
Keeneland – Enabling Heterogeneous Computing
for the Open Science Community
Philip C. Roth
Oak Ridge National Laboratory

with contributions from the Keeneland project team and partners

NSF Office of Cyber Infrastructure RFP

• NSF 08-573 OCI Track 2D RFP in Fall 2008
– Data Intensive
– Experimental Grid testbed
– Pool of loosely coupled grid-computing resources
– Experimental HPC System of Innovative Design

2

Oct 2008 alternatives analysis concluded GPUs
were a competitive solution
• Success with various applications

at DOE, NSF, government,
industry
– Signal processing, image processing,

etc.
– DCA++, S3D, NAMD, many others

• Community application
experiences also positive
– Frequent workshops, tutorials,

software development, university
classes

– Many apps teams are excited about
using GPUs

• Open questions: Programmability,
Resilience?

3

High Level Goals
• Provide a new class of computing architecture to the

NSF community for science
• Acquire, deploy, and operate two GPU clusters

– Initial Delivery (KIDS), Deployed October 2010
– Full Scale (KFS), NVIDIA M2090s, Planned Spring 2012
– Operations, user support

• Support development of software tools, applications to
ensure user productivity and success

• Assess new technologies
• Perform education, outreach, and training for scientists,

students, industry on these new architectures

4

Partners (KIDS)

5

Georgia
Institute of
Technology

Project
management

Acquisition and
alternatives
assessment

System
software and
development

tools

Education,
Outreach,
Training

National
Institute of

Computational
Sciences

Operations and
TG/XD

Integration

User and
Application

Support

Operational
Infrastructure

Education,
Outreach,
Training

Oak Ridge
National

Laboratory

Applications

Facilities

Education,
Outreach,
Training

University of
Tennessee,
Knoxville

Scientific
Libraries

Education,
Outreach,
Training

NVIDIA

Tesla

Applications
optimizations

Training

HP

HPC Host
System

System
integration

Training

Organization
6

J. Vetter, GT
Project Director and PI

Deputy Project Director
R. Glassbrook, GT

Advanced User Support
B. Loftis, NICS

System Software
K. Schwan, GT

Numerical Libraries
J. Dongarra, UT-K

Education, Outreach,
Training

J. Vetter, GT

Accelerated Application
Development

J. Meredith, ORNL

System Operations and
Integration

R. Braby, NICS

System Acquisition
And Assessment

J. Vetter, GT

Faciliities and Utilities
J. Rogers, ORNL

KIDS Node Architecture

HP ProLiant SL390s G7 Architecture

HP ProLiant SL390s G7 2U half width tray

4 Hot plug SFF
(2.5”) HDDs

SFP+

1 GPU module in
the rear, lower 1U

2 GPU modules in
upper 1U

Dual 1GbE

Dedicated management
iLO3 LAN & 2 USB ports

VGA

UID LED & Button

Health LED

Serial (RJ45)

Power
Button QSFP

(QDR IB)

2 Non-hot plug
SFF (2.5”) HDD

Keeneland – Initial Delivery System (KIDS)

9

Initial Delivery system installed in Oct/Nov 2010

201 TFLOPS in 7 racks (90 sq ft incl service area)

677 MFLOPS per watt on HPL (#9 on Green500, Nov 2010)

Early applications results include Gordon Bell Winner and others Keeneland System
(7 Racks)

ProLiant SL390s G7
(2CPUs, 3GPUs)

S6500 Chassis
(4 Nodes)

Rack
(6 Chassis)

M2070

Xeon 5660

12000-Series
Director Switch

Integrated with NICS
Datacenter Storage and TG Full PCIe X16

bandwidth to all GPUs

67
GFLOPS

515
GFLOPS

1679
GFLOPS
24/18 GB

6718
GFLOPS

40306
GFLOPS

201528
GFLOPS

Keeneland Final System
10

• Planned for deployment in Spring 2012
• Allocated as XSEDE production resource in July

2012

• KFS Hardware being finalized
– Will use NVIDIA M2090s for improved

performance over KIDS’ M2070s

Keeneland Software Research

• Numerical Libraries
• Ocelot Debugging and Compilation Framework

for CUDA
• Virtualization of

Heterogeneous
Systems

11

MAGMA: Matrix Algebra on GPU and
Multicore Architectures
• Hybrid algorithms from LAPACK and BLAS

– Nearly all LAPACK and BLAS functionality available
– New highly parallel algorithms of optimized

communication and synchronization
• Primarily in CUDA with initial OpenCL support

