

e

P
ip

e
li
n

e

Int

Scheduler

Int

Scheduler

Int Core 0 Int Core 1

Dedicated
Components

Shared at the
module level

Shared at
the chip level

• Each processor die is

composed of 4 compute units

– The 4 compute units share a

memory controller and 8MB

L3 data cache

 Each processor die is

configured with two DDR3

memory channels and

multiple HT3 links

Building an Interlagos Processor

S
h

a
re

d
 L

3
 C

a
c
h

e

NB/HT Links Memory Controller

Interlagos Die Floorplan

Interlagos Processor

• Two die are packaged
on a multi-chip
module to form an
Interlagos processor

– Processor socket is
called G34 and is
compatible with Magny
Cours

– Package contains

 8 compute units

 16 MB L3 Cache

 4 DDR3 1333 or 1600
memory channels

S
h

a
re

d
 L

3
 C

a
c
h

e

NB/HT

Links

Memory

Controller

S
h

a
re

d
 L

3
 C

a
c
h

e

NB/HT

Links

Memory

Controller

Interlagos Caches and Memory

• L1 Cache

 16 KB, 4-way predicted, parity protected

 Write-through and inclusive with respect to L2

 4 cycle load to use latency

• L2 Cache

 2MB, Shared within core-module

 18-20 cycle load to use latency

• L3 Cache

 8 MB, non-inclusive victim cache (mostly exclusive)

• Entries used by multiple core-modules will remain in cache

• 1 to 2 MB used by probe filter (snoop bus)

• 4 sub-caches, one close to each compute module

• Minimum Load to latency of 55-60 cycles

• Minimum latency to memory is 90-100 cycles

Two MPI Tasks on a Compute Unit

 ("Dual-Stream Mode")

• An MPI task is pinned to each

integer unit

– Each integer unit has exclusive

access to an integer scheduler,

integer pipelines and L1 Dcache

– The 256-bit FP unit, instruction

fetch, and the L2 Cache are shared

between the two integer units

 256-bit AVX instructions are

dynamically executed as two

128-bit instructions if the 2nd FP

unit is busy

• When to use

– Code is highly scalable to a large

number of MPI ranks

– Code can run with a 2GB per task

memory footprint

– Code is not well vectorized

Shared L2 Cache

Fetch

Decode

FP

Scheduler

1
2
8
-b

it
 F

M
A

C

L1 DCache L1 DCache

1
2
8
-b

it
 F

M
A

C

P
ip

e
li
n

e

P
ip

e
li
n

e

P
ip

e
li
n

e

P
ip

e
li
n

e

P
ip

e
li
n

e

P
ip

e
li
n

e

P
ip

e
li
n

e

P
ip

e
li
n

e

Int

Scheduler

Int

Scheduler

Int Core 0 Int Core 1

MPI Task 0 Shared
Components

MPI Task 1

One MPI Task on a Compute Unit

("Single Stream Mode")

• Only one integer unit is used per

compute unit

– This unit has exclusive access to

the 256-bit FP unit and is capable

of 8 FP results per clock cycle

– The unit has twice the memory

capacity and memory bandwidth in

this mode

– The L2 cache is effectively twice as

large

– The peak of the chip is not reduced

• When to use

– Code is highly vectorized and

makes use of AVX instructions

– Code benefits from higher per task

memory size and bandwidth

Shared L2 Cache

Fetch

Decode

FP

Scheduler

1
2

8
-b

it
 F

M
A

C

L1 DCache L1 DCache

1
2

8
-b

it
 F

M
A

C

P
ip

e
li

n
e

P
ip

e
li

n
e

P
ip

e
li

n
e

P
ip

e
li

n
e

P
ip

e
li
n

e

P
ip

e
li
n

e

P
ip

e
li
n

e

P
ip

e
li
n

e

Integer

Scheduler
Integer

Scheduler

Integer Core

0

Integer Core

1

Idle
Components

Active
Components

One MPI Task per compute unit with Two

OpenMP Threads ("Dual-Stream Mode")

• An MPI task is pinned to a compute

unit

• OpenMP is used to run a thread on

each integer unit

– Each OpenMP thread has exclusive

access to an integer scheduler,

integer pipelines and L1 Dcache

– The 256-bit FP unit and the L2 Cache

is shared between the two threads

– 256-bit AVX instructions are

dynamically executed as two 128-bit

instructions if the 2nd FP unit is busy

• When to use

– Code needs a large amount of

memory per MPI rank

– Code has OpenMP parallelism at each

MPI rank

Shared L2 Cache

Fetch

Decode

FP

Scheduler

1
2
8
-b

it
 F

M
A

C

L1 DCache L1 DCache

1
2
8
-b

it
 F

M
A

C

P
ip

e
li
n

e

P
ip

e
li
n

e

P
ip

e
li
n

e

P
ip

e
li
n

e

P
ip

e
li
n

e

P
ip

e
li
n

e

P
ip

e
li
n

e

P
ip

e
li
n

e

Int

Scheduler

Int

Scheduler

Int Core 0 Int Core 1

OpenMP
Thread 0

Shared
Components

OpenMP
Thread 1

AVX (Advanced Vector Extensions)

• Max Vector length doubled to 256 bit

• Much cleaner instruction set

– Result register is unique from the source registers

– Old SSE instruction set always destroyed a source

register

• Floating point multiple-accumulate

– A(1:4) = B(1:4)*C(1:4) + D(1:4) ! Now one instruction

• Next gen of both AMD and Intel will have AVX

• Vectors are becoming more important, not less

Running in Dual-Stream mode

• Dual-Stream mode is the current default mode on the Cray XE6

systems. General use does not require any options. CPU affinity is

set automatically by ALPS.

• Use the aprun -d option to set the number of OpenMP threads per

process. If OpenMP is not used, no -d option is required. The

aprun –N option is used to specify the number of MPI processes to

assign per compute node. This is generally needed if OpenMP

threads are used and more than one node is used.

Running in Single-Stream mode

• Single-Stream mode is simple to specify on the Cray XE6 systems if
no OpenMP threads are used. The aprun -d option is set to a value

of 2, and CPU affinity is set automatically by ALPS. (Make sure
$OMP_NUM_THREADS is not set, or is set to a value of 1.)

• When OpenMP threads are used, careful setting of the aprun -cc

cpu_list option is required to get the desired CPU affinity. A

cpu_list is map of CPUs to threads. Each process is assigned a

list of CPUs, with one CPU per thread. See the aprun(1) man page

for more details. The aprun –N option is used to specify the

number of MPI processes to assign per compute node. This is

generally needed if more than one node is used in Single-Stream
mode. Also, the environment variable $OMP_NUM_THREADS needs

to be set to the correct number of threads per process.

aprun Examples

• No OpenMP or 1 OpenMP thread per process, 16 processes per

compute node

-d 2

• 2 OpenMP threads per MPI process, 8 processes per compute node

-N 8 -cc 0,2:4,6:8,10:12,14:16,18:20,22:24,26:28,30

• 4 OpenMP threads per MPI process, 4 processes per compute node

-N 4 -cc 0,2,4,6:8,10,12,14:16,18,20,22:24,26,28,30

• 8 OpenMP threads per MPI process, 2 processes per compute node

-N 2 -cc 0,2,4,6,8,10,12,14:16,18,20,22,24,26,28,30

• 16 OpenMP threads per MPI process, 1 process per compute node

-N 1 -cc 0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30

NUMA Considerations

• An XE6 compute node with 2 Interlagos processors has 4 NUMA

memory domains, each with 4 Bulldozer Modules. Access to

memory located in a remote NUMA domain is slower than access to

local memory. Bandwidth is lower, and latency is higher.

• OpenMP performance is usually better when all threads in a process

execute in the same NUMA domain. For the Dual-Stream case, 8

CPUs share a NUMA domain, while in Single-Stream mode 4 CPUs

share a NUMA domain. Using a larger number of OpenMP threads

per MPI process than these values may result in lower performance

due to cross-domain memory access.

aprun Options Summary

Run Type Dual-Stream Single-Stream

No OpenMP
No option

needed
 -d 2 (note: $OMP_NUM_THREADS not set)

2 OpenMP

threads
-N 16 -d 2 -N 8 -cc 0,2:4,6:8,10:12,14:16,18:20,22:24,26:28,30

4 OpenMP

threads
-N 8 -d 4 -N 4 -cc 0,2,4,6:8,10,12,14:16,18,20,22:24,26,28,30

8 OpenMP

threads
-N 4 -d 8 -N 2 -cc 0,2,4,6,8,10,12,14:16,18,20,22,24,26,28,30

16 OpenMP

threads
-N 2 -d 16 -N 1 -cc 0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30

