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Solutions for Electronic Structure 

• Make an intelligent guess for the basis set for        
HF, MP2, CCSD(T) … Full CI (QC) 

• Map N-body problem to N 1-body problem and use 
effective              & one-body orbitals    s and find  

Density Functional Theory & KS Scheme (DFT) 
• Make a reasonable guess for       and throw dice to 

estimate the properties 
Continuum Quantum Monte Carlo (QMC) 

 

Variational principle: 



Basics of QMC for ES 
For N-electron system 

Many-body  
Hamiltonian 

Many-body trial wavefunction 

QMC 



QMC methods employ 
• , compact, fast to compute, and accurate 
• Efficient stochastic sampling to generate large M 

 

Variational Monte Carlo (VMC) 

 
Diffusion Monte Carlo (DMC) 

Essentials of QMC 
Note that 

Variational  
parameters 



Efficiency of QMC 
• QMC employs sampling to obtain 

 
 
with an error bar 

 
 

• Efficiency of QMC simulations is high, when 
- Variance is small: 

 
-         , the rate of MC sample generation is high 

(zero-variance) 

variance 

Physical insights & improved optimization 

Parallelism,  compact form of       & optimized kernels 



Accelerating QMC 

• Better  
 

Single-particle orbitals 

Anti-symmetric function 
(Pauli principle) 

Correlation (Jastrow) 

SPOs 
Basis sets: molecular orbitals, 
plane-wave and grid-based 
orbitals 



Accelerating QMC 

• Better  
 
• Improved algorithms  
 

• einspline library, http://einspline.svn.sourceforge.net/ 
• Clark et al., JCP 135 244105 (2011) 
• Umrigar, et. al., PRL 98,110201 (2007) 

Optimization of  

http://einspline.svn.sourceforge.net/�


Evaluating single-particle orbitals 
• In QMC, we evaluate orbitals at a specific point in space 

• Most other methods evaluate integrals over all space directly 
• We find 3D cubic B-spline basis is fastest for large systems 

• Basis elements are strictly local 
• Only 64 elements are nonzero at each point 

 
• Per-orbital evaluation time is independent of N 
• Table is constructed only once and read-only 

2D 1D 

a,b,c piecewise cubic 
polynomials 



Accelerating QMC 

• Better  
 
• Improved algorithms  
 

• einspline library, http://einspline.svn.sourceforge.net/ 
• Clark et al., JCP 135 244105 (2011) 
• Umrigar, et. al., PRL 98,110201 (2007) 

Optimization of  
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Accelerating QMC 

• Better  
 
• Improved algorithms  

 
• Faster computers 

 
• Bigger computers 

 

Increase the QMC efficiency 
Minimize time-to-solution 
(wall-clock time) to reach a 
target error bar  
 

More science 



State-of-art QMC 
• Fast algorithm for multi-determinant evaluation 
• Improved energy minimization in VMC 
• QMCPACK: efficient and scalable QMC for large clusters of 

multi-core and GPUs 
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Complete QMC 
workflow in an hour 
using 4800 cores 



Characteristics of QMC 
DMC pseudo code  • Ample opportunity for parallelism 

- Configurations 
- K-point  
- Walker parallelization 
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• Freedom in 
- Compute vs Memory   

 

• Computationally demanding 
- Ratio, update & Local energy 
- Random access 
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- Configurations 
- K-point  
- Walker parallelization 

 

• Freedom in 
- Compute vs Memory   

 

• Computationally demanding 
- Ratio, update & Local energy 
- Random access 

 
 

 

• Communication light but need to 
- Global sum 
- Load balance 

 



Why (not) QMC on GPUs? 

% of Kernel 

• Profile on Xeon 5400 (Harpertown) 
 
 

 
 
Observations 
• B-spline 30-50 % of total run time 

• Random access 
• Few flops per load, memory bandwidth limited 
• Memory use grows with the problem size N2 

• No other dominant kernels 
• Many kernels and various code paths depending on a 

problem and physical representations at run time 
• No library routines 

• For a walker, the parallelism is limited by N 
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Observations 
• B-spline 30-50 % of total run time 

• Random access 
• Few flops per load, memory bandwidth limited 
• Memory use grows with the problem size N2 

• No other dominant kernels 
• Many kernels and various code paths depending on a 

problem and physical representations at run time 
• No library routines 

• For a walker, the parallelism is limited by N ~ 10-100 
 



QMC on GPU 

Loops 

* Esler, Kim, Shulenburger & Ceperley, CISE (2010) 

• Restructure the algorithm and 
data structure to expose & 
exploit parallelisms   

multiple walkers per kernels 
 



QMC on GPU 

Loops 

* Esler, Kim, Shulenburger & Ceperley, CISE (2010) 

• Restructure the algorithm and 
data structure to expose & 
exploit parallelisms   

multiple walkers per kernels 
 
• Mixed precision sufficient for 

the target accuracy 
• Higher-level implementation 

intact 
• MPI for load balancing & 

reductions : sustain high 
parallel efficiency 



Performance Results 

 CPU is in double precision, GPU is in mixed precision 
 Optimal throughput with large system, many walkers 
 With large system, speed is above 5 NUMA nodes 
 Limited by memory but workaround possible 
Data taken on Keeneland at NICS, 2012 

