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QM CHALLENGE 

• High cost of electronic structure calculations 
– HF, hybrid DFT scale ~N4 (N = # basis functions) 

• Up to 1,000 atoms 
• Analytic gradients, Hessians available 

– MP2 scales ~N5 
• ~100 atoms 
• Analytic gradients, Hessians available 

– CCSD(T) & related methods scale ~N7 
• 27=128 
• 10-20 atoms 
• Analytic gradients available 

• There are many possible solutions 



To write or rewrite 

 
• Write from scratch 

• Use code generation, templating and meta-programming 
with C++ to enable flexibility and adaptability 

• Rewrite with existing code (GAMESS) 
• Try to take advantage of acceleration for ~2 million lines 

of code 



• Make use of C++ templates & automatically generated code 
– Python-based Cheetah code generation engine 
– BOOST libraries 
– OpenMP with CUDA 
 

• Human hands-on code small: ~ 2,000 lines of code for the 
integral code (rest is generated) 
 

• Final library size small: ~ 5 MB fully optimized 
 

• Code kept small due to objects & generic templates 
 

• GPU implementation for integrals driven by angular 
momentum & contraction order 

Choice for write 



Molecule Specification 
•List of Atoms ( Atomic Numbers Z)  
•List of Nuclear Coordinates (R) 

•  Number of electrons  
•List of Primitive Functions, 

exponents  
• Number of contractions  

 Form the basis functions (M) 

ERI 
Two Electron Repulsion 

Integral  
(µν|λσ) 

O(M3) to O(M4) 

Hcore  

(one-electron integrals) 
Kinetic Energy Integrals 

(T) 
Nuclear Attraction 

Integrals (V) 

cheap one-time 
operation 

•Required  in every iteration  
•Very Expensive operation  
•Stored procedures not 
scalable 
•Re-compute in every iteration  
•Good target for GPU 

Initial guess of the wave 
function  

Obtain the guess at the 
Density Matrix (P)  

O(M2) 

Form the Fock Matrix 
F = Hcore + G   

G – Matrix 
 O(M2) 

G = [(ij|kl) – ½(ik|jl)]*P  

Convergence 
Checks 

Stop 

Transformations  
F’ = X’FX 

C’  Diagonalize(F’)  
C  XC’  

1 

2 

3 

4 4 

5 

6 

7 

yes 

No  

Update the density 
matrix  from C 

Repeat steps 4, 5, 6, 7  

8 

Summary of 
Hartree-Fock 

Procedure 



INTEGRAL TIMINGS 



HARTREE-FOCK 

• Organize atomic basis into blocks 
– shells in block are the same, except they are on different atomic centers 

• Corresponding matrixes and tensors inherit block structure 
– allows same integral kernel to compute multiple quartets  

• Favorable for both CPU and GPU 
• HF algorithm uses single collapsed synchronized loop 

– No nested loops: Makes parallelization easier 
• CPU/GPU thread processes work queue independently 

– Locks Fock matrix when block is ready for update 



Xeon E5405 2.00 GHz CPUs 



Xeon E5405 2.00 GHz CPUs 
Fermi 

Good software is as important  
as good hardware  



HARTREE-FOCK TIMINGS 
• CPU = Intel Xeon E5405 2.0 GHz w/ 4 cores 
• GPU = Tesla C2050 
• Test case = Taxol, first SCF iteration 

Taxol: Anticancer natural product  
with activity against  

several leukemia varieties  
and cancers 



HARTREE-FOCK TIMINGS 
6-31G(d): 1032 basis functions 
 
CPU only (no GPU)                         With 1 GPU thread 
                   
#CPU   Time (min)         #CPU/#GPU        Total time/GPU time (min) 
     4       04:04   4/1  02:00/01:53 
     2       07:59                             2/1   02:34/02:27 
     1       15:54   1/1  02:56/02:51 

6-31G(df,p): 1805 basis functions 
 
CPU only (no GPU)                         With 1 GPU thread 
                   
#CPU   Time (min)         #CPU/#GPU        Total time/GPU time (min) 
     4       13:30   4/1  07:02/06:35 
     2       26:40                             2/1   10:41/09:34 
     1       53:11   1/1  14:52/11:43 