32 OpenMP

threads
-N 1 -d 32 Not Applicable

Cray Inc. SNL Workshop Apr 9-11 39

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

6MB L3

Cache

Greyhound

Greyhound

Greyhound

Greyhound

Greyhound

Greyhound

6MB L3

Cache

Greyhound

Greyhound

Greyhound

Greyhound

Greyhound

Greyhound

6MB L3

Cache

Greyhound

Greyhound

Greyhound

Greyhound

Greyhound

Greyhound

6MB L3

Cache

Greyhound

Greyhound

Greyhound

Greyhound

Greyhound

Greyhound H
T

3

H
T

3

 2 Multi-Chip Modules, 4 Opteron Dies

 8 Channels of DDR3 Bandwidth to 8 DIMMs

 24 (or 16) Computational Cores

 64 KB L1 and 512 KB L2 caches for each core

 6 MB of shared L3 cache on each die

 Dies are fully connected with HT3

 Snoop Filter Feature Allows 4 Die SMP to scale well

To Interconnect

HT3

HT3

HT3

HT1 / HT3

40 Cray Inc. SNL Workshop Apr 9-11

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

6MB L3

Cache

Greyhound

Greyhound

Greyhound

Greyhound

Greyhound

Greyhound

6MB L3

Cache

Greyhound

Greyhound

Greyhound

Greyhound

Greyhound

Greyhound

6MB L3

Cache

Greyhound

Greyhound

Greyhound

Greyhound

Greyhound

Greyhound

6MB L3

Cache

Greyhound

Greyhound

Greyhound

Greyhound

Greyhound

Greyhound H
T

3

H
T

3

 2 Multi-Chip Modules, 4 Opteron Dies

 8 Channels of DDR3 Bandwidth to 8 DIMMs

 24 (or 16) Computational Cores

 64 KB L1 and 512 KB L2 caches for each core

 6 MB of shared L3 cache on each die

 Dies are fully connected with HT3

 Snoop Filter Feature Allows 4 Die SMP to scale well

To Interconnect

HT3

HT3

HT3

HT1 / HT3

41

MPI task

Cray Inc. SNL Workshop Apr 9-11

Run using 1 MPI task on the node

Use OpenMP across all 24 cores

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

6MB L3

Cache

Greyhound

Greyhound

Greyhound

Greyhound

Greyhound

Greyhound

6MB L3

Cache

Greyhound

Greyhound

Greyhound

Greyhound

Greyhound

Greyhound

6MB L3

Cache

Greyhound

Greyhound

Greyhound

Greyhound

Greyhound

Greyhound

6MB L3

Cache

Greyhound

Greyhound

Greyhound

Greyhound

Greyhound

Greyhound H
T

3

H
T

3

 2 Multi-Chip Modules, 4 Opteron Dies

 8 Channels of DDR3 Bandwidth to 8 DIMMs

 24 (or 16) Computational Cores

 64 KB L1 and 512 KB L2 caches for each core

 6 MB of shared L3 cache on each die

 Dies are fully connected with HT3

 Snoop Filter Feature Allows 4 Die SMP to scale well

To Interconnect

HT3

HT3

HT3

HT1 / HT3

42

MPI task MPI task

Cray Inc. SNL Workshop Apr 9-11

Run using 2 MPI tasks on the node

One on Each Die

Use OpenMP across all 12 cores

in the Die

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

6MB L3

Cache

Greyhound

Greyhound

Greyhound

Greyhound

Greyhound

Greyhound

6MB L3

Cache

Greyhound

Greyhound

Greyhound

Greyhound

Greyhound

Greyhound

6MB L3

Cache

Greyhound

Greyhound

Greyhound

Greyhound

Greyhound

Greyhound

6MB L3

Cache

Greyhound

Greyhound

Greyhound

Greyhound

Greyhound

Greyhound H
T

3

H
T

3

 2 Multi-Chip Modules, 4 Opteron Dies

 8 Channels of DDR3 Bandwidth to 8 DIMMs

 24 (or 16) Computational Cores

 64 KB L1 and 512 KB L2 caches for each core

 6 MB of shared L3 cache on each die

 Dies are fully connected with HT3

 Snoop Filter Feature Allows 4 Die SMP to scale well

To Interconnect

HT3

HT3

HT3

HT1 / HT3

43

MPI task

MPI task

MPI task

MPI task

Cray Inc. SNL Workshop Apr 9-11

Run using 4 MPI tasks on the node

One on Each Socket

Use OpenMP across all 6 cores

in the Socket

 MPI or PGAS between nodes and/or sockets

 OpenMP, Pthreads or some other shared memory
parallelism across a portion of the cores on the node

 Vectorization to utilize the SSE# or SIMD units on the
cores

44

1. Provide baseline accelerator environment
 Don’t preclude use of tools developers/programmers are used

to
2. Integrated Programming Environment

 Extension of PE Cray has provided on XT/XE systems
 Provide “bundled” 3rd party commonly used or expected

software (compilers, libraries, tools)
3. Cray integrated programming environment include:

 Greatly enhance the productivity of the programming writing
new applications or porting existing applications to accelerators

 Improve performance of existing applications by exploiting
greater levels of parallelism

 Maintain source compatibility between multi-core and
accelerator versions of the code

45 45 Cray Inc. SNL Workshop Apr 9-11

aka

Finding more parallelism in existing applications

Cray Inc. SNL Workshop Apr 9-11 46

 Fact

 For the next decade all
HPC system will basically
have the same
architecture
 Message passing between nodes

 Multi-threading within the node –
MPI will not do

 Vectorization at the lower level -

 Fact

 Current petascale
applications are not
structured to take
advantage of these
architectures
 Current – 80-90% of application

use a single level of parallelism,
message passing between the
cores of the MPP system

 Looking forward, application
developers are faced with a
significant task in preparing their
applications for the future

Cray Inc. SNL Workshop Apr 9-11 47

 Tools for identifying
additional parallel structures
within the application

 Investigation of looping
structures within a
complex application

 Scoping tools for
investigating the
parallelizability of high
level looping structures

 Tools for maintaining
performance portable
applications

 Supply compiler that
accepts directives from
OpenMP sub-committee
formulating extensions to
target companion
accelerators
 Application developer able to

develop a single code that can run
efficiently on multi-core nodes
with or without accelerator

Cray Inc. SNL Workshop Apr 9-11 48

* Creation of an application that exhibits three levels of
parallelism, MPI between nodes, OpenMP** on the node and
vectorized looping structures

** Why OpenMP? To provide performance portability. OpenMP is
the only threading construct that a compiler can analyze
sufficiently to generate efficient threading on multi-core nodes
and to generate efficient code for companion accelerators.

Cray Inc. SNL Workshop Apr 9-11 49

 Do not read “Automatic” into this presentation, the
Hybridization of an application is difficult and efficient code
only comes with a thorough interaction with the cacciler to
generate the most efficient code and

 High level OpenMP structures

 Low level vectorization of major computational areas

 Performance is also dependent upon the location of the data.
Best case is that the major computational arrays reside on the
accelerator. Otherwise computational intensity of the
accelerated kernel must be significant

Cray’s Hybrid Programming Environment

supplies tools for addressing these issues

Cray Inc. SNL Workshop Apr 9-11 50

 Developers will continue to use MPI between nodes or sockets

 Developers must address using a shared memory
programming paradigm on the node

 Developers must vectorize low level looping structures

 While there is a potential acceptance of new languages for
addressing all levels directly. Most developers cannot afford
this approach until they are assured that the new language will
be accepted and the generated code is within a reasonable
performance range

Cray Inc. SNL Workshop Apr 9-11 51

 Cuda

 OpenCL

 Existing Fortran, C and C++ with extensions

 Pthreads, Thread Building Blocks

 Comment line directives
 OpenMP extensions for Accelerators

All of these programming models require the

application developer to replace MPI within

the node – to develop Hybrid versions of the

application

Cray Inc. SNL Workshop Apr 9-11 52

 Identify high level computational structures that account for a significant
amount of time (95-99%)

 To do this, one must obtain global runtime statistics of the application
 High level call tree with subroutines and DO loops showing inclusive/exclusive time, min, max,

average iteration counts.

 Tools that will be needed

 Advanced instrumentation to measure
 DO loop statistics, iteration counts, inclusive time

 Routine level sampling and profiling

Task 1 – Identification of potential accelerator kernels

Cray Inc. SNL Workshop Apr 9-11
53

Cray Inc. SNL Workshop Apr 9-11

Table 1: Profile by Function Group and Function

 Time% | Time | Imb. | Imb. | Calls |Group

 | | Time | Time% | | Function

 | | | | | PE=HIDE

 100.0% | 50.553984 | -- | -- | 6922023.0 |Total

|--

| 52.1% | 26.353695 | -- | -- | 6915004.0 |USER

||---

|| 16.9% | 8.540852 | 0.366647 | 4.1% | 2592000.0 |parabola_

|| 8.0% | 4.034867 | 0.222303 | 5.2% | 288000.0 |remap_

|| 7.1% | 3.612980 | 0.862830 | 19.3% | 288000.0 |riemann_

|| 3.7% | 1.859449 | 0.094075 | 4.8% | 288000.0 |ppmlr_

|| 3.3% | 1.666590 | 0.064095 | 3.7% | 288000.0 |evolve_

|| 2.6% | 1.315145 | 0.119832 | 8.4% | 576000.0 |paraset_

|| 1.8% | 0.923711 | 0.048359 | 5.0% | 864000.0 |volume_

|| 1.8% | 0.890751 | 0.064695 | 6.8% | 288000.0 |states_

|| 1.4% | 0.719636 | 0.079651 | 10.0% | 288000.0 |flatten_

|| 1.0% | 0.513454 | 0.019075 | 3.6% | 864000.0 |forces_

|| 1.0% | 0.508696 | 0.023855 | 4.5% | 500.0 |sweepz_

|| 1.0% | 0.504152 | 0.027139 | 5.1% | 1000.0 |sweepy_

||===

| 37.9% | 19.149499 | -- | -- | 3512.0 |MPI

||---

|| 28.7% | 14.487564 | 0.572138 | 3.8% | 3000.0 |mpi_alltoall

|| 8.7% | 4.391205 | 2.885755 | 39.7% | 2.0 |mpi_comm_split

||===

| 10.0% | 5.050780 | -- | -- | 3502.0 |MPI_SYNC

||---

|| 6.9% | 3.483206 | 1.813952 | 52.1% | 3000.0 |mpi_alltoall_(sync)

|| 3.1% | 1.567285 | 0.606728 | 38.7% | 501.0 |mpi_allreduce_(sync)

||===
54

Cray Inc. SNL Workshop Apr 9-11

===

 USER / parabola_

 Time% 12.4%

 Time 9.438486 secs

 Imb. Time 0.851876 secs

 Imb. Time% 8.3%

 Calls 0.265M/sec 2592000.0 calls

 PAPI_L1_DCM 42.908M/sec 419719824 misses

 PAPI_TLB_DM 0.048M/sec 474094 misses

 PAPI_L1_DCA 1067.727M/sec 10444336795 refs

 PAPI_FP_OPS 1808.848M/sec 17693862446 ops

 Average Time per Call 0.000004 secs

 CrayPat Overhead : Time 75.3%

 User time (approx) 9.782 secs 21520125183 cycles 100.0% Time

 HW FP Ops / User time 1808.848M/sec 17693862446 ops 10.3%peak(DP)

 HW FP Ops / WCT 1808.848M/sec

 Computational intensity 0.82 ops/cycle 1.69 ops/ref

 MFLOPS (aggregate) 7409042.08M/sec

 TLB utilization 22030.09 refs/miss 43.028 avg uses

 D1 cache hit,miss ratios 96.0% hits 4.0% misses

 D1 cache utilization (misses) 24.88 refs/miss 3.111 avg hits

===

55

Cray Inc. SNL Workshop Apr 9-11

 Loop Loop Loop Loop Function=/.LOOP[.]

