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Abstract

The growing diversity in computer processor architectures poses a
serious challenge to the computational chemistry community. This
talk considers some of the key issues, including disjoint address
spaces, non-standard architectures and execution models, and the
different APIs required to use them. Specifically, we will describe
our experiences in developing coupled-cluster methods for Intel
multicore, Intel MIC, NVIDIA Fermi and Blue Gene/Q in both a
clean-sheet implementation and NWChem. Of fundamental
interest is the development of codes that scale not only within the
node but across thousands of nodes; hence, the interaction
between the processor and the network will be analyzed in detail.
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Software Automation
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The practical TCE – NWChem many-body codes

What does it do?

1 GUI input quantum many-body theory e.g. CCSD.

2 Operator specification of theory.

3 Apply Wick’s theory to transform operator expressions into
array expressions.

4 Transform input array expression to operation tree using many
types of optimization.

5 Produce Fortran+Global Arrays+NXTVAL implementation.

Developer can intercept at various stages to modify theory,
algorithm or implementation.
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The practical TCE – Success stories

First parallel implementation of many (most) CC methods.

First truly generic CC code (not string-based):
{RHF,ROHF,UHF}×CC{SD,SDT,SDTQ}×{T/Λ,EOM,LR/QR}
Most of the largest calculations of their kind employ TCE:
CR-EOMCCSD(T), CCSD-LR α, CCSD-QR β, CCSDT-LR α

Reduces implementation time for new methods from years to
hours, TCE codes are easy to verify.

Significant hand-tuning by Karol Kowalski and others at PNNL
was required to make TCE run efficiently and scale to 1000
processors and beyond.
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Before TCE

CCSD/aug-cc-pVDZ – 192 b.f. – days on 1 processor

Benzene is close to crossover point between small and large.
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Linear response polarizability

CCSD/Z3POL – 1080 b.f. – 40 hours on 1024 processors

This problem is 20,000 times larger on the computer than benzene.

J. Chem. Phys. 129, 226101 (2008).
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Quadratic response hyperpolarizability

CCSD/d-aug-cc-pVTZ – 812 b.f. – 20 hours on 1024 processors

Lower levels of theory are not reliable for this system.

J. Chem. Phys. 130, 194108 (2009).
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Charge-transfer excited-states of biomolecules

CR-EOMCCSD(T)/6-31G* – 584 b.f. – 1 hour on 256 cores

Lower levels of theory are wildly incorrect for this system.
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Excited-state calculation of conjugated arrays

CR-EOMCCSD(T)/6-31+G* – 1096 b.f. – 15 hours on 1024 cores

J. Chem. Phys. 132, 154103 (2010).
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Summary of TCE module

http://cloc.sourceforge.net v 1.53 T=30.0 s

---------------------------------------------

Language files blank comment code

---------------------------------------------

Fortran 77 11451 1004 115129 2824724

---------------------------------------------

SUM: 11451 1004 115129 2824724

---------------------------------------------

Only <25 KLOC are hand-written; ∼100 KLOC is utility code
following TCE data-parallel template.
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My thesis work

http://cloc.sourceforge.net v 1.53 T=13.0 s

---------------------------------------------

Language files blank comment code

---------------------------------------------

Fortran 77 5757 0 29098 983284

---------------------------------------------

SUM: 5757 0 29098 983284

---------------------------------------------

Total does not include ∼1M LOC that was reused (EOM).

CCSD quadratic response hyperpolarizability was derived,
implemented and verified during a two week trip to PNNL.
Over 100 KLOC were “written” in under an hour.
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Before Automation

(The Benz comes before the Ford)
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What code are we going to generate?

Legacy design limits options

NVIDIA hardware was changing fast

CUDA Fortran didn’t exist in 2009

Eugene had a loop-based CEPA code in C. . .

Assume that data motion across PCI bus was limiting

Code changed a lot as CUBLAS supported streams, etc.
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Coupled-cluster theory
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Coupled-cluster theory

The coupled–cluster (CC) wavefunction ansatz is

|CC 〉 = eT |HF 〉

where T = T1 + T2 + · · ·+ Tn.

T is an excitation operator which promotes n electrons from
occupied orbitals to virtual orbitals in the Hartree-Fock Slater
determinant.

Inserting |CC 〉 into the Schödinger equation:

ĤeT |HF 〉 = ECCe
T |HF 〉 Ĥ|CC 〉 = ECC |CC 〉
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Coupled-cluster theory

|CC 〉 = exp(T )|0〉
T = T1 + T2 + · · ·+ Tn (n� N)

T1 =
∑
ia

tai â
†
aâi

T2 =
∑
ijab

tabij â†aâ
†
bâj âi

|ΨCCD〉 = exp(T2)|ΨHF 〉
= (1 + T2 + T 2

2 )|ΨHF 〉
|ΨCCSD〉 = exp(T1 + T2)|ΨHF 〉

= (1 + T1 + · · ·+ T 4
1 + T2 + T 2

2 + T1T2 + T 2
1T2)|ΨHF 〉
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Coupled-cluster theory

Projective solution of CC:

ECC = 〈HF |e−THeT |HF 〉
0 = 〈X |e−THeT |HF 〉 (X = S ,D, . . .)