MP2 ALGORITHM 
• Key step is transformation from AO basis to MO basis 

– [µ,ν,λ,σ]  [i,j,a,b] in two-electron integrals (index transformation) 
– Called “four label” transformation (integral transformation) 
– Required for all correlated methods (MP2, CC, also Hessians) 

• i,j = occupied MO indices; a,b = virtual MO indices 
– For large basis sets (usual) many more virutal indices than occupied indices  

• Most computations are in the 1st 3 index transformations 
– Can do transformations in any order 
– Choose to first transform to occupied indices: (µν|λσ)  (µi|λj) 

• Takes advantage of smaller occupied space and ij symmetry 
– Then transform to first virtual index (a), stored in memory as T3 (a,ij, µ) 
– Final transformation is easy 
– Implemented on both CPU and GPU 



MP2 TIMINGS 

Taxol: 1032 orbitals 
62 core, 226 occupied 

2 quad core Xeon 2.66 GHz 
~17x speedup on Fermi 
(relative to GAMESS)  

 



Rewrite choices 

• cuBLAS (MAGMA) 
 

• PGI Accelerator Model 
 

• OpenAcc 
 

• Explicit GPU programming model 



cuBLAS 4.0 
• Can be used with any FORTRAN or C 

compiler 
• Need to compile and link to fortran.c and 

cublas.so 
• Allows asynchronous execution 
• cuBLAS 4.0 includes all standard BLAS 

routines 



cuBLAS 
• Can be used with any Fortran or C compiler 
• Two ways to compile 
 1.  Thunking 
  - Replace blas routine with cublas routine 
    e.g. dgemm() becomes cublasDgemm() 
  - Uses cublasCreate() and cublasDestroy() for each        

  instance 
  - Intended for testing purposes only 
 2.  Non-thunking 
  - Programmer handles cublasCreate(), 
       cublasDestroy(), and all memory copies 



cuBLAS with PGI 
DGEMM Example: 
module cublas   
  interface cuda_gemm   
    subroutine cuda_dgemm(cta, ctb, m, n, k,&    alpha, A, lda, B, ldb, beta, c, ldc) 
                      bind(C,name='cublasDgemm’) 
     use iso_c_binding 
      character(1,c_char),value :: cta, ctb 
      integer(c_int),value :: m,n,k,lda,ldb,ldc 
      real(c_double),value :: alpha,beta 
      real(c_double), device, dimension(lda,*) :: A 
      real(c_double), device, dimension(ldb,*) :: B 
      real(c_double), device, dimension(ldc,*) :: C 
    end subroutine cuda_dgemm 
  end interface 
end module cublas   

 
call cuda_gemm (‘N’, ‘N’, m, n, k, alpha, a_d, m, b_d, k, beta, c_d, m) 

•  No cublas_init needed with PGI compiler 
•  Implicit synchronous memory transfers with PGI compiler or explicit asynchronous 
   memory transfers with cublas helper functions 



PGI Accelerator Model 

• Simple method to parallelize loops, 
especially nested loops 

• Data regions can be defined to manage 
memory transfers 

• Method is available for PGI Fortran (77 
and 90) as well as PGI C/C++ 
 



PGI Accelerator Model 

•  GPU code is generated by the compiler 
 

•  Loop(s) to be parallelized enclosed by the following directives: 
 

   !$acc region clause, clause, … 
          DO … 
   !$acc end region 
 
•  The clauses are optional arguments to specify how to implement the GPU 
   parallelization 
 
   -  Examples: 
      !$acc region if(condition) Compile for GPU if condition is true 
      !$acc region deviceptr(list) Specify which GPUs to use 
      !$acc region async  Run CPU and GPU code asynchronously 
The Portland Group, PGI Accelerator Programming Model for Fortran & C, Nov. 2010. 



