
To write or rewrite

Theresa L. Windus
Department of Chemistry & Ames Laboratory

Iowa State University
(with a cast of characters – Mark Gordon,

Andrey Asadchev, George Schoendorff and
Sarom Sok Leang)

QM CHALLENGE

• High cost of electronic structure calculations
– HF, hybrid DFT scale ~N4 (N = # basis functions)

• Up to 1,000 atoms
• Analytic gradients, Hessians available

– MP2 scales ~N5
• ~100 atoms
• Analytic gradients, Hessians available

– CCSD(T) & related methods scale ~N7
• 27=128
• 10-20 atoms
• Analytic gradients available

• There are many possible solutions

To write or rewrite

• Write from scratch

• Use code generation, templating and meta-programming
with C++ to enable flexibility and adaptability

• Rewrite with existing code (GAMESS)
• Try to take advantage of acceleration for ~2 million lines

of code

• Make use of C++ templates & automatically generated code
– Python-based Cheetah code generation engine
– BOOST libraries
– OpenMP with CUDA

• Human hands-on code small: ~ 2,000 lines of code for the
integral code (rest is generated)

• Final library size small: ~ 5 MB fully optimized

• Code kept small due to objects & generic templates

• GPU implementation for integrals driven by angular
momentum & contraction order

Choice for write

Molecule Specification
•List of Atoms (Atomic Numbers Z)
•List of Nuclear Coordinates (R)

• Number of electrons
•List of Primitive Functions,

exponents
• Number of contractions

 Form the basis functions (M)

ERI
Two Electron Repulsion

Integral
(µν|λσ)

O(M3) to O(M4)

Hcore

(one-electron integrals)
Kinetic Energy Integrals

(T)
Nuclear Attraction

Integrals (V)

cheap one-time
operation

•Required in every iteration
•Very Expensive operation
•Stored procedures not
scalable
•Re-compute in every iteration
•Good target for GPU

Initial guess of the wave
function

Obtain the guess at the
Density Matrix (P)

O(M2)

Form the Fock Matrix
F = Hcore + G

G – Matrix
 O(M2)

G = [(ij|kl) – ½(ik|jl)]*P

Convergence
Checks

Stop

Transformations
F’ = X’FX

C’ Diagonalize(F’)
C XC’

1

2

3

4 4

5

6

7

yes

No

Update the density
matrix from C

Repeat steps 4, 5, 6, 7

8

Summary of
Hartree-Fock

Procedure

INTEGRAL TIMINGS

HARTREE-FOCK

• Organize atomic basis into blocks
– shells in block are the same, except they are on different atomic centers

• Corresponding matrixes and tensors inherit block structure
– allows same integral kernel to compute multiple quartets

• Favorable for both CPU and GPU
• HF algorithm uses single collapsed synchronized loop

– No nested loops: Makes parallelization easier
• CPU/GPU thread processes work queue independently

– Locks Fock matrix when block is ready for update

Xeon E5405 2.00 GHz CPUs

Xeon E5405 2.00 GHz CPUs
Fermi

Good software is as important
as good hardware

HARTREE-FOCK TIMINGS
• CPU = Intel Xeon E5405 2.0 GHz w/ 4 cores
• GPU = Tesla C2050
• Test case = Taxol, first SCF iteration

Taxol: Anticancer natural product
with activity against

several leukemia varieties
and cancers

HARTREE-FOCK TIMINGS
6-31G(d): 1032 basis functions

CPU only (no GPU) With 1 GPU thread

#CPU Time (min) #CPU/#GPU Total time/GPU time (min)
 4 04:04 4/1 02:00/01:53
 2 07:59 2/1 02:34/02:27
 1 15:54 1/1 02:56/02:51

6-31G(df,p): 1805 basis functions

CPU only (no GPU) With 1 GPU thread

#CPU Time (min) #CPU/#GPU Total time/GPU time (min)
 4 13:30 4/1 07:02/06:35
 2 26:40 2/1 10:41/09:34
 1 53:11 1/1 14:52/11:43