– Starting with OpenCL BLAS
• Autotuning framework

– Both high level algorithms & BLAS
• Multi-GPU support

– StarPU scheduling
– DPLASMA with GPU support

12

Ocelot: Debugging and Compilation Framework
for CUDA

Just-in-time code
generation and

optimization for data
intensive applications

esd.lbl.gov

(@NEU)

Data Parallel IR

Language
Front-End

• Environment for i) compiler research, ii) architecture
research, and iii) productivity tools

13

Virtualization
• KIDS nodes have three

GPUs and two CPUs
• Scheduling currently at

node granularity
• How to best handle codes

that don’t use all GPUs (or
need more per node)?

• Exploring virtualization
– Based on Hybrid Virtual

Machines (HyVM)
– GPGPU Assemblies -

virtual clusters

14

CK1

DataIn

DataOut

Virtual Execution
Unit (VEU)

Executable Code

State

CK1

DataIn

CK2
CK3

CK4

CK5

DataOut

DataIn

Virtual Execution
Unit (VEU)

Executable Code

State

Virtual Execution
Unit (VEU)

Executable Code

State

Virtual Execution
Unit (VEU)

Executable Code

State

Virtual
Execution Unit
(VEU)

Executable
Code

State

OR

Execution
Model(s)

Data Data

Virtual Execution
Units (VEUs)

Executable Code

State

OS
Structures

GPU CPU sCPU (Shared ISA)Emulated GPU

Developing for and Using KIDS

• Programming Environment
• Compilers
• Libraries
• Batch Queue
• Tools

15

Fundamental KIDS Software
• Keeneland project funding mainly for system

procurement and effort
– Using freely-available software when possible/feasible

• CentOS
• Intel, PGI, and GNU compilers
• NVIDIA CUDA, OpenCL
• OpenMPI, MVAPICH
• Torque (PBS) batch software
• Modules to manage environment variables

16

File Systems
• Home directories

– NFS
– Available on compute nodes

• Keeneland software
– /sw/keeneland
– Libraries and tools that are

generally useful

• More Keeneland software
– /opt
– Third party software that

requires being in /opt

• Scratch
– Lustre parallel file system
– /lustre/medusa/<username>
– Shared with other NICS

systems

• You can run programs from
your home directory…

• …but you will get much
better performance from
scratch, especially if the
program uses parallel I/O

17

Compilers
• Intel, PGI, and GNU compilers

• PGI compiler supports PGI Accelerate directives and
CUDA Fortran (should support OpenACC when
available)

• PE-* modules (e.g., PE-intel) loads matching
compiler module and MPI module
• E.g., with PE-intel loaded, mpif90 uses Intel compilers

underneath
• PE-intel is default
• Module swap is easiest way to switch

• E.g., module swap PE-intel PE-gnu
– PE-* modules might not pull in latest available

compiler or MPI

18

NVIDIA CUDA and OpenCL
• CUDA 4.1 (default), 4.0, and 3.2
• OpenCL 1.1 (with CUDA 4.1), 1.0 with earlier CUDA versions

– Supports GPUs but not CPUs

• For introduction to CUDA

– See NVIDIA site
– See slides from our two-day April 2011 tutorial

http://ft.ornl.gov/doku/keeneland/keeneland_tutorial_14_april_2011/start

• For introduction to OpenCL
– See Khronos web site at http://www.khronos.org/opencl
– See NVIDIA web site at http://developer.nvidia.com/opencl

19

http://ft.ornl.gov/doku/keeneland/keeneland_tutorial_14_april_2011/start�
http://www.khronos.org/opencl�
http://developer.nvidia.com/opencl�

CAPS Enterprise HMPP Workbench

• Directive based (like OpenMP, PGI Accelerator)
• Supports C and Fortran programs
• Source to source translator
• Back-ends for

CUDA and OpenCL
• Can run on host

if GPUs are not
available

• http://www.caps-entreprise.com/index.php

20

Libraries
• Libraries for accelerating performance-critical parts of a

program
• Examples:

– MAGMA: Linear algebra
– CUBLAS: GPU-accelerated BLAS
– CUFFT: GPU-accelerated FFT library
– CUSparse: GPU-accelerated sparse matrix library
– CURNG: GPU-accelerated random number generator library
– Thrust: GPU-accelerated algorithms over container data

structures
• Check /sw/keeneland for common libraries used by

scientific applications

21

KIDS Batch Queues
• All access to KIDS compute nodes is through a batch queue

– Parallel: two to 72-node jobs
– Serial: single-node jobs
– Capability: >72 node jobs