PGI Accelerator Model 
•  Memory transfers can be handled by the compiler 

 
•  Memory transfers can be handled explicitly using the following directives: 

 
   !$acc data region clause, clause, etc. 
           …. 
   !$acc end data region 
 
•  The clauses are optional arguments that determine how the data is handled 

 
   - Examples: 
     !$acc data region copyout(list)  Copies a list of variables from the 
      device memory back to the host 
     !$acc data region mirror(list)  Mirrors host and device data 
     !$acc region update host (list)  Copies a list of variables to the host 
      after every kernel call 

The Portland Group, PGI Accelerator Programming Model for Fortran & C, Nov. 2010. 



PGI Accelerator Model - 
Restrictions 

The Portland Group, PGI Accelerator Programming Model for Fortran & C, Nov. 2010. 

•  A variable can occur only once in a compute/data region 
 -  Additional directives may be needed if a variable is  
 reused. 

 
•  The upper bound for the last dimension of an assumed-size 
   array must be specified 

 
•  Assumed-size arrays are not valid in data clauses 

 
•  Accelerator regions cannot be nested 

 
•  cuBLAS routines cannot be called within an accelerator 
   region 

 



GAMESS DFT Profile 
(% of total wall time) 

Routine 

B3LYP/6-31G(d,p) 
taxol  

(110 atoms/1160 
bfns) 

valinomycin 
(168 atoms/1620 

bfns) 

Two electron integrals 38.74 46.04 
DFT 58.33 50.59 

DFT: Becke grid weights 7.51 13.43 
DFT: Fock build 24.17 20.18 
DFT: gradient 
transformation 

16.21 6.47 



GAMESS DFT Profile 
(% of total wall time) 

Routine 

taxol 
B3LYP/Basis Set 

(110 atoms) 
6-31G(d,p) 
(1160 bfns) 

6-31+G(d,p) 
(1404 bfns) 

6-311G(d,p) 
(1453 bfns) 

Two electron integrals 38.74 65.71 51.25 
DFT 58.33 28.82 45.49 

DFT: Becke grid weights 7.51 1.02 4.42 
DFT: Fock build 24.17 9.86 19.83 
DFT: gradient 
transformation 

16.21 6.03 13.12 



Becke Grid Weights 
Pseudocode: 
   Radial grid loop 

      Angular grid loop 

         Atom i loop 

            Atom j loop 

               Calculate grid weights 

• Typical radial grid size (Euler-MacLaurin) 
• 48, 96 can be any value 

• Typical angular grid size (Lebedev) 
• 302 (default), 1202 (army grade) 
• possible values {86, 110, 146, 170, 194, 302, 350, 434, 590,  

                              770, 974, 1202, 1454, 1730, 2030, …} 
• Simple nested loop structure 



Becke Grid Weights 
Accelerator Directives 

Pseudocode: 
   Radial grid loop 

!$acc region 

      Angular grid loop 

         Atom i loop 

            Atom j loop 

               Calculate grid weights 

!$acc end region 

 • First step 
• Add accelerator directives around desired loop 
• Compile with ‘–ta=nvidia –Minfo’  
• Read compiler output 



Becke Grid Weights 
Compiler Information 

Compiler output: 
40, Generating copyin(rij(1:nat,:)) 

    Generating copy(ri(:)) 

    Generating copyout(totwt(ncntr,:)) 

41, Loop carried dependence due to exposed use of  

    'ri(:)' prevents parallelization 

50, Loop is parallelizable 

58, Loop carried dependence of 'wtintr' prevents  

    parallelization 

• Compiler output offers information on: 
• Data movement (we wish to minimize) 
• Data dependencies (we wish to remove) 



Becke Grid Weights 
Minimize Data Movement 

Pseudocode: 
!$acc data region copyin(…) 

   Radial grid loop 

!$acc data region copyout(…) 

!$acc region 

      Angular grid loop 

         Atom i loop 

            Atom j loop 

               Calculate grid weights 

!$acc end region 

!$acc end data region 

!$acc end data region 

• Data region 
• Copy in frequently access arrays only once 
• Copy out contiguous arrays only once 



Becke Grid Weights 
Remove Data Dependencies 

Pseudocode: 
!$acc data region copyin(…) 

   Radial grid loop 

!$acc data region copyout(…) 

!$acc region 

      Angular grid loop 

         Atom i loop 

            Atom j loop 

               Calculate grid weights 

!$acc end region 

!$acc end data region 

!$acc end data region 

   Additional loop structure to utilize arrays  

   that were copied out. 