 Incl Hit Trips Trips PE=HIDE

 Time Min Max

---------- --------- ----- ------- -----------------------

51.107386 500 0 16 |sweepx2_.LOOP.1.li.34

51.10682 8000 0 16 |sweepx2_.LOOP.2.li.35

50.373481 500 0 16 |sweepx1_.LOOP.1.li.34

50.372915 8000 0 16 |sweepx1_.LOOP.2.li.35

12.480442 1000 0 16 |sweepy_.LOOP.1.li.38

12.478967 16000 0 1 |sweepy_.LOOP.2.li.39

11.949236 500 0 16 |sweepz_.LOOP.05.li.54

11.948618 8000 0 1 |sweepz_.LOOP.06.li.55

5.479066 288000 0 1031 |riemann_.LOOP.2.li.63

3.082245 51168000 0 12 |riemann_.LOOP.3.li.64

1.796424 2592000 0 1032 |parabola_.LOOP.6.li.67

1.503023 2592000 0 1034 |parabola_.LOOP.2.li.30

1.377911 2592000 0 1032 |parabola_.LOOP.7.li.75

1.094964 2592000 0 1033 |parabola_.LOOP.4.li.44

0.815105 288000 0 1025 |remap_.LOOP.7.li.83

0.792899 2592000 0 1032 |parabola_.LOOP.5.li.53

0.76888 2592000 0 1032 |parabola_.LOOP.8.li.84

0.590497 128000 0 64 |sweepx2_.LOOP.3.li.38

0.505536 288000 0 1031 |riemann_.LOOP.1.li.44

0.478305 2592000 0 1034 |parabola_.LOOP.3.li.36

0.465781 2592000 0 1035 |parabola_.LOOP.1.li.24

0.463514 576000 0 1036 |paraset_.LOOP.1.li.117

0.362512 288000 0 1032 |states_.LOOP.2.li.64

0.338868 288000 0 1030 |evolve_.LOOP.4.li.70

0.335398 288000 0 1026 |remap_.LOOP.8.li.111

56

Cray Inc. SNL Workshop Apr 9-11

 100.0% | 117.646170 | 13549032.0 |Total

|---

| 75.4% | 88.723495 | 13542013.0 |USER

||--

|| 10.7% | 12.589734 | 2592000.0 |parabola_

|||---

3|| 7.1% | 8.360290 | 1728000.0 |remap_.LOOPS

4|| | | | remap_

5|| | | | ppmlr_

||||||--

6||||| 3.2% | 3.708452 | 768000.0 |sweepx2_.LOOP.2.li.35

7||||| | | | sweepx2_.LOOP.1.li.34

8||||| | | | sweepx2_.LOOPS

9||||| | | | sweepx2_

10|||| | | | vhone_

6||||| 3.1% | 3.663423 | 768000.0 |sweepx1_.LOOP.2.li.35

7||||| | | | sweepx1_.LOOP.1.li.34

8||||| | | | sweepx1_.LOOPS

9||||| | | | sweepx1_

10|||| | | | vhone_

||||||==

3|| 3.6% | 4.229443 | 864000.0 |ppmlr_

||||--

4||| 1.6% | 1.880874 | 384000.0 |sweepx2_.LOOP.2.li.35

5||| | | | sweepx2_.LOOP.1.li.34

6||| | | | sweepx2_.LOOPS

7||| | | | sweepx2_

8||| | | | vhone_

4||| 1.6% | 1.852820 | 384000.0 |sweepx1_.LOOP.2.li.35

5||| | | | sweepx1_.LOOP.1.li.34

6||| | | | sweepx1_.LOOPS

7||| | | | sweepx1_

8||| | | | vhone_

|||===
57

 Investigate parallelizability of high level looping structures

 Often times one level of loop is not enough, must have
several parallel loops

 User must understand what high level DO loops are in fact
independent.

 Without tools, variable scoping of high level loops is very
difficult
 Loops must be more than independent, their variable usage must adhere to

private data local to a thread or global shared across all the threads

 Investigate vectorizability of lower level Do loops

 Cray compiler has been vectorizing complex codes for over
30 years

Task 2 Parallel Analysis, Scoping and Vectorization

Cray Inc. SNL Workshop Apr 9-11
58

 Current scoping tool, -homp_analyze, is meant to interface to
a code restructuring GUI called “reveal”. This week we need to
use cryptic output and massage it with editor/script.

 In order to utilize scoping tool for loops that contain
procedures the program library need to be employed

 -hwp –hpl=vhone.aid
 This will do an initial pass of the code, checking for error and then at the

load it will build the program library and perform the analysis

 Compiler will be very conservative

 <object_message kind="warn">LastPrivate of array may be
very expensive.</object_message>

Task 2 Parallel Analysis, Scoping and Vectorization (Cont)

Cray Inc. SNL Workshop Apr 9-11
59

Cray Inc. SNL Workshop Apr 9-11

<construct kind="loop" begin_line="54" end_line="119">

 <construct_message kind="warn">Call or I/O at line 100 of sweepz.f90</construct_message>

 <construct_message kind="warn">Call or I/O at line 84 of sweepz.f90</construct_message>

 <object state="known">

 <symbol name="dotflo"/>

 <scope source="compiler"> <shared/> </scope>

 </object>

 <object state="known">

 <symbol name="dt"/>

 <scope source="compiler"> <shared/> </scope>

 </object>

 <object state="known">

 <symbol name="dvol"/>

 <scope source="compiler"> <private first="true" last="true"/> </scope>

 <object_message kind="warn">LastPrivate of array may be very expensive.</object_message>

 </object>

 <object state="known">

 <symbol name="dx"/>

 <scope source="compiler"> <private first="true" last="true"/> </scope>

 <object_message kind="warn">LastPrivate of array may be very expensive.</object_message>

 </object>

 <object state="known">

 <symbol name="dx0"/>

 <scope source="compiler"> <private first="true" last="true"/> </scope>

 <object_message kind="warn">LastPrivate of array may be very expensive.</object_message>

 </object>

 <object state="known">

 <symbol name="e"/>

 <scope source="compiler"> <private first="true" last="true"/> </scope>

 <object_message kind="warn">LastPrivate of array may be very expensive.</object_message>

60

Cray Inc. SNL Workshop Apr 9-11 61

Cray Inc. SNL Workshop Apr 9-11 62

Cray Inc. SNL Workshop Apr 9-11

Private Variables in module, need to use Threadprivate

!$omp threadprivate (r, p, e, q, u, v, w,xa, xa0, dx, dx0, dvol,f, flat,para,radius, theta,

stheta)

real, dimension(maxsweep) :: r, p, e, q, u, v, w ! fluid variables

real, dimension(maxsweep) :: xa, xa0, dx, dx0, dvol ! coordinate values

real, dimension(maxsweep) :: f, flat ! flattening parameter

real, dimension(maxsweep,5) :: para ! parabolic interpolation

coefficients

real :: radius, theta, stheta

Reduction variable down callchain, need to use

!$OMP CRITICAL;!$OMP END CRITICAL

hdt = 0.5*dt

do n = nmin-4, nmax+4

 Cdtdx (n) = sqrt(gam*p(n)/r(n))/(dx(n)*radius)

enddo

!$omp critical

do n = nmin-4, nmax+4

 svel = max(svel,Cdtdx(n))

enddo

!$omp end critical

do n = nmin-4, nmax+4

 Cdtdx (n) = Cdtdx(n)*hdt

 fCdtdx(n) = 1. - fourthd*Cdtdx(n)

enddo

63

Cray Inc. SNL Workshop Apr 9-11 64

Cray Inc. SNL Workshop Apr 9-11 65

Cray Inc. SNL Workshop Apr 9-11 66

Cray Inc. SNL Workshop Apr 9-11 67

Differences in runtime

 All MPI on 4096 cores 43.01 seconds

 Hybrid 256 nodesx16 threads 45.05 seconds

 Things that are different between OpenMP and OpenACC

 Cannot have CRITICAL REGION down callchain

 Cannot have THREADPRIVATE

 Vectorization is much more important

 Cache/Memory Optimization much more important

 No EQUIVALENCE

 Currently both OpenMP and OpenACC must be included in the source

Cray Inc. SNL Workshop Apr 9-11
68

#ifdef GPU

!$acc parallel loop private(k,j,i,n,r, p, e, q, u, v, w, svel0,&

!$acc& xa, xa0, dx, dx0, dvol, f, flat, para,radius, theta, stheta)&

!$acc& reduction(max:svel)

#else

!$omp parallel do private(k,j,i,n,r, p, e, q, u, v, w, svel0,&

!$omp& xa, xa0, dx, dx0, dvol, f, flat, para,radius, theta, stheta)&

!$omp& reduction(max:svel)

#endif

Cray Inc. SNL Workshop Apr 9-11 69

Cray Inc. SNL Workshop Apr 9-11 70

Cray Inc. SNL Workshop Apr 9-11 71

Differences in runtime

 All MPI on 4096 cores 43.01 seconds

 Hybrid 256 nodesx16 threads 45.05 seconds

 Rest Hybrid 256x16 threads 48.03 seconds

Cray Inc. SNL Workshop Apr 9-11 72

Differences in runtime

 All MPI on 4096 cores 43.01 seconds

 Hybrid 256 nodesx16 threads 45.05 seconds

 Rest Hybrid 256x16 threads 47.58 seconds

Cray Inc. SNL Workshop Apr 9-11 73

Differences in runtime

 All MPI on 4096 cores 43.01 seconds

 Hybrid 256 nodesx16 threads 45.05 seconds

 Rest Hybrid 256x16 threads 47.58 seconds

 Developing efficient OpenMP regions is not an easy task;
however, the performance will definitely be worth the effort

 The next step will be to add OpenACC directives to allow for
compilation of the same OpenMP regions to accelerator by the
compiler.

 With OpenACC data transfers between multi-core socket
and the accelerator as well as utilization of registers and
shared memory can be optimized.

 With OpenACC user can control the utilization of the
accelerator memory and functional units.

Cray Inc. SNL Workshop Apr 9-11
74

 Run transformed application on the accelerator and investigate the
correctness and performance

 Run as OpenMP application on multi-core socket
 Use multi-core socket Debugger - DDT

 Run as Hybrid multi-core application across multi-core socket and
accelerator

 Tools That will be needed

 Information that was supplied by the directives/user’s interaction with
the compiler

Cray Inc. SNL Workshop Apr 9-11
75

 The only requirement for using the !$acc parallel loop is that the user
specify the private variables and the compiler will do the rest.

 If subroutine calls are contained in the loop, -hwp must be used.

 The Compiler will then show:

 All data motion required to run the loop on the accelerator.