CCD is:

ECC = 〈HF |e−T2HeT2 |HF 〉
0 = 〈D|e−T2HeT2 |HF 〉

CCSD is:

ECC = 〈HF |e−T1−T2HeT1+T2 |HF 〉
0 = 〈S |e−T1−T2HeT1+T2 |HF 〉
0 = 〈D|e−T1−T2HeT1+T2 |HF 〉
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Notation

H = H1 + H2

= F + V

F is the Fock matrix. CC only uses the diagonal in the canonical
formulation.

V is the fluctuation operator and is composed of two-electron
integrals as a 4D array.

V has 8-fold permutation symmetry in V rs
pq and is divided into six

blocks: V kl
ij , V ka

ij , V jb
ia , V ab

ij , V bc
ia , V cd

ab .

Indices i , j , k , . . . (a, b, c , . . .) run over the occupied (virtual)
orbitals.
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CCD Equations

Rab
ij = V ab

ij + P(ia, jb)

[
T ae
ij I be − T ab

im Imj +
1

2
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ij +
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2
T ab
mnI

mn
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mj I
mb
ie − Ima

ie T eb
mj + (2T ea
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be )T ea
mn

I ij = (2Vmi
ef − V im

ef )T ef
mj

I ijkl = V ij
kl + V ij

ef T
ef
kl

I iajb = V ia
jb −

1

2
V im
eb T

ea
jm

I iabj = V ia
bj + V im

be (T ea
mj −

1

2
T ae
mj )−

1

2
Vmi
be T

ae
mj

Jeff Hammond Electronic Structure Calculation Methods on Accelerators



Turning CC into GEMM 1

Some tensor contractions are
trivially mapped to GEMM:

I ijkl + = V ij
ef T

ef
kl

I
(ij)
(kl) + = V

(ij)
(ef )T

(ef )
(kl)

I ba + = V b
c T

c
a

Other contractions require
reordering to use BLAS:

I iabj + = V im
be T

ea
mj

Ibj ,ia + = Vbe,imTmj ,ea

Jbi ,ja + = Wbi ,meUme,ja

J jabi + = Wme
bi U ja

me

J
(ja)
(bi) + = W

(me)
(bi) U

(ja)
(me)

Jzx + = W y
x U

z
y
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Turning CC into GEMM 2

Reordering can take as much time as GEMM. Why?

Routine flops mops pipelined

GEMM O(mnk) O(mn + mk + kn) yes
reorder 0 O(mn + mk + kn) no

Increased memory bandwidth on GPU makes reordering less
expensive (compare matrix transpose).

(There is a chapter in my thesis with profiling results and more
details if anyone cares.)
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Hardware Details

CPU GPU
X5550 2 X5550 C1060 C2050

processor speed (MHz) 2660 2660 1300 1150
memory bandwidth (GB/s) 32 64 102 144

memory speed (MHz) 1066 1066 800 1500
ECC available yes yes no yes
SP peak (GF) 85.1 170.2 933 1030
DP peak (GF) 42.6 83.2 78 515

power usage (W) 95 190 188 238

Note that power consumption is apples-to-oranges since CPU does
not include DRAM, whereas GPU does.
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Relative Performance of GEMM

GPU versus SMP CPU (8 threads):
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We expect roughly 4-5 times speedup based upon this evaluation.
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Chemistry Details

Molecule o v

C8H10 21 63
C10H8 24 72
C10H12 26 78
C12H14 31 93
C14H10 33 99
C14H16 36 108

C20 40 120
C16H18 41 123
C18H12 42 126
C18H20 46 138

6-31G basis set

C1 symmetry

F and V from PSI3.

GPU code now runs from PSI3.