    



Becke Grid Weights 
Final Result 

Pseudocode: 
!$acc data region copyin(…) 

   Radial grid loop 

!$acc data region copyout(…) 

!$acc region 

      Angular grid loop 

         Atom i loop 

            Atom j loop 

               Calculate grid weights 

!$acc end region 

!$acc end data region 

!$acc end data region 

   Additional loop structure to utilize arrays  

   that were copied out. 

    

threadblock 
thread 



Speed-Up 
Becke Grid Weights 

Time spent on 
Becke grid 

weights 
(48, 302) 

B3LYP/3-21G 
taxol 

(110 atoms) 
valinomycin 
(168 atoms) 

olestra 
(453 atoms) 

CPU Code (sec) 386 1432 31485 
GPU Code (sec) 330 1177 25364 
Speed-Up (x) 1.17 1.22 1.24 

Time spent on 
Becke grid 

weights 
(96, 1202) 

B3LYP/3-21G 
taxol 

(110 atoms) 
valinomycin 
(168 atoms) 

olestra 
(453 atoms) 

CPU Code (sec) 3064 11392 250013 
GPU Code (sec) 705 2527 57603 
Speed-Up (x) 4.35 4.51 4.34 

Intel 2.67 GHz hex core X5650 (Gulftown), Nvidia Fermi C2070 



Speed-Up 
Total Wall Time 

Total wall time 
B3LYP/3-21G 

taxol 
(110 atoms) 

valinomycin 
(168 atoms) 

olestra 
(453 atoms) 

CPU Code (sec) 25593.2 60511.8 639711.4 
GPU Code (sec) 23636.8 51595.6 440544.3 
Speed-Up (x) 1.08 1.17 1.45 



Beyond 472 atoms? 
Pseudocode: 
… 

!$acc region 

      Angular grid loop 

         Atom i loop 

            Atom j loop 

               Calculate grid weights 

!$acc end region 

… 

    

threadblock 
thread 

• The kernel contains a double precision array of size 
[Natoms x Natoms x Nangular]. 

• PGI uses 32-bit integers for array addressing. 
• An index overflow occurs for systems with > 472 atoms. 
• Work around: break up kernel until PGI offers a solution. 



Becke Grid Weights  
Work Chunks in Highest Power of 2 
Pseudocode: 
chunk loop: DO IANG_=1, Nangular-Nchunk, Nchunk 

   Radial grid loop 

!$acc region 

      Angular grid loop: DO IANG=IANG_, IANG_+Nchunk-1 

         Atom i loop 

            Atom j loop 

               Calculate grid weights 

!$acc end region 

ENDDO chunk loop 

IANG_=Nangular-MOD(Nangular,Nchunk)+1 

   Radial grid loop 

!$acc region 

      Angular grid loop: DO IANG=IANG_, Nangular 

         Atom i loop 

            Atom j loop 

               Calculate grid weights 

!$acc end region 



Speed-Up 
Becke Grid Weights, Highest Power of 2 

Time spent on 
Becke grid 

weights 
(48, 302) 

B3LYP/3-21G 
taxol 

(110 atoms) 
valinomycin 
(168 atoms) 

olestra 
(453 atoms) 

CPU Code (sec) 386 1432 31485 
GPU Code (sec) 48 214 7579 
Speed-Up (x) 8.04 6.69 4.15 

Time spent on 
Becke grid 

weights 
(96, 1202) 

B3LYP/3-21G 
taxol 

(110 atoms) 
valinomycin 
(168 atoms) 

olestra 
(453 atoms) 

CPU Code (sec) 3064 11392 250013 
GPU Code (sec) 339 1753 62004 
Speed-Up (x) 9.03 6.50 4.03 



Speed-Up 
Total Wall Time, Highest Power of 2 

Total wall time 
B3LYP/3-21G 

taxol 
(110 atoms) 

valinomycin 
(168 atoms) 

olestra 
(453 atoms) 

CPU Code (sec) 25593.2 60511.8 639711.4 
GPU Code (sec) 19212.1 42900.5 387052.9 
Speed-Up (x) 1.33 1.41 1.65 



Beyond 472 atoms? 