 Show how it handled the looping structures in the parallel region

Cray Inc. SNL Workshop Apr 9-11
76

#ifdef GPU

!$acc parallel loop private(k,j,i,n,r, p, e, q, u, v, w, svel0,&

!$acc& xa, xa0, dx, dx0, dvol, f, flat, para,radius, theta, stheta)&

!$acc& reduction(max:svel)

#else

!$omp parallel do private(k,j,i,n,r, p, e, q, u, v, w, svel0,&

!$omp& xa, xa0, dx, dx0, dvol, f, flat, para,radius, theta, stheta)&

!$omp& reduction(max:svel)

#endif

Cray Inc. SNL Workshop Apr 9-11 77

 45. #ifdef GPU

 46. G------------< !$acc parallel loop private(k,j,i,n,r, p, e, q, u, v, w, svel0,&

 47. G !$acc& xa, xa0, dx, dx0, dvol, f, flat, para,radius, theta, stheta)&

 48. G !$acc& reduction(max:svel)

 49. G #else

 50. G !$omp parallel do private(k,j,i,n,r, p, e, q, u, v, w, svel0,&

 51. G !$omp& xa, xa0, dx, dx0, dvol, f, flat, para,radius, theta, stheta)&

 52. G !$omp& reduction(max:svel)

 53. G #endif

 55. G g----------< do k = 1, ks

 56. G g 3--------< do j = 1, js

 57. G g 3 theta=0.0

 58. G g 3 stheta=0.0

 59. G g 3 radius=0.0

 62. G g 3 g------< do i = 1,imax

 63. G g 3 g n = i + 6

 64. G g 3 g r (n) = zro(i,j,k)

 65. G g 3 g p (n) = zpr(i,j,k)

 66. G g 3 g u (n) = zux(i,j,k)

 67. G g 3 g v (n) = zuy(i,j,k)

 68. G g 3 g w (n) = zuz(i,j,k)

 69. G g 3 g f (n) = zfl(i,j,k)

 71. G g 3 g xa0(n) = zxa(i)

 72. G g 3 g dx0(n) = zdx(i)

 73. G g 3 g xa (n) = zxa(i)

 74. G g 3 g dx (n) = zdx(i)

 75. G g 3 g p (n) = max(smallp,p(n))

 76. G g 3 g e (n) = p(n)/(r(n)*gamm)+0.5*(u(n)**2+v(n)**2+w(n)**2)

 77. G g 3 g------> enddo

 79. G g 3 ! Do 1D hydro update using PPMLR

 80. G g 3 gr2 I--> call ppmlr (svel0, sweep, nmin, nmax, ngeom, nleft, nright,r, p, e, q, u, v, w, &

 81. G g 3 xa, xa0, dx, dx0, dvol, f, flat, para,radius, theta, stheta)

 82. G g 3

Cray Inc. SNL Workshop Apr 9-11 78

 ftn-6405 ftn: ACCEL File = sweepx1.f90, Line = 46

 A region starting at line 46 and ending at line 104 was placed on the accelerator.

ftn-6418 ftn: ACCEL File = sweepx1.f90, Line = 46

 If not already present: allocate memory and copy whole array "zro" to accelerator, free at line 104

(acc_copyin).

ftn-6418 ftn: ACCEL File = sweepx1.f90, Line = 46

 If not already present: allocate memory and copy whole array "zpr" to accelerator, free at line 104

(acc_copyin).

ftn-6418 ftn: ACCEL File = sweepx1.f90, Line = 46

 If not already present: allocate memory and copy whole array "zux" to accelerator, free at line 104

(acc_copyin).

ftn-6418 ftn: ACCEL File = sweepx1.f90, Line = 46

 If not already present: allocate memory and copy whole array "zuy" to accelerator, free at line 104

(acc_copyin).

ftn-6418 ftn: ACCEL File = sweepx1.f90, Line = 46

 If not already present: allocate memory and copy whole array "zuz" to accelerator, free at line 104

(acc_copyin).

ftn-6418 ftn: ACCEL File = sweepx1.f90, Line = 46

 If not already present: allocate memory and copy whole array "zfl" to accelerator, free at line 104

(acc_copyin).

ftn-6416 ftn: ACCEL File = sweepx1.f90, Line = 46

 If not already present: allocate memory and copy whole array "send1" to accelerator, copy back at line

104 (acc_copy).

 Understand current performance bottlenecks

 Is data transfer between multi-core socket and accelerator a
bottleneck?

 Is shared memory and registers on the accelerator being used
effectively?

 Is the accelerator code utilizing the MIMD parallel units?
 Is the shared memory parallelization load balanced?

 Is the low level accelerator code vectorized?
 Are the memory accesses effectively utilizing the memory bandwidth?

Cray Inc. SNL Workshop Apr 9-11
79

Cray Inc. SNL Workshop Apr 9-11

Table 1: Time and Bytes Transferred for Accelerator Regions

 Acc | Acc | Host | Acc Copy | Acc Copy | Calls |Function

 Time% | Time | Time | In | Out | | PE=HIDE

 | | | (MBytes) | (MBytes) | | Thread=HIDE

 100.0% | 58.363 | 67.688 | 24006.022 | 16514.196 | 14007 |Total

|--

| 30.3% | 17.697 | 0.022 | -- | -- | 1000 |sweepy_.ACC_KERNEL@li.47

| 22.0% | 12.827 | 0.010 | -- | -- | 500 |sweepx2_.ACC_KERNEL@li.46

| 21.2% | 12.374 | 0.013 | -- | -- | 500 |sweepz_.ACC_KERNEL@li.67

| 14.0% | 8.170 | 0.013 | -- | -- | 500 |sweepx1_.ACC_KERNEL@li.46

| 3.9% | 2.281 | 1.161 | 12000.004 | -- | 1000 |sweepy_.ACC_COPY@li.47

| 2.0% | 1.162 | 0.601 | 6000.002 | -- | 500 |sweepz_.ACC_COPY@li.67

| 1.6% | 0.953 | 0.014 | -- | 6000.004 | 1000 |sweepy_.ACC_COPY@li.129

| 1.0% | 0.593 | 0.546 | 3000.002 | -- | 500 |sweepx1_.ACC_COPY@li.46

| 1.0% | 0.591 | 0.533 | 3000.002 | -- | 500 |sweepx2_.ACC_COPY@li.46

| 0.8% | 0.494 | 0.015 | -- | 3000.002 | 500 |sweepx2_.ACC_COPY@li.107

| 0.8% | 0.485 | 0.007 | -- | 3000.002 | 500 |sweepx1_.ACC_COPY@li.104

| 0.8% | 0.477 | 0.007 | -- | 3000.002 | 500 |sweepz_.ACC_COPY@li.150

| 0.4% | 0.250 | 0.016 | -- | 1503.174 | 500 |vhone_.ACC_COPY@li.251

| 0.0% | 0.005 | 0.005 | 6.012 | -- | 1 |vhone_.ACC_COPY@li.205

| 0.0% | 0.001 | 0.000 | -- | 6.012 | 1 |vhone_.ACC_COPY@li.283

| 0.0% | 0.001 | 0.000 | -- | 5.000 | 1 |vhone_.ACC_COPY@li.266

|==

80

Differences in runtime

 All MPI on 4096 cores 43.01 seconds

 Hybrid 256 nodesx16 threads 45.05 seconds

 Rest Hybrid 256x16 threads 47.58 seconds

 OpenACC 256xgpu 105.92 seconds

 Tools that will be needed:

 Compiler feedback on parallelization and vectorization of input
application

 Hardware counter information from the accelerator to identify
bottlenecks in the execution of the application.
 Information on memory utilization

 Information on performance of SIMT units

Several other vendors are supplying similar performance gathering tools

Cray Inc. SNL Workshop Apr 9-11
81

 Craypat profiling
 Tracing: "pat_build -u <executable>" (can do APA sampling first)

 "pat_report -O accelerator <.xf file>"; -T also useful
 Other pat_report tables (as of perftools/5.2.1.7534)

 acc_fu flat table of accelerator events

 acc_time call tree sorted by accelerator time

 acc_time_fu flat table of accelerator events sorted by accelerator time

 acc_show_by_ct regions and events by calltree sorted alphabetically

82 Cray Inc. SNL Workshop Apr 9-11

Cray Inc. SNL Workshop Apr 9-11

Table 1: Profile by Function Group and Function

 Time % | Time |Imb. Time | Imb. | Calls |Group

 | | | Time % | | Function

 | | | | | PE='HIDE'

 | | | | | Thread='HIDE'

 100.0% | 83.277477 | -- | -- | 851.0 |Total

|--

| 51.3% | 42.762837 | -- | -- | 703.0 |ACCELERATOR

||---

|| 18.8% | 15.672371 | 1.146276 | 7.3% | 20.0 |recolor_.SYNC_COPY@li.790not good

|| 16.3% | 13.585707 | 0.404190 | 3.1% | 20.0 |recolor_.SYNC_COPY@li.793not good

|| 7.5% | 6.216010 | 0.873830 | 13.1% | 20.0 |lbm3d2p_d_.ASYNC_KERNEL@li.116

|| 1.6% | 1.337119 | 0.193826 | 13.5% | 20.0 |lbm3d2p_d_.ASYNC_KERNEL@li.119

|| 1.6% | 1.322690 | 0.059387 | 4.6% | 1.0 |lbm3d2p_d_.ASYNC_COPY@li.100

|| 1.0% | 0.857149 | 0.245369 | 23.7% | 20.0 |collisionb_.ASYNC_KERNEL@li.586

|| 1.0% | 0.822911 | 0.172468 | 18.5% | 20.0 |lbm3d2p_d_.ASYNC_KERNEL@li.114

|| 0.9% | 0.786618 | 0.386807 | 35.2% | 20.0 |injection_.ASYNC_KERNEL@li.1119

|| 0.9% | 0.727451 | 0.221332 | 24.9% | 20.0 |lbm3d2p_d_.ASYNC_KERNEL@li.118

83

Cray Inc. SNL Workshop Apr 9-11

!$acc data copyin(cix,ci1,ci2,ci3,ci4,ci5,ci6,ci7,ci8,ci9,ci10,ci11,&

!$acc& ci12,ci13,ci14,r,b,uxyz,cell,rho,grad,index_max,index,&

!$acc& ciy,ciz,wet,np,streaming_sbuf1, &

!$acc& streaming_sbuf1,streaming_sbuf2,streaming_sbuf4,streaming_sbuf5,&

!$acc& streaming_sbuf7s,streaming_sbuf8s,streaming_sbuf9n,streaming_sbuf10s,&

!$acc& streaming_sbuf11n,streaming_sbuf12n,streaming_sbuf13s,streaming_sbuf14n,&

!$acc& streaming_sbuf7e,streaming_sbuf8w,streaming_sbuf9e,streaming_sbuf10e,&

!$acc& streaming_sbuf11w,streaming_sbuf12e,streaming_sbuf13w,streaming_sbuf14w, &

!$acc& streaming_rbuf1,streaming_rbuf2,streaming_rbuf4,streaming_rbuf5,&

!$acc& streaming_rbuf7n,streaming_rbuf8n,streaming_rbuf9s,streaming_rbuf10n,&

!$acc& streaming_rbuf11s,streaming_rbuf12s,streaming_rbuf13n,streaming_rbuf14s,&

!$acc& streaming_rbuf7w,streaming_rbuf8e,streaming_rbuf9w,streaming_rbuf10w,&

!$acc& streaming_rbuf11e,streaming_rbuf12w,streaming_rbuf13e,streaming_rbuf14e, &