MP2 ALGORITHM
• Key step is transformation from AO basis to MO basis

– [µ,ν,λ,σ] [i,j,a,b] in two-electron integrals (index transformation)
– Called “four label” transformation (integral transformation)
– Required for all correlated methods (MP2, CC, also Hessians)

• i,j = occupied MO indices; a,b = virtual MO indices
– For large basis sets (usual) many more virutal indices than occupied indices

• Most computations are in the 1st 3 index transformations
– Can do transformations in any order
– Choose to first transform to occupied indices: (µν|λσ) (µi|λj)

• Takes advantage of smaller occupied space and ij symmetry
– Then transform to first virtual index (a), stored in memory as T3 (a,ij, µ)
– Final transformation is easy
– Implemented on both CPU and GPU

MP2 TIMINGS

Taxol: 1032 orbitals
62 core, 226 occupied

2 quad core Xeon 2.66 GHz
~17x speedup on Fermi
(relative to GAMESS)

Rewrite choices

• cuBLAS (MAGMA)

• PGI Accelerator Model

• OpenAcc

• Explicit GPU programming model

cuBLAS 4.0
• Can be used with any FORTRAN or C

compiler
• Need to compile and link to fortran.c and

cublas.so
• Allows asynchronous execution
• cuBLAS 4.0 includes all standard BLAS

routines

cuBLAS
• Can be used with any Fortran or C compiler
• Two ways to compile
 1. Thunking
 - Replace blas routine with cublas routine
 e.g. dgemm() becomes cublasDgemm()
 - Uses cublasCreate() and cublasDestroy() for each

 instance
 - Intended for testing purposes only
 2. Non-thunking
 - Programmer handles cublasCreate(),
 cublasDestroy(), and all memory copies

cuBLAS with PGI
DGEMM Example:
module cublas
 interface cuda_gemm
 subroutine cuda_dgemm(cta, ctb, m, n, k,& alpha, A, lda, B, ldb, beta, c, ldc)
 bind(C,name='cublasDgemm’)
 use iso_c_binding
 character(1,c_char),value :: cta, ctb
 integer(c_int),value :: m,n,k,lda,ldb,ldc
 real(c_double),value :: alpha,beta
 real(c_double), device, dimension(lda,*) :: A
 real(c_double), device, dimension(ldb,*) :: B
 real(c_double), device, dimension(ldc,*) :: C
 end subroutine cuda_dgemm
 end interface
end module cublas

call cuda_gemm (‘N’, ‘N’, m, n, k, alpha, a_d, m, b_d, k, beta, c_d, m)

• No cublas_init needed with PGI compiler
• Implicit synchronous memory transfers with PGI compiler or explicit asynchronous
 memory transfers with cublas helper functions

PGI Accelerator Model

• Simple method to parallelize loops,
especially nested loops

• Data regions can be defined to manage
memory transfers

• Method is available for PGI Fortran (77
and 90) as well as PGI C/C++

PGI Accelerator Model

• GPU code is generated by the compiler

• Loop(s) to be parallelized enclosed by the following directives:

 !$acc region clause, clause, …
 DO …
 !$acc end region

• The clauses are optional arguments to specify how to implement the GPU
 parallelization

 - Examples:
 !$acc region if(condition) Compile for GPU if condition is true
 !$acc region deviceptr(list) Specify which GPUs to use
 !$acc region async Run CPU and GPU code asynchronously
The Portland Group, PGI Accelerator Programming Model for Fortran & C, Nov. 2010.

PGI Accelerator Model
• Memory transfers can be handled by the compiler

• Memory transfers can be handled explicitly using the following directives:

 !$acc data region clause, clause, etc.
 ….
 !$acc end data region

• The clauses are optional arguments that determine how the data is handled

 - Examples:
 !$acc data region copyout(list) Copies a list of variables from the
 device memory back to the host
 !$acc data region mirror(list) Mirrors host and device data
 !$acc region update host (list) Copies a list of variables to the host
 after every kernel call

The Portland Group, PGI Accelerator Programming Model for Fortran & C, Nov. 2010.