•   Calculations pending 
– Carbon 540 (540 atoms) 
– BPTI (900 atoms) 

 



Multi-GPU: OpenMP & OpenACC 
Pseudocode: 
Ngpu=ACC_GET_NUM_DEVICES(ACC_DEVICE_NVIDIA) 

CALL OMP_SET_NUM_THREADS(Ngpu) 

NOMPCHUNK=Nradial/NGPU 

!omp parallel private(…) 

OMP_ME=OMP_GET_THREAD_NUM() 

IF (Ngpu > 1) 

  IOMP_START=NOMPCHUNK*OMP_ME+1 

  IOMP_END=NOMPCHUNK*OMP_ME+NOMPCHUNK 

ELSE 

  IOMP_START=1 

  IOMP_END=Nradial 

ENDIF 

CALL ACC_SET_DEVICE_NUM(OMP_ME,ACC_DEVICE_NVIDIA) 

... 



Multi-GPU: OpenMP & OpenACC 
Pseudocode: 
chunk loop: DO IANG_=1, Nangular-Nchunk, Nchunk 

   Radial grid loop: DO IRAD=IOMP_START, IOMP_END 

!$acc region 

      Angular grid loop: DO IANG=IANG_, IANG_+Nchunk-1 

         Atom i loop 

            Atom j loop 

               Calculate grid weights 

!$acc end region 

ENDDO chunk loop 

IANG_=Nangular-MOD(Nangular,Nchunk)+1 

   Radial grid loop: DO IRAD=IOMP_START, IOMP_END 

!$acc region 

      Angular grid loop: DO IANG=IANG_, Nangular 

         Atom i loop 

            Atom j loop 

               Calculate grid weights 

!$acc end region 

!$omp end parallel 



Speed-Up 
Total Wall Time, Highest Power of 2, Multi-

GPU 
Total wall time 

(NGPU = 2) 

B3LYP/3-21G 
taxol 

(110 atoms) 
valinomycin 
(168 atoms) 

olestra 
(453 atoms) 

CPU Code (sec) 25593.2 60511.8 639711.4 
GPU Code (sec) 19106.0 41763.1 352609.1 
Speed-Up (x) 1.34 1.45 1.81 

Total wall time 
(NGPU = 4) 

B3LYP/3-21G 
taxol 

(110 atoms) 
valinomycin 
(168 atoms) 

olestra 
(453 atoms) 

CPU Code (sec) 25593.2 60511.8 639711.4 
GPU Code (sec) 19727.6 42867.3 345467.0 
Speed-Up (x) 1.30 1.41 1.85 



Explicit Model 
•  Programmer explicitly manages data, kernel definition, and kernel calls 
 

•  Fortran code should be written for Fortran 90 
   -  Allows use of modules and dynamic allocation for device data 
 

•  Device data managed in a similar manner to host data 
   -  Example: 
       Host   Device 
       real, dimension(*) :: vec real, device dimension(*) :: vec_d 
       integer A   integer, device A_d 
 

•  Simple copying of data to/from device memory 
   -  Example: 
       A_d=A   Copy A from host to device 
       A=A_d   Copy A_d from device to host 
 

The Portland Group, CUDA Fortran - Programming Guide and Reference, 2011. 



Restrictions 

• Cannot call cuBLAS routines from within a GPU 
kernel 

• If statements within the kernel lead to thread 
divergence 

• Memory copies cannot execute asynchronously 
• Fortran 90 is required (allocatable arrays) 



CONCLUSIONS & FUTURE 
• GPUs are great accelerators 
• Significant development time - years! 