!$acc& send_e,send_w,send_n,send_s,recv_e,recv_w,recv_n,recv_s)

 do ii=1,ntimes

 o o o

 call set_boundary_macro_press2

 call set_boundary_micro_press

 call collisiona

 call collisionb

 call recolor

84

Cray Inc. SNL Workshop Apr 9-11

!$acc parallel_loop private(k,j,i)

 do j=0,local_ly-1

 do i=0,local_lx-1

 if (cell(i,j,0)==1) then

 grad (i,j,-1) = (1.0d0-wet)*db*press

 else

 grad (i,j,-1) = db*press

 end if

 grad (i,j,lz) = grad(i,j,lz-1)

 end do

 end do

!$acc end parallel_loop

!$acc update host(grad)

 call mpi_barrier(mpi_comm_world,ierr)

 call grad_exchange

!$acc update device(grad)

But we would rather not send the entire grad array back – how about

85

Cray Inc. SNL Workshop Apr 9-11

!$acc data present(grad,recv_w,recv_e,send_e,send_w,recv_n,&

!$acc& recv_s,send_n,send_s)

!$acc parallel_loop

 do k=-1,lz

 do j=-1,local_ly

 send_e(j,k) = grad(local_lx-1,j ,k)

 send_w(j,k) = grad(0 ,j ,k)

 end do

 end do

!$acc end parallel_loop

!$acc update host(send_e,send_w)

 call mpi_irecv(recv_w, bufsize(2),mpi_double_precision,w_id, &

 tag(25),mpi_comm_world,irequest_in(25),ierr)

 o o o

 call mpi_isend(send_w, bufsize(2),mpi_double_precision,w_id, &

 tag(26),& mpi_comm_world,irequest_out(26),ierr)

 call mpi_waitall(2,irequest_in(25),istatus_req,ierr)

 call mpi_waitall(2,irequest_out(25),istatus_req,ierr)

!$acc update device(recv_e,recv_w)

!$acc parallel

!$acc loop

 do k=-1,lz

 do j=-1,local_ly

 grad(local_lx ,j ,k) = recv_e(j,k)

 grad(-1 ,j ,k) = recv_w(j,k)

86

Cray Inc. SNL Workshop Apr 9-11

 | 37.9% | 236.592782 | -- | -- | 11403.0 |ACCELERATOR

||---

|| 15.7% | 98.021619 | 43.078137 | 31.0% | 200.0 |lbm3d2p_d_.ASYNC_KERNEL@li.129

|| 3.7% | 23.359080 | 2.072147 | 8.3% | 200.0 |lbm3d2p_d_.ASYNC_KERNEL@li.127

|| 3.6% | 22.326085 | 1.469419 | 6.3% | 200.0 |lbm3d2p_d_.ASYNC_KERNEL@li.132

|| 3.0% | 19.035232 | 1.464608 | 7.3% | 200.0 |collisionb_.ASYNC_KERNEL@li.599

|| 2.6% | 16.216648 | 3.505232 | 18.1% | 200.0 |lbm3d2p_d_.ASYNC_KERNEL@li.131

|| 2.5% | 15.401916 | 8.093716 | 35.0% | 200.0 |injection_.ASYNC_KERNEL@li.1116

|| 1.9% | 11.734026 | 4.488785 | 28.1% | 200.0 |recolor_.ASYNC_KERNEL@li.786

|| 0.9% | 5.530201 | 2.132243 | 28.3% | 200.0 |collisionb_.SYNC_COPY@li.593

|| 0.8% | 4.714995 | 0.518495 | 10.1% | 200.0 |collisionb_.SYNC_COPY@li.596

|| 0.6% | 3.738615 | 2.986891 | 45.1% | 200.0 |collisionb_.ASYNC_KERNEL@li.568

|| 0.4% | 2.656962 | 0.454093 | 14.8% | 1.0 |lbm3d2p_d_.ASYNC_COPY@li.100

|| 0.4% | 2.489231 | 2.409892 | 50.0% | 200.0 |streaming_exchange_.ASYNC_COPY@li.810

|| 0.4% | 2.487132 | 2.311190 | 48.9% | 200.0 |streaming_exchange_.ASYNC_COPY@li.625

|| 0.2% | 1.322791 | 0.510645 | 28.3% | 200.0 |streaming_exchange_.SYNC_COPY@li.622

|| 0.2% | 1.273771 | 0.288743 | 18.8% | 200.0 |streaming_exchange_.SYNC_COPY@li.574

|| 0.2% | 1.212260 | 0.298053 | 20.0% | 200.0 |streaming_exchange_.SYNC_COPY@li.759

|| 0.2% | 1.208250 | 0.422182 | 26.3% | 200.0 |streaming_exchange_.SYNC_COPY@li.806

|| 0.1% | 0.696120 | 0.442372 | 39.5% | 200.0 |streaming_exchange_.ASYNC_KERNEL@li.625

|| 0.1% | 0.624982 | 0.379697 | 38.4% | 200.0 |streaming_exchange_.ASYNC_KERNEL@li.525

87

 Compiler feedback:
 -ra to generate *.lst loopmark files (equivalent for C)

 -rd to generate *.cg and *.opt files
 *.cg useful to understand synchronisation points (CAF and ACC)

 "ptxas -v *.ptx" gives information on register and shared
memory usage (no way yet for user to adjust this)

 Runtime feedback (no recompilation needed)
 "export CRAY_ACC_DEBUG=[1,2,3]" commentary to STDERR

 NVIDIA compute profiler works with CUDA and directives
 "export COMPUTE_PROFILE=1"

 gives information on timings and occupancy in separate file
 "more /opt/nvidia/cuda/<version>/doc/Compute_Profiler.txt" for documentation

 Vince Graziano has a great script for summarising the output

88 Cray Inc. SNL Workshop Apr 9-11

 Objective: Enhance productivity related to porting applications to hybrid
multi-core systems

 Four core components

 Cray Statistics Gathering Facility on host and GPU

 Cray Optimization Explorer – Scoping Tools (COE)

 Cray Compilation Environment (CCE)

 Cray GPU Libraries

Cray Inc. SNL Workshop Apr 9-11
89

WL-LSMS
Role of material disorder,
statistics, and fluctuations in
nanoscale materials and
systems.

S3D
How are going to
efficiently burn next
generation diesel/bio
fuels?
.

PFLOTRAN
Stability and viability of large
scale CO2 sequestration;
predictive containment
groundwater transport

CAM / HOMME
Answer questions about specific
climate change adaptation and
mitigation scenarios; realistically
represent features like
precipitation patterns/statistics
and tropical storms

Denovo
Unprecedented high-
fidelity radiation
transport calculations
that can be used in a
variety of nuclear
energy and technology
applications.

LAMMPS
Biofuels: An atomistic model
of cellulose (blue)
surrounded by lignin
molecules comprising a
total of 3.3 million atoms.
Water not shown.

Cray Inc. SNL Workshop Apr 9-11 90

 Structured Cartesian mesh flow solver

 Solves compressible reacting Navier-Stokes, energy and species
conservation equations.
 8th order explicit finite difference method

Developed and maintained at CRF, Sandia (Livermore) with BES and ASCR

sponsorship. PI – Jacqueline H. Chen (jhchen@sandia.gov)

– 4th order Runge-Kutta integrator with error estimator

• Detailed gas-phase thermodynamic, chemistry and
molecular transport property evaluations

• Lagrangian particle tracking

• MPI-1 based spatial decomposition and parallelism

• Fortran code. Does not need linear algebra, FFT or
solver libraries.

Cray Inc. SNL Workshop Apr 9-11 91

 A benchmark problem was defined to closely resemble the target simulation

 52 species n-heptane chemistry and 483 grid points per node

– 483 * 18,500 nodes = 2 billion
grid points

– Target problem would take two
months on today’s Jaguar

• Code was benchmarked and
profiled on dual-hex core XT5

• Several kernels identified and
extracted into stand-alone
driver programs

Chemistry

Core S3D

Cray Inc. SNL Workshop Apr 9-11 92

Team:

 Ramanan Sankaran ORNL

 Ray Grout NREL

 John Levesque Cray

Goals:

 Convert S3D to a hybrid multi-core application suited for a multi-core node with
or without an accelerator.

 Be able to perform the computation entirely on the accelerator.
- Arrays and data able to reside entirely on the accelerator.

- Data sent from accelerator to host CPU for halo communication, I/O and monitoring only.

Strategy:

 To program using both hand-written and generated code.
- Hand-written and tuned CUDA*.

- Automated Fortran and CUDA generation for chemistry kernels

- Automated code generation through compiler directives

 S3D is now a part of Cray’s compiler development test cases

Cray Inc. SNL Workshop Apr 9-11 93

Cray Inc. SNL Workshop Apr 9-11

S3D

Time Step Solve_Drive

Time Step Runge K Integrate

Time Step Runge K RHS

Time Step Runge K
get mass
fraction I,j,k,n_spec loops

Time Step Runge K get_velocity I,j,k,n_spec loops

Time Step Runge K calc_inv_avg I,j,k,n_spec loops

Time Step Runge K calc_temp I,j,k,n_spec loops

Time Step Runge K
Compute
Grads I,j,k,n_spec loops

Time Step Runge K Diffusive Flux I,j,k,n_spec loops

Time Step Runge K Derivatives I,j,k,n_spec loops

Time Step Runge K reaction rates I,j,k,n_spec loops

94

Cray Inc. SNL Workshop Apr 9-11

Table 1: Profile by Function Group and Function

 Time% | Time | Imb. | Imb. | Calls |Group

 | | Time | Time% | | Function

 | | | | | PE=HIDE

 | | | | | Thread=HIDE

 100.0% | 284.732812 | -- | -- | 156348682.1 |Total

|--

| 92.1% | 262.380782 | -- | -- | 155578796.1 |USER

||---

|| 12.4% | 35.256420 | 0.237873 | 0.7% | 391200.0 |ratt_i_.LOOPS

|| 9.6% | 27.354247 | 0.186752 | 0.7% | 391200.0 |ratx_i_.LOOPS

|| 7.7% | 21.911069 | 1.037701 | 4.5% | 1562500.0 |mcedif_.LOOPS

|| 5.4% | 15.247551 | 2.389440 | 13.6% | 35937500.0 |mceval4_

|| 5.2% | 14.908749 | 4.123319 | 21.7% | 600.0 |rhsf_.LOOPS

|| 4.7% | 13.495568 | 1.229034 | 8.4% | 35937500.0 |mceval4_.LOOPS

|| 4.6% | 12.985353 | 0.620839 | 4.6% | 701.0 |calc_temp$thermchem_m_.LOOPS

|| 4.3% | 12.274200 | 0.167054 | 1.3% | 1562500.0 |mcavis_new$transport_m_.LOOPS

|| 4.0% | 11.363281 | 0.606625 | 5.1% | 600.0 |computespeciesdiffflux$transport_m_.LOOPS