PGI Accelerator Model -
Restrictions

The Portland Group, PGI Accelerator Programming Model for Fortran & C, Nov. 2010.

• A variable can occur only once in a compute/data region
 - Additional directives may be needed if a variable is
 reused.

• The upper bound for the last dimension of an assumed-size
 array must be specified

• Assumed-size arrays are not valid in data clauses

• Accelerator regions cannot be nested

• cuBLAS routines cannot be called within an accelerator
 region

GAMESS DFT Profile
(% of total wall time)

Routine

B3LYP/6-31G(d,p)
taxol

(110 atoms/1160
bfns)

valinomycin
(168 atoms/1620

bfns)

Two electron integrals 38.74 46.04
DFT 58.33 50.59

DFT: Becke grid weights 7.51 13.43
DFT: Fock build 24.17 20.18
DFT: gradient
transformation

16.21 6.47

GAMESS DFT Profile
(% of total wall time)

Routine

taxol
B3LYP/Basis Set

(110 atoms)
6-31G(d,p)
(1160 bfns)

6-31+G(d,p)
(1404 bfns)

6-311G(d,p)
(1453 bfns)

Two electron integrals 38.74 65.71 51.25
DFT 58.33 28.82 45.49

DFT: Becke grid weights 7.51 1.02 4.42
DFT: Fock build 24.17 9.86 19.83
DFT: gradient
transformation

16.21 6.03 13.12

Becke Grid Weights
Pseudocode:
 Radial grid loop

 Angular grid loop

 Atom i loop

 Atom j loop

 Calculate grid weights

• Typical radial grid size (Euler-MacLaurin)
• 48, 96 can be any value

• Typical angular grid size (Lebedev)
• 302 (default), 1202 (army grade)
• possible values {86, 110, 146, 170, 194, 302, 350, 434, 590,

 770, 974, 1202, 1454, 1730, 2030, …}
• Simple nested loop structure

Becke Grid Weights
Accelerator Directives

Pseudocode:
 Radial grid loop

!$acc region

 Angular grid loop

 Atom i loop

 Atom j loop

 Calculate grid weights

!$acc end region

 • First step
• Add accelerator directives around desired loop
• Compile with ‘–ta=nvidia –Minfo’
• Read compiler output

Becke Grid Weights
Compiler Information

Compiler output:
40, Generating copyin(rij(1:nat,:))

 Generating copy(ri(:))

 Generating copyout(totwt(ncntr,:))

41, Loop carried dependence due to exposed use of

 'ri(:)' prevents parallelization

50, Loop is parallelizable

58, Loop carried dependence of 'wtintr' prevents

 parallelization

• Compiler output offers information on:
• Data movement (we wish to minimize)
• Data dependencies (we wish to remove)

Becke Grid Weights
Minimize Data Movement

Pseudocode:
!$acc data region copyin(…)

 Radial grid loop

!$acc data region copyout(…)

!$acc region

 Angular grid loop

 Atom i loop

 Atom j loop

 Calculate grid weights

!$acc end region

!$acc end data region

!$acc end data region

• Data region
• Copy in frequently access arrays only once
• Copy out contiguous arrays only once

Becke Grid Weights
Remove Data Dependencies

Pseudocode:
!$acc data region copyin(…)

 Radial grid loop

!$acc data region copyout(…)

!$acc region

 Angular grid loop

 Atom i loop

 Atom j loop

 Calculate grid weights

!$acc end region

!$acc end data region

!$acc end data region

 Additional loop structure to utilize arrays

 that were copied out.