Talk to Eugene about PSI4 (GPL).
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CCD Algorithm
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CCD Performance Results

Iteration time in seconds
our DP code X5550

C2050 C1060 X5550 Molpro TCE GAMESS

C8H10 0.3 0.8 1.3 2.3 5.1 6.2
C10H8 0.5 1.5 2.5 4.8 10.6 12.7
C10H12 0.8 2.5 3.5 7.1 16.2 19.7
C12H14 2.0 7.1 10.0 17.6 42.0 57.7
C14H10 2.7 10.2 13.9 29.9 59.5 78.5
C14H16 4.5 16.7 21.6 41.5 90.2 129.3

C20 8.8 29.9 40.3 103.0 166.3 238.9
C16H18 10.5 35.9 50.2 83.3 190.8 279.5
C18H12 12.7 42.2 50.3 111.8 218.4 329.4
C18H20 20.1 73.0 86.6 157.4 372.1 555.5
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CCD Performance Summary
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Numerical Precision versus Performance

Iteration time in seconds
C1060 C2050 X5550

molecule SP DP SP DP SP DP

C8H10 0.2 0.8 0.2 0.3 0.7 1.3
C10H8 0.4 1.5 0.2 0.5 1.3 2.5
C10H12 0.7 2.5 0.4 0.8 2.0 3.5
C12H14 1.8 7.1 1.0 2.0 5.6 10.0
C14H10 2.6 10.2 1.5 2.7 8.4 13.9
C14H16 4.1 16.7 2.4 4.5 12.1 21.6

C20 6.7 29.9 4.1 8.8 22.3 40.3
C16H18 9.0 35.9 5.0 10.5 28.8 50.2
C18H12 10.1 42.2 5.6 12.7 29.4 50.3
C18H20 17.2 73.0 10.1 20.1 47.0 86.6

Almost no work on single-precision or mixed-precision for
standard CPU packages even though it is worth 2x.
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CCSD Equations

Jeff Hammond Electronic Structure Calculation Methods on Accelerators



CCSD Algortihm

Guiding principles:

Too many arrays to fit into GPU memory.

Copy-in every iteration in CCD was not a problem

Want multi-GPU, mixed CPU-GPU algorithms.

Design:

Persistent buffers but push all large arrays every iteration.

O(N6), O(N5) on GPU.

O(N5), O(N4) on CPU.

Dynamically schedule some diagrams each iteration to
load-balance.

Overlap computation and communication with CUDA streams
(CUBLAS compatible now).
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Hybrid CCSD

Iteration time in seconds
Hybrid CPU Molpro NWChem PSI3 TCE GAMESS

C8H10 0.6 1.4 2.4 3.6 7.9 8.4 7.2
C10H8 0.9 2.6 5.1 8.2 17.9 16.8 15.3
C10H12 1.4 4.1 7.2 11.3 23.6 25.2 23.6
C12H14 3.3 11.1 19.0 29.4 54.2 64.4 65.1
C14H10 4.4 15.5 31.0 49.1 61.4 90.7 92.9
C14H16 6.3 24.1 43.1 65.0 103.4 129.2 163.7

C20 10.5 43.2 102.0 175.7 162.6 233.9 277.5
C16H18 10.0 38.9 84.1 117.5 192.4 267.9 345.8
C18H12 14.1 57.1 116.2 178.6 216.4 304.5 380.0
C18H20 22.5 95.9 161.4 216.3 306.9 512.0 641.3

We do at least twice as many flops as Molpro due to CC formalism.
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More hybrid CCSD

molecule Basis o v Hybrid CPU Molpro CPU Molpro
CH3OH aTZ 7 175 2.5 4.5 2.8 1.8 1.1
benzene aDZ 15 171 5.1 14.7 17.4 2.9 3.4

C2H6SO4 aDZ 23 167 9.0 33.2 31.2 3.7 3.5
C10H12 DZ 26 164 10.7 39.5 56.8 3.7 5.3
C10H12 6-31G 26 78 1.4 4.1 7.2 2.9 5.1

Molpro optimized for v/o � 1.

Our code doesn’t favor any limit except o, v � 1.
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Programming Models
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Categorizing parallel models

MPI-1 Private address space, explicit communication,
independent execution.

MPI-RMA Private-ish address space, explicit communication,
independent execution.

OpenMP (loops) Shared address space, implicit
communication, collective execution.

OpenMP (sections) Shared address space, implicit
communication, semi-independent execution.

Pthreads Shared address space, independent execution.

GA Global view of data (not coherent), explicit
communication, independent execution.

PGAS Shared address space, implicit/explicit communication,
independent execution.

OpenMP is always implemented on top of Pthreads.
PGAS can use MPI and/or Pthreads.
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Categorizing models

Execution model: independent/tasks vs.
cooperative/data-parallel

Memory sharing: private by default vs. public by
default

Threading: parallel by default vs. serial by
default
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Decision making process

MPI exists in a constructive cycle of ubiquity
and optimization.

OpenMP is reaching ubiquity; optimization is
debatable.

Pthreads is ubiquitous but invisible (system
programmers only).

PGAS portability, especially performance
portability, is still emerging.
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OpenMP: from 1 to N or N to 1?
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OpenMP: from 1 to N or N to 1?