|| 2.9% | 8.257434 | 0.743004 | 8.3% | 21921875.0 |mixcp$thermchem_m_

|| 2.9% | 8.150646 | 0.205423 | 2.5% | 100.0 |integrate_.LOOPS

|| 2.4% | 6.942384 | 0.078555 | 1.1% | 391200.0 |qssa_i_.LOOPS

|| 2.3% | 6.430820 | 0.481475 | 7.0% | 21921875.0 |mixcp$thermchem_m_.LOOPS

|| 2.0% | 5.588500 | 0.343099 | 5.8% | 600.0 |computeheatflux$transport_m_.LOOPS

|| 1.8% | 5.252285 | 0.062576 | 1.2% | 391200.0 |rdwdot_i_.LOOPS

|| 1.7% | 4.801062 | 0.723213 | 13.1% | 31800.0 |derivative_x_calc_.LOOPS

|| 1.6% | 4.461274 | 1.310813 | 22.7% | 31800.0 |derivative_y_calc_.LOOPS

|| 1.5% | 4.327627 | 1.290121 | 23.0% | 31800.0 |derivative_z_calc_.LOOPS

|| 1.4% | 3.963951 | 0.138844 | 3.4% | 701.0 |get_mass_frac$variables_m_.LOOPS

95

Cray Inc. SNL Workshop Apr 9-11

S3D

Time Step Solve_Drive

Time Step Runge K Integrate

Time Step Runge K RHS

Time Step Runge K grid loop -omp get mass fraction

Time Step Runge K grid loop-omp get_velocity

Time Step Runge K grid loop-omp calc_inv_avg

Time Step Runge K grid loop-omp calc_temp

Time Step Runge K grid loop-omp Compute Grads

Time Step Runge K grid loop-omp Diffusive Flux

Time Step Runge K grid loop-omp Derivatives

Time Step Runge K grid loop-omp reaction rates
96

Table 1: Profile by Function Group and Function

 Time% | Time | Imb. | Imb. | Calls |Group

 | | Time | Time% | | Function|------------------------

 85.3% | 539.077983 | -- | -- | 144908.0 |USER

||---

|| 21.7% | 136.950871 | 0.583731 | 0.5% | 600.0 |rhsf_

|| 14.7% | 93.237279 | 0.132829 | 0.2% | 600.0 |rhsf_.LOOP@li.1084

|| 8.7% | 55.047054 | 0.309278 | 0.6% | 600.0 |rhsf_.LOOP@li.1098

|| 6.3% | 40.129463 | 0.265153 | 0.8% | 100.0 |integrate_

|| 5.8% | 36.647080 | 0.237180 | 0.7% | 600.0 |rhsf_.LOOP@li.1211

|| 5.6% | 35.264114 | 0.091537 | 0.3% | 600.0 |rhsf_.LOOP@li.194

|| 3.7% | 23.624271 | 0.054666 | 0.3% | 600.0 |rhsf_.LOOP@li.320

|| 2.7% | 17.211435 | 0.095793 | 0.6% | 600.0 |rhsf_.LOOP@li.540

|| 2.4% | 15.471160 | 0.358690 | 2.6% | 14400.0 |derivative_y_calc_buff_r_.LOOP@li.1784

|| 2.4% | 15.113374 | 1.020242 | 7.2% | 14400.0 |derivative_z_calc_buff_r_.LOOP@li.1822

|| 2.3% | 14.335142 | 0.144579 | 1.1% | 14400.0 |derivative_x_calc_buff_r_.LOOP@li.1794

|| 1.9% | 11.794965 | 0.073742 | 0.7% | 600.0 |integrate_.LOOP@li.96

|| 1.7% | 10.747430 | 0.063508 | 0.7% | 600.0 |computespeciesdiffflux2$transport_m_.LOOP

|| 1.5% | 9.733830 | 0.096476 | 1.1% | 600.0 |rhsf_.LOOP@li.247

|| 1.2% | 7.649953 | 0.043920 | 0.7% | 600.0 |rhsf_.LOOP@li.274

|| 0.8% | 5.116578 | 0.008031 | 0.2% | 600.0 |rhsf_.LOOP@li.398

|| 0.6% | 3.966540 | 0.089513 | 2.5% | 1.0 |s3d_

|| 0.3% | 2.027255 | 0.017375 | 1.0% | 100.0 |integrate_.LOOP@li.73

|| 0.2% | 1.318550 | 0.001374 | 0.1% | 600.0 |rhsf_.LOOP@li.376

|| 0.2% | 0.986124 | 0.017854 | 2.0% | 600.0 |rhsf_.REGION@li.1096

|| 0.1% | 0.700156 | 0.027669 | 4.3% | 1.0 |exit

Cray Inc. SNL Workshop Apr 9-11 97

 Create good granularity OpenMP Loop

 Improves cache re-use

 Reduces Memory usage significantly

 Creates a good potential kernel for an accelerator

Cray Inc. SNL Workshop Apr 9-11

98

Cray Inc. SNL Workshop Apr 9-11 99

Cray Inc. SNL Workshop Apr 9-11

S3D

Time Step – acc_data Solve_Drive

Time Step– acc_data Runge K Integrate

Time Step– acc_data Runge K RHS

Time Step– acc_data Runge K grid loop -ACC get mass fraction

Time Step– acc_data Runge K grid loop-ACC get_velocity

Time Step– acc_data Runge K grid loop-ACC calc_inv_avg

Time Step– acc_data Runge K grid loop-ACC calc_temp

Time Step– acc_data Runge K grid loop-ACC Compute Grads

Time Step– acc_data Runge K grid loop-ACC Diffusive Flux

Time Step– acc_data Runge K grid loop-ACC Derivatives

Time Step– acc_data Runge K grid loop-ACC reaction rates
100

Cray Inc. SNL Workshop Apr 9-11

!$acc data copyin(q,volum) shared(yspecies,u,avmolwt,mixMW,temp)

!$acc parallel_loop private(i,ml,mu)

 do i = 1, nx*ny*nz, ms

 ml = i

 mu = min(i+ms-1, nx*ny*nz)

 call get_mass_frac_r(q, volum, yspecies, ml, mu)

 call get_velocity_vec_r(u, q, volum, ml, mu)

 call calc_inv_avg_mol_wt_r(yspecies, avmolwt, mixMW, ml, mu)

 voltmp(ml:mu,1,1)=q(ml:mu,1,1,5)*volum(ml:mu,1,1)

 call calc_temp_r(temp, voltmp, u, yspecies, cpmix, avmolwt, ml, mu)

end do

!$acc end parallel_loop

 ! Start communication - the _prep routines do posts and sends

 ! using buffer identified by itmp

 itmp = 1

!$acc acc_update host(u,temp,yspecies)

 call computeVectorGradient_prep(u, itmp)

 call computeScalarGradient_prep(temp, itmp)

 do n=1,n_spec

 call computeScalarGradient_prep(yspecies(:,:,:,n), itmp)

 enddo

! Compute remaining properties whilst communication is underway

!$acc parallel_loop private(i,ml,mu)

 do i = 1, nx*ny*nz, ms

 ml = i

 mu = min(i+ms-1, nx*ny*nz)

 call calc_gamma_r(gamma, cpmix, avmolwt, ml, mu)

 call calc_press_r(pressure, q(:,:,:,4), temp, avmolwt, ml, mu)

 call calc_specEnth_allpts_r(temp, h_spec, ml, mu)

end do

!$acc end parallel_loop

101

Cray Inc. SNL Workshop Apr 9-11

! Now wait for communication

 call derivative_xyz_wait(itmp)

 calc_buff_internal_wait = .false.

 itmp = 1

!$acc update device(u,temp,yspecies)

 call computeVectorGradient_calc(u, grad_u, itmp)

 call computeScalarGradient_calc(temp, grad_T, itmp)

!$acc parallel_loop private(n,itmp)

 do n=1,n_spec

 itmp = n + 4

 call computeScalarGradient5d_calc(yspecies(1,1,1,n), &

 grad_Ys(1,1,1,1,1), n_spec, n, itmp,sscale_1x,sscale_1y,sscale_1z)

 enddo

!$acc end parallel_loop

!$acc end data

102

 For the next year, until we can call subroutines and
functions on the accelerator, the compiler must inline
all subroutines and functions within a acc_region.

 This is performed automatically by the compiler
 Can be incrementally controlled by using compile line options

 -hwp –hpl=<path to program library>

Cray Inc. SNL Workshop Apr 9-11 103

 There are several things that inhibit the inlining of the
call chain beneath the acc_region

 Call to subroutines and functions that the compiler
does not see

 I/O, STOP, etc (Not anymore)

 Array shape changing through argument passing

 Dummy arguments
 Real*8 dummy(*), dummy_2d(nx,*)

104

 248. !$acc parallel_loop private(i,ml,mu)

 249. 1---------< do i = 1, nx*ny*nz, ms

 250. 1 ml = i

 251. 1 mu = min(i+ms-1, nx*ny*nz)

 252. 1 I call get_mass_frac_r(q, volum, yspecies, ml, mu) ! get Ys from rho*Ys, volum from rho

 253. 1 I call get_velocity_vec_r(u, q, volum, ml, mu) ! fill the velocity vector

 254. 1 I call calc_inv_avg_mol_wt_r(yspecies, avmolwt, mixMW, ml, mu) ! set inverse of mixture MW

 255. 1---------> end do

Cray Inc. SNL Workshop Apr 9-11 105

Cray Inc. SNL Workshop Apr 9-11

 333. 1---------< do n=1,n_spec

 334. 1 itmp = n + 4

 335. 1 !call computeScalarGradient_calc(yspecies(:,:,:,n), grad_Ys(:,:,:,n,:), itmp)

 336. 1 call computeScalarGradient5d_calc(yspecies(1,1,1,n), &

 ^

ftn-3007 ftn: ERROR RHSF, File = rhsf.f90, Line = 336, Column = 12

 Routine "write_date_and_time", referenced in "terminate_run", was not inlined because a scalar actual argument at position 1 is

 being mapped to an array dummy argument.

 ^

ftn-3007 ftn: ERROR RHSF, File = rhsf.f90, Line = 336, Column = 12

 Routine "write_date_and_time", referenced in "terminate_run", was not inlined because a scalar actual argument at position 1 is

 being mapped to an array dummy argument.

 ^

ftn-3007 ftn: ERROR RHSF, File = rhsf.f90, Line = 336, Column = 12

 Routine "write_date_and_time", referenced in "terminate_run", was not inlined because a scalar actual argument at position 2 is

 being mapped to an array dummy argument.

 ^

ftn-3007 ftn: ERROR RHSF, File = rhsf.f90, Line = 336, Column = 12

 Routine "write_date_and_time", referenced in "terminate_run", was not inlined because a scalar actual argument at position 1 is

 being mapped to an array dummy argument.

106

 ^

ftn-3007 ftn: ERROR RHSF, File = rhsf.f90, Line = 336, Column = 12

 Routine "write_date_and_time", referenced in "terminate_run", was not inlined because a scalar actual argument at position 1 is

 being mapped to an array dummy argument.