Becke Grid Weights
Final Result

Pseudocode:
!$acc data region copyin(…)

 Radial grid loop

!$acc data region copyout(…)

!$acc region

 Angular grid loop

 Atom i loop

 Atom j loop

 Calculate grid weights

!$acc end region

!$acc end data region

!$acc end data region

 Additional loop structure to utilize arrays

 that were copied out.

threadblock
thread

Speed-Up
Becke Grid Weights

Time spent on
Becke grid

weights
(48, 302)

B3LYP/3-21G
taxol

(110 atoms)
valinomycin
(168 atoms)

olestra
(453 atoms)

CPU Code (sec) 386 1432 31485
GPU Code (sec) 330 1177 25364
Speed-Up (x) 1.17 1.22 1.24

Time spent on
Becke grid

weights
(96, 1202)

B3LYP/3-21G
taxol

(110 atoms)
valinomycin
(168 atoms)

olestra
(453 atoms)

CPU Code (sec) 3064 11392 250013
GPU Code (sec) 705 2527 57603
Speed-Up (x) 4.35 4.51 4.34

Intel 2.67 GHz hex core X5650 (Gulftown), Nvidia Fermi C2070

Speed-Up
Total Wall Time

Total wall time
B3LYP/3-21G

taxol
(110 atoms)

valinomycin
(168 atoms)

olestra
(453 atoms)

CPU Code (sec) 25593.2 60511.8 639711.4
GPU Code (sec) 23636.8 51595.6 440544.3
Speed-Up (x) 1.08 1.17 1.45

Beyond 472 atoms?
Pseudocode:
…

!$acc region

 Angular grid loop

 Atom i loop

 Atom j loop

 Calculate grid weights

!$acc end region

…

threadblock
thread

• The kernel contains a double precision array of size
[Natoms x Natoms x Nangular].

• PGI uses 32-bit integers for array addressing.
• An index overflow occurs for systems with > 472 atoms.
• Work around: break up kernel until PGI offers a solution.

Becke Grid Weights
Work Chunks in Highest Power of 2
Pseudocode:
chunk loop: DO IANG_=1, Nangular-Nchunk, Nchunk

 Radial grid loop

!$acc region

 Angular grid loop: DO IANG=IANG_, IANG_+Nchunk-1

 Atom i loop

 Atom j loop

 Calculate grid weights

!$acc end region

ENDDO chunk loop

IANG_=Nangular-MOD(Nangular,Nchunk)+1

 Radial grid loop

!$acc region

 Angular grid loop: DO IANG=IANG_, Nangular

 Atom i loop

 Atom j loop

 Calculate grid weights

!$acc end region

Speed-Up
Becke Grid Weights, Highest Power of 2

Time spent on
Becke grid

weights
(48, 302)

B3LYP/3-21G
taxol

(110 atoms)
valinomycin
(168 atoms)

olestra
(453 atoms)

CPU Code (sec) 386 1432 31485
GPU Code (sec) 48 214 7579
Speed-Up (x) 8.04 6.69 4.15

Time spent on
Becke grid

weights
(96, 1202)

B3LYP/3-21G
taxol

(110 atoms)
valinomycin
(168 atoms)

olestra
(453 atoms)

CPU Code (sec) 3064 11392 250013
GPU Code (sec) 339 1753 62004
Speed-Up (x) 9.03 6.50 4.03

Speed-Up
Total Wall Time, Highest Power of 2

Total wall time
B3LYP/3-21G

taxol
(110 atoms)

valinomycin
(168 atoms)

olestra
(453 atoms)

CPU Code (sec) 25593.2 60511.8 639711.4
GPU Code (sec) 19212.1 42900.5 387052.9
Speed-Up (x) 1.33 1.41 1.65

Beyond 472 atoms?