Speedup wrt hex-core X5560  
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Performance Analysis 
% of Kernel 

• B-spline: bandwidth limited on CPU & GPU 
• Inverse update : bandwidth limited on GPU 
• Inverse on GPU: periodic re-computation for accuracy 
• Others: compute limited, C++ compiler limited on CPU 



Inverse matrices 
• Determinant ratios and derivatives use inverse of the 

determinant matrix 
• Only one row changes at a time: use an update formula 

 
 

 
 

 
• Requires matrix-vector product, then adding an outer 

product to A-1 

• Dominant computation only 1 FLOP per load/store → 
bandwidth limited 

• Matrices fit in CPU cache:  GPU speedup is relatively poor 

matvec 
outer 
product 



Moving forward 

• Obtained the speedup as expected by the bandwidth 
and peak FLOPS 
 

• Enable larger systems to be simulated 
• Use GPU peer-to-peer to allow distribution of read-only 

orbital dataset between GPUs on same node 
• Reduce the time-to-solution, fewer walkers/GPU 

• Launch several kernels in parallel 
• Fast atomics to communicate between blocks 
• Facilitated by newer GPUs and CUDA 

• Utilize CPU as well 
• Breakthrough science 



Challenges 

• New methods and algorithms 
– E.g., current algorithms and data structure on 

GPUs are not ideal for the fast algorithm for 
massive multi-determinant expansions 

 
 

• Programming models and software environments for 
productivity: need portable and efficient solutions on 
multiple platforms, now and future 

10-100 times more 
expensive than M=1 



Acknowledgements 
Supported by 
• QMC Endstation (DOE-ASCR) 
• PetaApps (NSF-DMR, OCI) 
• Materials Computation Center, University of Illinois (NSF-DMR) 
• Center for Defect Physics, ORNL (DOE-BES) 
• ORNL LDRD (DOE-ASCR) 
• National Center for Supercomputing Applications (NSF) 

 
Computing resources provided by 
• Oak Ridge Leadership Computing Facility (OLCF) 
• NSF Teragrid facilities at NCSA, NICS, PSC and TACC 
• National Energy Research Scientific Computing Center (NERSC) 
• Argon Leadership Computing Facility (ALCF) 

 
 



Parallel Scaling on multiple GPUs 
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Parallel Performance 
• DMC scaling is almost perfect , > 90% efficiency 

• Limited by collectives for 
• 1 MPI to 1 GPU mapping 

• Acceleration allows more walkers per MPI 
• Large average number of walkers per MPI task, thus small 

fluctuations : easy to balance walkers per node 
 
 



QMCPACK: QMC for HPC 
• Implements essential QMC algorithms and best practices 

developed over 20yrs+ 
• Designed for large-scale QMC simulations of molecules, 

solids and nanostructures on massively parallel machine 
- (OpenMP,CUDA)/MPI Hybrid parallelization 
- Object-oriented and generic programming 

• Apply software engineering 
- Reusable and extensible solution for new development 
- Standard open-source libraries and utilities for development, 

compilation and execution 
- Portable and scalable I/O with XML/HDF5 

http://qmcpack.cmscc.org 



QMC advantages: accuracy and scalability 
• Address high-dimensionality through stochastic sampling 
• Exact for bosons, very accurate for fermions 
• Applicable to a wide range of problems 

• Any boundary conditions: molecular and solid-state 
systems 

• Dimensionality: 1D, 2D, and 3D 
• Representation: atomistic to model Hamiltonians 

• Scale with a few powers in system size: O(N3)-O(N4) 
• Routine calculations of 100s-1000s electrons  

• Ample opportunities of parallelism 
 

QMC has enabled accurate predictions of correlated electronic 
systems: plasmas to molecules to solids; insulators to highly 
correlated metals 



Evaluating 3D B-splines 
• First, evaluate 64 basis elements 

 
• 1D functions are piecewise cubic polynomials 

• Then, do matrix-vector product with orbital index fastest 
• Value:  2 FLOPS per load:  bandwidth limited, 75 GB/s on T10 
• Value, gradient, and Hessian: 20 FLOPS per load  216 GFLOPS 

(SP) 

~256 walkers 
x 



Lessons learned 
• Many kernels to port 

– No single major kernel 
– Multiple forms of  
– Subset of functionality 
– ~100 CUDA kernels  (10K lines of the code) 

• Algorithms and data restructuring 
– Optimize memory use  
– Allocations and anonymous buffers for bulk  transfer 

• Debugging stochastic method is hard but OO 
programming helps 

• No software infrastructure in 2010 
– Much has improved but code re-use is questionable 

 



Recent QMC Development*  
• Advances in trial wave functions 

– Backflow, geminals (BCS-type) and Pfaffians 
– Improved        from various electronic structure methods 
– Efficient representation of       : PWs, MOs, bspline, blips 

• Advances in optimizations 
– Energy minimization in VMC [1] 
– Node optimization in DMC [2] 

• Finite-size corrections in solids 
• Efficient and scalable QMC algorithms and codes 
 
* Review in SciDac 2008, QMC Endstation team; [1] Umrigar, et. al., 

PRL 98,110201 (2007); [2] Reboredo, et. al., PRB 79, 195117 
(2009)  
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