 ^

ftn-3007 ftn: ERROR RHSF, File = rhsf.f90, Line = 336, Column = 12

 Routine "write_date_and_time", referenced in "terminate_run", was not inlined because a scalar actual argument at position 1 is

 being mapped to an array dummy argument.

 ^

ftn-3007 ftn: ERROR RHSF, File = rhsf.f90, Line = 336, Column = 12

 Routine "write_date_and_time", referenced in "terminate_run", was not inlined because a scalar actual argument at position 2 is

 being mapped to an array dummy argument.

 ^

ftn-3007 ftn: ERROR RHSF, File = rhsf.f90, Line = 336, Column = 12

 Routine "write_date_and_time", referenced in "terminate_run", was not inlined because a scalar actual argument at position 1 is

 being mapped to an array dummy argument.

Cray Inc. SNL Workshop Apr 9-11 107

 ^

ftn-3021 ftn: ERROR RHSF, File = rhsf.f90, Line = 336, Column = 12

 Routine "mpi_finalize", referenced in "terminate_run", was not inlined because the compiler was unable to locate the routine to

 expand it inline.

 ^

ftn-3021 ftn: ERROR RHSF, File = rhsf.f90, Line = 336, Column = 12

 Routine "mpi_barrier", referenced in "terminate_run", was not inlined because the compiler was unable to locate the routine to

 expand it inline.

 ^

ftn-3021 ftn: ERROR RHSF, File = rhsf.f90, Line = 336, Column = 12

 Routine "mpi_wait", referenced in "derivative_y_calc_buff_r", was not inlined because the compiler was unable to locate the

 routine to expand it inline.

 ^

ftn-3021 ftn: ERROR RHSF, File = rhsf.f90, Line = 336, Column = 12

 Routine "mpi_wait", referenced in "derivative_y_calc_buff_r", was not inlined because the compiler was unable to locate the

 routine to expand it inline.

Cray Inc. SNL Workshop Apr 9-11 108

 Currently many compiler internal errors are given
when forms are encountered that inhibit acceleration

 Calls within the acc_region
 These can be identified by using the inliner

 Derived Types
 These are being worked

 Dummy arguments

 Etc.

109

 Finding lots of bugs in tools and compiler

 Cannot fix them until they are identified

 Identified bottleneck in MPI messaging between
GPUs

 This is being addressed by Cray/Nvidia
 Want zero transfer messages – GPU directly to other GPU

 Directives are emerging – changing

 Usage is identifying new capabilities – pipelining

 Future GPUs will have a higher performance
advantage over x86 sockets

Cray Inc. SNL Workshop Apr 9-11 110

111

Performance of S3D Hybrid Code (3/6/12)

The latest version of S3D with OpenMP and OpenACC performs

• 1.2X faster on XK6 with GPU than a dual-CPU XE6

• 1.5X faster on XK6 with GPU than a XK6 without GPU

0

1

2

3

4

5

32-core XE6 16-core XK6 w/o
GPU

16-core XK6 w
Fermi

W
al

lt
im

e
 p

e
r

st
e

p
 (

s)

OpenMP

OpenMP+OpenACC

112

Comparions between OpenMP and OpenACC

Speedup OpenMP Acc Acc Host Acc Copy Acc Copy Calls Function

Time Time% Time Time In Out PE=HIDE

 (MBytes) (MBytes) Thread=HIDE

100.00% 187.783 234.011 148248 81843.75 1960504 Total

--

2.094895 94.22 24.00% 44.976 0.042 -- -- 600 reaction_rate_vec_.ACC_KERNEL@li.165

4.362416 65 7.90% 14.9 0.002 -- -- 100 computecoefficients_r_.ACC_KERNEL@li.141

7.50% 14.074 0.064 77456.25 -- 600 rhsf_.ACC_COPY@li.1806

1.781216 19.8 5.90% 11.116 0.01 -- -- 600 rhsf_.ACC_KERNEL@li.657

2.889151 29.4 5.40% 10.176 0.037 -- -- 600 rhsf_.ACC_KERNEL@li.379

2.527231 25.29 5.30% 10.007 0.039 -- -- 600 rhsf_.ACC_KERNEL@li.1712

0.314012 3.05 5.20% 9.713 0.039 -- -- 600 rhsf_.ACC_KERNEL@li.1810

1.124026 7.93 3.80% 7.055 0.037 -- -- 600 rhsf_.ACC_KERNEL@li.1758

4.46391 25.48 3.00% 5.708 0.037 -- -- 600 rhsf_.ACC_KERNEL@li.419

3.00% 5.627 5.63 -- -- 600 reaction_rate_vec_.ACC_COPY@li.4958

2.90% 5.373 5.376 -- -- 600 rhsf_.ACC_COPY@li.2212

1.70% 3.131 0.008 -- 19490.63 100 integrate_.ACC_COPY@li.74

9.521674 25.48 1.40% 2.676 0.014 -- -- 700 calc_primary_vars_.ACC_KERNEL@li.42

1.40% 2.584 0.086 14175 -- 600 rhsf_.ACC_COPY@li.366

1.20% 2.266 1.526 -- 6496.875 92400 derivative_z_pack_np_.ACC_COPY@li.351

5.925433 13.35 1.20% 2.253 0.008 -- -- 600 rhsf_.ACC_KERNEL@li.989

1.10% 2.104 0.042 -- 12993.75 1800 derivative_y_pack_np_.ACC_COPY@li.429

1.10% 2.104 0.073 -- 12993.75 1800 derivative_x_pack_np_.ACC_COPY@li.433

1.10% 2.053 1.247 -- 6496.875 92400 derivative_z_pack_np_.ACC_COPY@li.340

4.48176 7.74 0.90% 1.727 0.009 -- -- 600 integrate_.ACC_KERNEL@li.113

113

GPU Annotated Timeline

Transport
Coefficients: 7%

Integration loop – 6 times per call to
compute transport coefficients

RHS: 24% … but low GPU
utilization in these kernels,

so could be less.
(We will improve this.)

Reaction
rates: 18%

Derivatives: Kernels only 2%, and
should get near-perfect overlap w/

memcpys. But w/ current
overheads and synchronous

memcpy, currently totals 21%.
(We will fix this.)

Example of missed overlap
opportunity, this one costing 6.5%

of total time. (We will fix this.)

GPU is idle appx. 23% of
total time, largely due to

missing MPI overlap.
(We will improve this.)

114

Future Developments

• Timeline shows where improvements can be obtained

– Asynchronous updates – available this week

– Overlapping MPI with GPU computation - needs

• GPU direct

– Available later in the year

• Use !$acc host_data use_device directive to simply communication between
device and host

– Significantly cleans up code

– Cuda proxy for running multiple MPI ranks on node and sharing
the GPU

• This would be used if the overlap and GPU direct succeeds on fully utilizing
the GPU

115

!$acc host_data use_device

#ifdef GPU

!$acc data present(f)

!$acc host_data use_device(f)

#endif

 if(deriv_z_list(idx)%packed) then

 deriv_z_list(idx)%packed = .false.

 if(deriv_z_list(idx)%neg_nbr>=0) then

 call MPI_ISend(f(1,1,1),(mx*my*iorder/2),&

 MPI_REAL8,deriv_z_list(idx)%neg_nbr,deriv_list_size + idx, &

 gcomm,deriv_z_list(idx)%req(2),ierr)

 endif

 if(deriv_z_list(idx)%pos_nbr>=0) then

 ! send ghost cells to neighbor on (+z) side

 nm = mz + 1 - iorder/2

 call MPI_ISend(f(1,1,nm),(mx*my*iorder/2), &

 MPI_REAL8,deriv_z_list(idx)%pos_nbr,idx, &

 gcomm,deriv_z_list(idx)%req(4),ierr)

 endif

 else

 if(deriv_z_list(idx)%neg_nbr>=0) then

 call MPI_ISend(f(1,1,1),(mx*my*iorder/2),&

 MPI_REAL8,deriv_z_list(idx)%neg_nbr,deriv_list_size + idx, &

 gcomm,deriv_z_list(idx)%req(2),ierr)

 endif

 if(deriv_z_list(idx)%pos_nbr>=0) then

 ! send ghost cells to neighbor on (+z) side

 nm = mz + 1 - iorder/2

 call MPI_ISend(f(1,1,nm),(mx*my*iorder/2), &

 MPI_REAL8,deriv_z_list(idx)%pos_nbr,idx, &

 gcomm,deriv_z_list(idx)%req(4),ierr)

 endif

 endif

#ifdef GPU

!$acc end host_data

!$acc end data

#endif

116

Projections to Kepler

• Key Kepler architectural features that will help us are:

– 1.5x memory bandwidth, which will help key kernels

– 4x as many addressable registers per thread, which cuts register
spilling for top kernels significantly and reduces memory
bandwidth bottleneck

• This is a significant issue in getrates and compute_coefficients – the two
most compute intensive kernels

– Better overlap of concurrent independent tasks, enabling CUDA
proxy feature, which could help us keep GPU busy a higher % of
the time

117

Roberto Ansaloni

Alistair Hart

Cray Performance Symposium, 25.July.11

 A performance case study
 The Himeno benchmark

 Accelerating Himeno using OpenMP directives
 assume you have met these already

 Performance and scaling of the Himeno code

 How to accelerate a code using directives
 A vademecum

 Suitability of codes and examples available

 Useful tools and tricks for accelerator directives

119 Cray Inc. SNL Workshop Apr 9-11

 3D Poisson equation
 19-point stencil

 Highly memory intensive, memory bandwidth bound

 Fortran, C, MPI and OpenMP implementations
available from http://ompc.riken.jp/HPC_e/himenobmt_e.html

 Several configurations available
 Tests on XL configuration: 1024 x 512 x 512

 NVIDIA paper on GPU CUDA implementation
 Phillips, E.H.; Fatica, M.;

Implementing the Himeno benchmark with CUDA on GPU clusters
IEEE International Symposium on Parallel & Distributed Processing
(IPDPS), 2010 [PDF, or ahart@cray.com]

120 Cray Inc. SNL Workshop Apr 9-11

http://accc.riken.jp/HPC_e/himenobmt_e.html
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5470394
mailto:ahart@cray.com

 The stencil is applied to
pressure array p

 Updated pressure values are
saved to temporary array
wrk2

 Control value wgosa is
computed

 In the benchmark this kernel
is iterated a fixed number of
times (nn)

DO K=2,kmax-1

 DO J=2,jmax-1

 DO I=2,imax-1

 S0=a(I,J,K,1)*p(I+1,J, K)

 +a(I,J,K,2)*p(I, J+1,K) &

 +a(I,J,K,3)*p(I, J, K+1) &

 +b(I,J,K,1)*(p(I+1,J+1,K)-p(I+1,J-1,K) &

 -p(I-1,J+1,K)+p(I-1,J-1,K)) &

 +b(I,J,K,2)*(p(I, J+1,K+1)-p(I, J-1,K+1) &

 -p(I, J+1,K-1)+p(I, J-1,K-1)) &

 +b(I,J,K,3)*(p(I+1,J, K+1)-p(I-1,J, K+1) &

 -p(I+1,J, K-1)+p(I-1,J, K-1)) &

 +c(I,J,K,1)*p(I-1,J, K) &

 +c(I,J,K,2)*p(I, J-1,K) &

 +c(I,J,K,3)*p(I, J, K-1) &

 + wrk1(I,J,K)

 SS=(S0*a(I,J,K,4)-p(I,J,K))*bnd(I,J,K)

 WGOSA=WGOSA+SS*SS

 wrk2(I,J,K)=p(I,J,K)+OMEGA *SS

 ENDDO

 ENDDO

ENDDO

121 Cray Inc. SNL Workshop Apr 9-11

fw
d

 n
.n

.
b

k
w

d
 n

.n
.

n
.n

.n
.