• Calculations pending
– Carbon 540 (540 atoms)
– BPTI (900 atoms)

Multi-GPU: OpenMP & OpenACC
Pseudocode:
Ngpu=ACC_GET_NUM_DEVICES(ACC_DEVICE_NVIDIA)

CALL OMP_SET_NUM_THREADS(Ngpu)

NOMPCHUNK=Nradial/NGPU

!omp parallel private(…)

OMP_ME=OMP_GET_THREAD_NUM()

IF (Ngpu > 1)

 IOMP_START=NOMPCHUNK*OMP_ME+1

 IOMP_END=NOMPCHUNK*OMP_ME+NOMPCHUNK

ELSE

 IOMP_START=1

 IOMP_END=Nradial

ENDIF

CALL ACC_SET_DEVICE_NUM(OMP_ME,ACC_DEVICE_NVIDIA)

...

Multi-GPU: OpenMP & OpenACC
Pseudocode:
chunk loop: DO IANG_=1, Nangular-Nchunk, Nchunk

 Radial grid loop: DO IRAD=IOMP_START, IOMP_END

!$acc region

 Angular grid loop: DO IANG=IANG_, IANG_+Nchunk-1

 Atom i loop

 Atom j loop

 Calculate grid weights

!$acc end region

ENDDO chunk loop

IANG_=Nangular-MOD(Nangular,Nchunk)+1

 Radial grid loop: DO IRAD=IOMP_START, IOMP_END

!$acc region

 Angular grid loop: DO IANG=IANG_, Nangular

 Atom i loop

 Atom j loop

 Calculate grid weights

!$acc end region

!$omp end parallel

Speed-Up
Total Wall Time, Highest Power of 2, Multi-

GPU
Total wall time

(NGPU = 2)

B3LYP/3-21G
taxol

(110 atoms)
valinomycin
(168 atoms)

olestra
(453 atoms)

CPU Code (sec) 25593.2 60511.8 639711.4
GPU Code (sec) 19106.0 41763.1 352609.1
Speed-Up (x) 1.34 1.45 1.81

Total wall time
(NGPU = 4)

B3LYP/3-21G
taxol

(110 atoms)
valinomycin
(168 atoms)

olestra
(453 atoms)

CPU Code (sec) 25593.2 60511.8 639711.4
GPU Code (sec) 19727.6 42867.3 345467.0
Speed-Up (x) 1.30 1.41 1.85

Explicit Model
• Programmer explicitly manages data, kernel definition, and kernel calls

• Fortran code should be written for Fortran 90
 - Allows use of modules and dynamic allocation for device data

• Device data managed in a similar manner to host data
 - Example:
 Host Device
 real, dimension(*) :: vec real, device dimension(*) :: vec_d
 integer A integer, device A_d

• Simple copying of data to/from device memory
 - Example:
 A_d=A Copy A from host to device
 A=A_d Copy A_d from device to host

The Portland Group, CUDA Fortran - Programming Guide and Reference, 2011.

Restrictions

• Cannot call cuBLAS routines from within a GPU
kernel

• If statements within the kernel lead to thread
divergence

• Memory copies cannot execute asynchronously
• Fortran 90 is required (allocatable arrays)

CONCLUSIONS & FUTURE
• GPUs are great accelerators
• Significant development time - years!

• Not a bed of roses - big payoff
• GPU/CUDA forces better coding practices
• In progress

• Hehre-Pople, ERIC integral packages
• Full DFT
• Open shells
• Gradients
• Coupled cluster
• FMO, FMO gradients
• EFP

THANKS!

US Air Force Office of Scientific Research
DoD DURIP (GPU Cluster)
ISU (GPU Cluster)
NSF

ENABLING ACCURATE
CALCULATIONS FOR LARGE

MOLECULAR SYSTEMS

• Maintain accuracy/reduce cost
• Highly scalable code
• Novel algorithms
• Take advantage of GPUs