• Not a bed of roses - big payoff 
• GPU/CUDA forces better coding practices 
• In progress 

• Hehre-Pople, ERIC integral packages 
• Full DFT 
• Open shells 
• Gradients 
• Coupled cluster 
• FMO, FMO gradients 
• EFP 



THANKS! 

US Air Force Office of Scientific Research 
DoD DURIP (GPU Cluster) 
ISU (GPU Cluster) 
NSF 
 



ENABLING ACCURATE 
CALCULATIONS FOR LARGE 

MOLECULAR SYSTEMS 

• Maintain accuracy/reduce cost 
• Highly scalable code 
• Novel algorithms 
• Take advantage of GPUs 

• Avoid the gong 



777 atoms       3625 basis functions 

CATALYSIS 



Helper Functions 

• cublasCreate() initializes the GPU 
 

• cublasDestroy() releases GPU resources 
 

• cublasSetStream() 
 - up to 16 concurrent streams per GPU can be 

executed if there are sufficient resources 
 
• cublasGetStream() returns the streamid 

 



Memory Transfers 
• cublasSetVector and cublasGetVector 
 -  Copies a vector to/from GPU memory 
 -  cublasSetVector(N, elemSize, X, incX, Y, incY) 
  N = number of elements 
  elemSize = size of each elements in bytes 
  X = vector in host memory 
  incX = size of an element of X in bytes 
  Y = vector in device memory 
  incY = size of an element of Y in bytes 
• cublasSetMatrix and cublasGetMatrix are analogous to 

the vector functions 



Memory Transfers 

• PGI Fortran does not need helper functions 
 Example – copy vector A on the host to A_d on 

the device: 
  A_d = A 
• Only works when compiled with the cudafor 

module 
• Memory copies are synchronous 
• Helper functions should not be mixed with 

implicit data transfers. 



Asynchronous Memory 
Transfers 

• Memory can be transferred asynchronously 
using cublasSetVectorAsync(), 
cublasSetMatrixAsync(), 
cublasGetVectorAsync(), and 
cublasGetMatrixAsync() 
 

• Transfer is asynchronous with respect to the 
host 
 

• Usage is same as for synchronous transfers 
 



Cublas Summary 
• Provides a way to use GPUs with only minor changes to 

the CPU code 
 

• Cublas routines can be executed asynchronously and on 
multiple GPUs 
 

• Cublas 4.0 includes all blas routines 
 

• More information can be found at
 http://developer.download.nvidia.com/compute/cuda/
4_0/toolkit/docs/CUBLAS_Library.pdf 

 

http://developer.download.nvidia.com/compute/cuda/4_0/toolkit/docs/CUBLAS_Library.pdf�
http://developer.download.nvidia.com/compute/cuda/4_0/toolkit/docs/CUBLAS_Library.pdf�


Additional Information 

• www.pgroup.com/lit/articles/insiter/v1n1a1.
htm 
 

• www.pgroup.com/resources/accel.htm 
 

• www.openacc-standard.org/home 
 

• www.pgroup.com/resources/cudafortran.ht
m 
 

http://www.pgroup.com/lit/articles/insiter/v1n1a1.htm�
http://www.pgroup.com/lit/articles/insiter/v1n1a1.htm�
http://www.pgroup.com/resources/accel.htm�
http://www.openacc-standard.org/home�
http://www.pgroup.com/resources/cudafortran.htm�
http://www.pgroup.com/resources/cudafortran.htm�


OpenAcc 

• Allows for a single code base for CPU and 
accelerated architecture 
 

• In principle, not limited to Nvidia GPUs 
 

• Based on the PGI Accelerator model with 
minor changes 
 



OpenAcc vs. PGI 
OpenAcc     PGI 
!$acc parallel     !$acc region 
!$acc loop     !$acc do 
 