 The outer loop is performed a
fixed number of times

 The Jacobi kernel is executed and
new pressure array wrk2 and
control value wgosa are computed

 The array is updated with the new
pressure values

 The halo region values are
exchanged between neighbor PEs

 Send and receive buffers are used

 The maximum control value is
computed with an Allreduce
operation across all the PEs

DO loop = 1, nn

 compute Jacobi kernel wrk2,wgosa

 copy back wrk2 into p

 pack halo from p into send buffers

 exchange halos with neighbour PEs

 unpack halo into p from recv buffers

 Allreduce to sum wgosa across PEs

ENDDO

122 Cray Inc. SNL Workshop Apr 9-11

 Several versions tested, with communication
implemented in MPI or Fortran coarrays

 GPU version using OpenMP Accelerator directives

 Comparing Cray XK6 timings with best Cray XE6
results (hybrid MPI/OpenMP)

 Arrays reside permanently on the GPU memory

 Data transfers between host and GPU are:
 Communication buffers for the halo exchange

 Control value

123 Cray Inc. SNL Workshop Apr 9-11

 Arrays are allocated on the GPU
memory in the main program with
the data directive

 In the subroutines the data
directive is replicated with the
present clause, to use the data
already present in the GPU
memory and avoid extra
allocations

 Since present clause is used, no
acc_copy* clauses are used, and
data transfers to/from host are
implemented by acc_update
directives

PROGRAM himenobmtxp

...

!$acc data shared &

!$acc& (p,a,b,c,wrk1,wrk2,bnd, &

!$acc& sendbuffx_up,sendbuffx_dn, &

!$acc& sendbuffy_up,sendbuffy_dn, &

!$acc& sendbuffz_up,sendbuffz_dn)

...

!$acc end data

SUBROUTINE jacobi(nn,gosa)

!$acc data present &

!$acc& (p,a,b,c,wrk1,wrk2,bnd, &

!$acc& sendbuffx_up,sendbuffx_dn, &

!$acc& sendbuffy_up,sendbuffy_dn, &

!$acc& sendbuffz_up,sendbuffz_dn)

124 Cray Inc. SNL Workshop Apr 9-11

 The GPU kernel for the main loop
is created with the
acc_region_loop directive

 The scoping of the main variables
is specified earlier with the
acc_data directive - no need to
replicated it in here

 wgosa is computed by specifying
the reduction clause, as in a
standard OpenMP parallel loop

 num_pes clause is used to indicate
the number of threads within a
threadblock (compiler default 128)

DO loop=1,nn

 gosa = 0

 wgosa = 0

!$acc parallel_loop &

!$acc& private(s0,ss) &

!$acc& reduction(+:wgosa) &

!$acc& num_pes(2:256)

 DO K=2,kmax-1

 DO J=2,jmax-1

 DO I=2,imax-1

 S0=a(I,J,K,1)*p(I+1,J, K) &

 ...

 wgosa = wgosa + SS*SS

 ENDDO

 ENDDO

 ENDDO

125 Cray Inc. SNL Workshop Apr 9-11

 Halo values are extracted from the
wrk2 array and packed into the
send buffers, on the GPU

 A global parallel is specified and
buffers in the X, Y, and Z directions
are packed within loop blocks

 The send buffers are copied to host
memory with update

 In the same way, after the halo
exchange, the recv buffers are
transferred to the GPU memory
and used to update the array p

 N.B. Currently it’s not possible to
include array sections in
acc_update –buffers are necessary

!$acc parallel

!$acc loop

DO j = 2,jmax-1

 DO i = 2,imax-1

 sendbuffz_dn(i,j)= wrk2(i,j,2)

 sendbuffz_up(i,j)= wrk2(i,j,kmax-1)

 ENDDO

ENDDO

!$acc end loop

 ...

!$acc loop

!$acc end loop

!$acc end parallel

!$acc update &

!$acc& host(sendbuffz_dn,sendbuffz_up)

126 Cray Inc. SNL Workshop Apr 9-11

 Coarrays are used to perform the
halo exchange

 Non-blocking communication
needs pgas defer_sync directive

 Programmer now responsible for
data synchronization

 By deferring sync point, network
comms can be overlapped with
CPU or GPU activity

 Updating p from wrk2 (on GPU)
overlapped with halo exchange

 N.B. no sync all: CAF intrinsic
COSUM has loose synchronisation
(so do need sync memory first).

!dir$ pgas defer_sync

recvbuffz_up(:,:)[myx,myy,myz-1] = &

 sendbuffz_dn(:,:)

 ...

!$acc parallel_loop

DO k = 2,kmax-1

 DO j = 2,jmax-1

 DO i = 2,imax-1

 p(i,j,k) = wrk2(i,j,k)

 ENDDO

 ENDDO

ENDDO

!$acc end parallel_loop

sync memory

gosa = COSUM(wgosa)

!$acc update &

!$acc&

device(recvbuffz_dn,recvbuffz_up)

127 Cray Inc. SNL Workshop Apr 9-11

 Coarrays are used to perform the
halo exchange

 Non-blocking communication
needs pgas defer_sync directive

 Programmer now responsible for
data synchronization

 By deferring sync point, network
comms can be overlapped with
CPU or GPU activity

 Updating p from wrk2 (on GPU)
overlapped with halo exchange

 N.B. no sync all: CAF intrinsic
COSUM has loose synchronisation
(so do need sync memory first).

!dir$ pgas defer_sync

recvbuffz_up(:,:)[myx,myy,myz-1] = &

 sendbuffz_dn(:,:)

 ...

!$omp omp_region_loop

DO k = 2,kmax-1

 DO j = 2,jmax-1

 DO i = 2,imax-1

 p(i,j,k) = wrk2(i,j,k)

 ENDDO

 ENDDO

ENDDO

!$omp end omp_region_loop

sync memory

gosa = COSUM(wgosa)

!$acc acc_update &

!$acc& acc(recvbuffz_dn,recvbuffz_up)

128 Cray Inc. SNL Workshop Apr 9-11

Compiler does not currently support using
coarrays in an accelerator region,

so this does not work!

You need to make a local copy of the coarray
buffers to non-coarray buffers and then transfer

them to GPU memory.

This affects the performance, by increasing the
host CPU time.

 Total number of lines in the original Himeno
MPI-Fortran code: 629

 Total number lines in the modified version
with coarrays and accelerator directives: 554
 don't need MPI_CART_CREATE and the like

 Total number of accelerator directives: 27
 plus 18 "end" directives

129 Cray Inc. SNL Workshop Apr 9-11

 Cray XK6 configuration (vista)
 Single AMD MC12 2.1GHz CPU cores, 12 cores per node

 Nvidia Tesla X2090 GPU, 1 per node

 Running with 1 PE (GPU) per node

 Himeno case XL needs at least 8 Cray XK6 nodes

 Cray XE6 configuration (kaibab)
 Dual AMD MC12 2.1 GHz nodes, 24 cores per node

 Running on fully packed nodes: all cores used

 Depending on the number of nodes, 1-6 OpenMP threads
per PE are used

 All comparisons are for strong scaling
 fixed total problem size

 Nvidia CUDA example is weak scaling
130 Cray Inc. SNL Workshop Apr 9-11

 Node-for-node, Cray XK6 (GPU) outperforms Cray XE6 (CPU)

 CAF/ACC is the faster than MPI/ACC on high number of nodes

 ACC code has slightly worse scalability than MPI/acc
 more on this later

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 32 64 96 128

P
e

rf
o

rm
an

ce
 (

TF
lo

p
/s

)

Number of nodes

Himeno Benchmark - XL configuration

MPI/OMP

MPI/ACC

CAF/ACC

132 Cray Inc. SNL Workshop Apr 9-11

 Cray XK6 is always faster
 Ratio drops on 16 nodes

 On 16 nodes the CPU code gets a superlinear boost due to cache effect

 On 128 nodes GPU code is about 20% faster than CPU code

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

0 32 64 96 128

R
at

io
 t

o
 M

P
I/

O
M

P
 (

h
ig

h
e

r
is

 b
e

tt
e

r)

Number of nodes

Himeno Benchmark - XL configuration

MPI/ACC

CAF/ACC

133 Cray Inc. SNL Workshop Apr 9-11

 Host/GPU transfers always take more time than the halo exchange (network)

 this code would benefit from an efficient direct GPU-GPU communication

 On 128 nodes less than 50% of the time is spent in the GPU compute kernel

 Extra copy of coarray buffers increases the CPU time (potentially avoidable)

 This is why CAF code is slower at low node count

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

8 16 32 64 128

Number of nodes

Himeno benchmark
XL case (1024x512x512)

GPU compute GPU -> Host Halo exchange Host -> GPU CPU

134 Cray Inc. SNL Workshop Apr 9-11

 It has been very simple to implement the GPU code with
OpenMP accelerator directives

 Work has evolved with updates in the (pre-release) compiler
 Always got the right answers

 Occasionally needed workarounds before features implemented

 Compiler team extremely responsive

 Future releases will provide more control of the GPU and
allow for better performance

 Codes where data can permanently reside in GPU memory
will benefit from an efficient direct GPU-GPU communication
 N.B. GPUs not on same PCIe bus

 Many hardware questions need addressing to do this

135 Cray Inc. SNL Workshop Apr 9-11

 Increased overlap of communication and computation
 async clause for accelerator kernels, data transfers will help this

 is there enough work in himeno to really hide the comms?
 we tried precomputing halo regions of temporary array wrk2 for earlier halo exchange

 allows better overlap with GPU computation (interior of wrk2, copy of wrk2 into p)

 so far this has not improved code performance

 measuring overlap is not easy

 Better tuning of GPU kernels

 A distributed CUDA implementation should be implemented
to verify the efficiency of the OpenMP for Accelerator
directives

136 Cray Inc. SNL Workshop Apr 9-11

Thank you. Questions?