• Avoid the gong

777 atoms 3625 basis functions

CATALYSIS

Helper Functions

• cublasCreate() initializes the GPU

• cublasDestroy() releases GPU resources

• cublasSetStream()
 - up to 16 concurrent streams per GPU can be

executed if there are sufficient resources

• cublasGetStream() returns the streamid

Memory Transfers
• cublasSetVector and cublasGetVector
 - Copies a vector to/from GPU memory
 - cublasSetVector(N, elemSize, X, incX, Y, incY)
 N = number of elements
 elemSize = size of each elements in bytes
 X = vector in host memory
 incX = size of an element of X in bytes
 Y = vector in device memory
 incY = size of an element of Y in bytes
• cublasSetMatrix and cublasGetMatrix are analogous to

the vector functions

Memory Transfers

• PGI Fortran does not need helper functions
 Example – copy vector A on the host to A_d on

the device:
 A_d = A
• Only works when compiled with the cudafor

module
• Memory copies are synchronous
• Helper functions should not be mixed with

implicit data transfers.

Asynchronous Memory
Transfers

• Memory can be transferred asynchronously
using cublasSetVectorAsync(),
cublasSetMatrixAsync(),
cublasGetVectorAsync(), and
cublasGetMatrixAsync()

• Transfer is asynchronous with respect to the
host

• Usage is same as for synchronous transfers

Cublas Summary
• Provides a way to use GPUs with only minor changes to

the CPU code

• Cublas routines can be executed asynchronously and on
multiple GPUs

• Cublas 4.0 includes all blas routines

• More information can be found at
 http://developer.download.nvidia.com/compute/cuda/
4_0/toolkit/docs/CUBLAS_Library.pdf

http://developer.download.nvidia.com/compute/cuda/4_0/toolkit/docs/CUBLAS_Library.pdf�
http://developer.download.nvidia.com/compute/cuda/4_0/toolkit/docs/CUBLAS_Library.pdf�

Additional Information

• www.pgroup.com/lit/articles/insiter/v1n1a1.
htm

• www.pgroup.com/resources/accel.htm

• www.openacc-standard.org/home

• www.pgroup.com/resources/cudafortran.ht
m

http://www.pgroup.com/lit/articles/insiter/v1n1a1.htm�
http://www.pgroup.com/lit/articles/insiter/v1n1a1.htm�
http://www.pgroup.com/resources/accel.htm�
http://www.openacc-standard.org/home�
http://www.pgroup.com/resources/cudafortran.htm�
http://www.pgroup.com/resources/cudafortran.htm�

OpenAcc

• Allows for a single code base for CPU and
accelerated architecture

• In principle, not limited to Nvidia GPUs

• Based on the PGI Accelerator model with
minor changes

OpenAcc vs. PGI
OpenAcc PGI
!$acc parallel !$acc region
!$acc loop !$acc do

- Directives can be accompanied by clauses that specify

how the data and execution is handled
- Many clauses are the same, but minor differences exists
- See www.pgroup.com/accelerate and www.openacc-

standard.org for more details

http://www.pgroup.com/accelerate�
http://www.openacc-standard.org�
http://www.openacc-standard.org�
http://www.openacc-standard.org�

• Major computational step in both HF and DFT methods
• Complexity is O(N3)-O(N4), N = number of Gaussian basis

functions
• Method choice depends on basis function angular momenta:

– s,p: Hehre-Pople
– s,p,d: McMurchie-Davidson
– s,p,d,f,g: Rys polynomials, ERIC, Obara-Saika

ELECTRON REPULSION
INTEGRALS

• Rys Quadrature – proposed by Dupius, Rys,

King (DRK)
– Numerical Gaussian quadrature based on a set of

orthogonal Rys polynomials
– Numerically stable, low memory foot print
– Amenable for GPUs and architectures

with smaller caches

ELECTRON REPULSION
INTEGRALS

Variable Qualifiers
• Device variables can be declared with qualifiers constant, shared, or pinned
 - Example:
 real, device attributes(constant) var_d

• Constant
 - Data is stored in device constant memory
 - Cannot be modified from device code, but can be changed in host code
 - Fast memory access

• Shared
 - Data is stored in device shared memory
 - Visible to all threads in a block

• Pinned
 - Page-locked memory, but reverts to unpinned memory if page-lock fails
 - Fast data transfer when it works

The Portland Group, CUDA Fortran - Programming Guide and Reference, 2011.