#pragma omp parallel

{ /* thread-safe */ }
#pragma omp single

{ /* thread-unsafe */ }
#pragma omp parallel for

{ /* threaded loops */ }
#pragma omp sections

{ /* threaded work */ }

{ /* thread-unsafe */ }
#pragma omp parallel for

{ /* threaded loops */ }
{ /* thread-unsafe */ }
#pragma omp parallel for

{ /* threaded loops */ }
/* thread-unsafe work */
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Addition thoughts

Pthreads very useful for driving communication

OpenMP NUMA catastrophe (on Linux

MPI+SHM vs. Pthreads (shared vs. private question)

Learn from linear algebra community:
DAG-scheduling with Pthreads not OpenMP

– SK+KK TCE task pools in EOMCCSD, MRCC
– our GPU-CC code using task parallelism throughout
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Beyond one node

NWChem, MADNESS, MPQC, GAMESS (?) burn core(s)
for communication

Multi-socket, multi-GPU, multi-rail all gets nasty

Pthread support for affinity becomes more critical

NWChem data-server uses ∼ 25% of cores with Infiniband

Do your GPUs need communication helper threads?
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Pragmas
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PGI pragmas

Q Can I call a CUDA kernel function from my PGI-compiled code?

A PGI is working on the design of a feature to allow you to call
kernel functions written in CUDA or PTX or other languages
directly from your C or Fortran program. We will announce this
feature when it is available.

Simple tensor contractions are done with DGEMM; nonsimple ones
redistribution to simple ones (permutation).

CUBLAS DGEMM with CUDA permutation codes

Pragma DGEMM with pragma permutation codes

Pragma code only works with Fortran
(C is a terrible language to optimize)
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PGI pragmas

#pragma acc region

{
for(i=0; i<num; i++)

for(j=0; i<num; j++)

for(k=0; i<num; k++)

c[i*1000+j] += ( a[i*1000+k] * b[k*1000+j] );

}
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PGI pragmas

42, Accelerator region ignored

44, Accelerator restriction: size of the GPU copy of an array

depends on values computed in this loop

45, Accelerator restriction: size of the GPU copy of ’c’ is

unknown

Accelerator restriction: size of the GPU copy of an array

depends on values computed in this loop

Accelerator restriction: one or more arrays have unknown size

46, Accelerator restriction: size of the GPU copy of ’a’ is

unknown

Accelerator restriction: size of the GPU copy of ’b’ is unknown

Accelerator restriction: one or more arrays have unknown size
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PGI: loop-based matrix multiplication
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Pragmas

Usage:

Must allow native function calls

Pragmas to generate native object rather than offload

Explicit data movement

Explicit data movement is something scientists can do!

Things compilers cannot do well:

Optimize for cache (Netlib vs. Goto)

Generate network communication (PGAS)

Move data across PCI bus (GPU pragmas)

Prove me wrong. . .
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SAAHPC 2012

What: Symposium on Application Accelerators in HPC
When: July 10-12, 2012
Where: Argonne (Chicago, IL)
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TCE on GPUs
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NWChem TCE module

Automatically generated code: easy to rewrite (in
principle).

Data-parallel over tiles using Global Arrays.

Näive dynamic load-balancing (shared counter).

Standard GA programming model:
check out, compute, check in
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TCE CPU algorithm

for (P3,P4,H1,H2) in all (P,P,H,H) tiles:

if (my turn) and (nonzero symmetry):

allocate and zero buffer Jc

for (P5,P6) in all (P,P) tiles:

if (nonzero symmetry):

allocate and zero buffer Tc

get Tb from global T

reorder Tc

allocate and zero buffer Ic

get Ib from global I

reorder Ic

compute Jc += Tc*Ic

reorder Jc

acc Jc onto global J
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TCE GPU algorithm

grab from pool and zero buffer pair (Tc,Tg)

grab from pool and zero buffer pair (Ic,Ig)

if (push gpucompute pull < cpucompute):

iget and push Tg from global T

iget and push Ig from global I

igpu reorder Tg

igpu reorder Ig

gpucompute Jg += Tg*Ig

else:

iget Tc from global T

iget Ic from global I

compute Jc += Tc*Ic

ireorder Jg

reorder Jc

pull and acc Jc += Jg

acc Jc onto global J
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Evaluating the GPU algorithm

Tilesizes not big enough to justify GPU all the time (bad).

Jg stays on the GPU through each pass (good).

Possibly good overlap of data movement (good).

Can unroll inner loop for maximum overlap (good), but
this doubles the memory required (bad).

Threaded CPU code helps memory issues but GA/ARMCI
not thread-safe (funneled or serialized should be okay).

Many of the GPU-oriented optimizations will help with
multicore CPUs. Fully rewritten GPU TCE in NWChem will
probably coincide with porting to BGQ for this reason.
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