- Directives can be accompanied by clauses that specify 

how the data and execution is handled 
- Many clauses are the same, but minor differences exists 
- See www.pgroup.com/accelerate and www.openacc-

standard.org for more details 

http://www.pgroup.com/accelerate�
http://www.openacc-standard.org�
http://www.openacc-standard.org�
http://www.openacc-standard.org�


 
• Major computational step in both HF and DFT methods 
• Complexity is O(N3)-O(N4), N = number of Gaussian basis 

functions  
• Method choice depends on basis function angular momenta: 

– s,p: Hehre-Pople 
– s,p,d: McMurchie-Davidson 
– s,p,d,f,g: Rys polynomials, ERIC, Obara-Saika 

ELECTRON REPULSION 
INTEGRALS 



 
• Rys Quadrature – proposed by Dupius, Rys, 

King (DRK) 
– Numerical Gaussian quadrature based on a set of 

orthogonal Rys polynomials 
– Numerically stable, low memory foot print 
–  Amenable for GPUs and architectures 

with smaller caches 

ELECTRON REPULSION 
INTEGRALS 



Variable Qualifiers 
•  Device variables can be declared with qualifiers constant, shared, or pinned 
   -  Example: 
       real, device attributes(constant) var_d 
 
•  Constant 
   -  Data is stored in device constant memory 
   -  Cannot be modified from device code, but can be changed in host code 
   -  Fast memory access 
 
•  Shared 
   -  Data is stored in device shared memory 
   -  Visible to all threads in a block 
 
•  Pinned 
   -  Page-locked memory, but reverts to unpinned memory if page-lock fails 
   -  Fast data transfer when it works 

The Portland Group, CUDA Fortran - Programming Guide and Reference, 2011. 



Kernel Implementation 

•  Syntax for GPU kernels is similar to that used with C/C++ 
 
•  Subroutines can become kernels 
 
•  Subroutines are prefixed with “attributes(type)” to specify the execution 
 
   -  attributes(host) is a subroutine executed on the host (default) 
 
   -  attributes(global) is a subroutine/kernel executed on the device that is 
      called from the host 
 
   -  attributes(device) is a subroutine/kernel executed on the device that is 
      executed on the device and called from a “global” or “device” subroutine 
 

The Portland Group, CUDA Fortran - Programming Guide and Reference, 2011. 



Kernel Calls 

•  Chevron notation, <<< … >>>, used to specify how the kernel is executed 
   on the device 
   - Example: 
     call kernel<<<grid,block,bytes,streamid>>>(arg1,arg2,…) 
 
•  grid is a type dim3 variable that specifies the grid dimensions 
 
•  block is a type dim3 variable that specifies the block dimensions 
 
•  bytes is an optional integer variable that designates the amount of memor
   available to the kernel 
 
•  streamid is an optional integer variable to determine in which stream the  
   kernel is executed 

The Portland Group, CUDA Fortran - Programming Guide and Reference, 2011. 



Cellulose: BIOMASS CONVERSION 

Crystal: I-ß cellulose (in plants), monoclinic, H-bonded sheets 

Chain: linear polymer of ß-(1, 4)-D-glucopyranose units  



Accelerator Directives 

• Benefits 
– Similar to OpenMP 

• Single source code 
• Target multiple architectures 
• Open standard 
• Incremental programming 

• Compiler: Portland Group (PGI) 
– Supports mix directives and CUDA Fortran 

 



Future Work 

• DFT: Fock Build (20-24%) 
• DFT: Gradient Transformations (6-16%) 
• DFT Gradients 
• TDDFT Energy 
• Low level performance tuning with CUDA 

Fortran 
• Multi-node, single-gpu 
• Multi-node, multi-gpu 



CCSD(T): Step 1 
• Sequential C++ CPU code 
• (T) only 
• 6-31G(d) Caffeine, 230 AOs, Xeon 2 GHz CPU  
• Wall Times 

• Current GAMESS: ~11 hours 
• C++ code: ~7.3 hours (includes 0.3 hour for I/O)  

• Memory 
• Current GAMESS: 4.6 GB distributed, 1 GB local 
• C++ code: ~258 MB 
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