Kernel Implementation

• Syntax for GPU kernels is similar to that used with C/C++

• Subroutines can become kernels

• Subroutines are prefixed with “attributes(type)” to specify the execution

 - attributes(host) is a subroutine executed on the host (default)

 - attributes(global) is a subroutine/kernel executed on the device that is
 called from the host

 - attributes(device) is a subroutine/kernel executed on the device that is
 executed on the device and called from a “global” or “device” subroutine

The Portland Group, CUDA Fortran - Programming Guide and Reference, 2011.

Kernel Calls

• Chevron notation, <<< … >>>, used to specify how the kernel is executed
 on the device
 - Example:
 call kernel<<<grid,block,bytes,streamid>>>(arg1,arg2,…)

• grid is a type dim3 variable that specifies the grid dimensions

• block is a type dim3 variable that specifies the block dimensions

• bytes is an optional integer variable that designates the amount of memor
 available to the kernel

• streamid is an optional integer variable to determine in which stream the
 kernel is executed

The Portland Group, CUDA Fortran - Programming Guide and Reference, 2011.

Cellulose: BIOMASS CONVERSION

Crystal: I-ß cellulose (in plants), monoclinic, H-bonded sheets

Chain: linear polymer of ß-(1, 4)-D-glucopyranose units

Accelerator Directives

• Benefits
– Similar to OpenMP

• Single source code
• Target multiple architectures
• Open standard
• Incremental programming

• Compiler: Portland Group (PGI)
– Supports mix directives and CUDA Fortran

Future Work

• DFT: Fock Build (20-24%)
• DFT: Gradient Transformations (6-16%)
• DFT Gradients
• TDDFT Energy
• Low level performance tuning with CUDA

Fortran
• Multi-node, single-gpu
• Multi-node, multi-gpu

CCSD(T): Step 1
• Sequential C++ CPU code
• (T) only
• 6-31G(d) Caffeine, 230 AOs, Xeon 2 GHz CPU
• Wall Times

• Current GAMESS: ~11 hours
• C++ code: ~7.3 hours (includes 0.3 hour for I/O)

• Memory
• Current GAMESS: 4.6 GB distributed, 1 GB local
• C++ code: ~258 MB

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Rewrite choices
	cuBLAS 4.0
	cuBLAS
	cuBLAS with PGI
	PGI Accelerator Model
	PGI Accelerator Model
	PGI Accelerator Model
	PGI Accelerator Model - Restrictions
	GAMESS DFT Profile�(% of total wall time)
	GAMESS DFT Profile�(% of total wall time)
	Becke Grid Weights
	Becke Grid Weights�Accelerator Directives
	Becke Grid Weights�Compiler Information
	Becke Grid Weights�Minimize Data Movement
	Becke Grid Weights�Remove Data Dependencies
	Becke Grid Weights�Final Result
	Speed-Up�Becke Grid Weights
	Speed-Up�Total Wall Time
	Beyond 472 atoms?
	Becke Grid Weights �Work Chunks in Highest Power of 2
	Speed-Up�Becke Grid Weights, Highest Power of 2
	Speed-Up�Total Wall Time, Highest Power of 2
	Beyond 472 atoms?
	Multi-GPU: OpenMP & OpenACC
	Multi-GPU: OpenMP & OpenACC
	Speed-Up�Total Wall Time, Highest Power of 2, Multi-GPU
	Explicit Model
	Restrictions
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Helper Functions
	Memory Transfers
	Memory Transfers
	Asynchronous Memory Transfers
	Cublas Summary
	Additional Information
	OpenAcc
	OpenAcc vs. PGI
	Slide Number 54
	Slide Number 55
	Variable Qualifiers
	Kernel Implementation
	Kernel Calls
	Slide Number 59
	Accelerator Directives
	Future Work
	Slide Number 62