• Run weekly on Tuesdays
• Fair Share scheduling is in use

– Priority takes into account jobs recently run by a user or project
– Users who have not recently run may have higher priority

• Interactive access to nodes (e.g., for single-node debugging using cuda-gdb)

is possible via the batch queue

• See http://keeneland.gatech.edu/support/batch-scripts for more
information about KIDS batch queues

• See http://keeneland.gatech.edu/support/scheduling for more information
about KIDS scheduling

22

http://keeneland.gatech.edu/support/batch-scripts�
http://keeneland.gatech.edu/support/scheduling�

Debuggers on KIDS
• NVIDIA debugger

– cuda-gdb
– Single process
– CUDA only

• Allinea DDT
– Debugger for parallel

programs
– CUDA support

• Single step through CUDA
kernels

• Examine data in GPU memory
– Can submit jobs through batch queue and connect to them

once they start to run

23

Development Challenges with KIDS

• Systems with heterogeneous architectures like
KIDS present challenges for making efficient
use of system resources

24

MPI + {CUDA|OpenCL}
• CUDA

– Both CUDA and MPI have compiler drivers
• Separate code that uses CUDA from code that uses MPI
• Compile CUDA code using nvcc
• Compile all other code using MPI drivers
• Link with MPI driver, passing link flags for finding and using

CUDA libraries (e.g., -lcudart)

• OpenCL
– Library based – any C/C++ compiler can compile
– No special linker needed (but do need to specify

OpenCL library, e.g., -lOpenCL)

25

Non-Uniform Memory Access
• Node architectures result in Non-Uniform

Memory Access (NUMA)
– Point-to-point connections between devices
– Not fully-connected topologies
– Host memory connected to sockets instead of across a

bus

26

Data Transfer Bandwidth
• Measured bandwidth of data transfers between CPU socket 0 and the

GPUs

27

CPU-to-GPU GPU-to-CPU
Spafford, K., Meredith, J., Vetter, J. Quantifying NUMA and Contention Effects in Multi-GPU
Systems. Proceedings of the Fourth Workshop on General-Purpose Computation on Graphics Processors
(GPGPU 2011). Newport Beach, CA, USA.

Meredith, J., Roth, P., Spafford, K., Vetter, J. Performance Implications of Non-Uniform Device
Topologies in Scalable Heterogeneous GPU Systems. IEEE MICRO 31(5), September/October
2011, pp. 66-75.

Getting Access to KIDS

• Proposing Projects
• Requesting Accounts

28

Proposing Projects
• KIDS is an experimental system

– Looking for projects involving development or porting
of software to use a GPU-enabled system, or
evaluation of such software
• Applications
• Tools
• Systems software

– Projects involving production runs are not likely to be
successful

• Project proposals will be reviewed by the
Keeneland Project Director

• KFS will be an XSEDE resource

29

Requesting Accounts
• Follow “New Account” link at http://keeneland.gatech.edu for

information and link to account request page

30

http://keeneland.gatech.edu�

For more information
• http://keeneland.gatech.edu

• Project information
• Quick Start guide and support information
• Slides from our Tutorials and Presentations

• Project PI: Jeffrey S. Vetter

vetter@cc.gatech.edu

http://keeneland.gatech.edu�
mailto:vetter@cc.gatech.edu�

	Keeneland – Enabling Heterogeneous Computing for the Open Science Community
	NSF Office of Cyber Infrastructure RFP
	Oct 2008 alternatives analysis concluded GPUs were a competitive solution
	High Level Goals
	Partners (KIDS)
	Organization
	KIDS Node Architecture
	HP ProLiant SL390s G7 2U half width tray
	Keeneland – Initial Delivery System (KIDS)
	Keeneland Final System
	Keeneland Software Research
	MAGMA: Matrix Algebra on GPU and Multicore Architectures
	Ocelot: Debugging and Compilation Framework for CUDA
	Virtualization
	Developing for and Using KIDS
	Fundamental KIDS Software
	File Systems
	Compilers
	NVIDIA CUDA and OpenCL
	CAPS Enterprise HMPP Workbench
	Libraries
	KIDS Batch Queues
	Debuggers on KIDS
	Development Challenges with KIDS
	MPI + {CUDA|OpenCL}
	Non-Uniform Memory Access
	Data Transfer Bandwidth
	Getting Access to KIDS
	Proposing Projects
	Requesting Accounts
	Slide Number 31

