
Programming models for quantum
many-body methods on multicore and

manycore processors

Jeff Hammond1 and Eugene DePrince2

1 Argonne
2 Georgia Tech

6 February 2011

Jeff Hammond Electronic Structure Calculation Methods on Accelerators

Abstract

The growing diversity in computer processor architectures poses a
serious challenge to the computational chemistry community. This
talk considers some of the key issues, including disjoint address
spaces, non-standard architectures and execution models, and the
different APIs required to use them. Specifically, we will describe
our experiences in developing coupled-cluster methods for Intel
multicore, Intel MIC, NVIDIA Fermi and Blue Gene/Q in both a
clean-sheet implementation and NWChem. Of fundamental
interest is the development of codes that scale not only within the
node but across thousands of nodes; hence, the interaction
between the processor and the network will be analyzed in detail.

Jeff Hammond Electronic Structure Calculation Methods on Accelerators

Software Automation

Jeff Hammond Electronic Structure Calculation Methods on Accelerators

The practical TCE – NWChem many-body codes

What does it do?

1 GUI input quantum many-body theory e.g. CCSD.

2 Operator specification of theory.

3 Apply Wick’s theory to transform operator expressions into
array expressions.

4 Transform input array expression to operation tree using many
types of optimization.

5 Produce Fortran+Global Arrays+NXTVAL implementation.

Developer can intercept at various stages to modify theory,
algorithm or implementation.

Jeff Hammond Electronic Structure Calculation Methods on Accelerators

The practical TCE – Success stories

First parallel implementation of many (most) CC methods.

First truly generic CC code (not string-based):
{RHF,ROHF,UHF}×CC{SD,SDT,SDTQ}×{T/Λ,EOM,LR/QR}
Most of the largest calculations of their kind employ TCE:
CR-EOMCCSD(T), CCSD-LR α, CCSD-QR β, CCSDT-LR α

Reduces implementation time for new methods from years to
hours, TCE codes are easy to verify.

Significant hand-tuning by Karol Kowalski and others at PNNL
was required to make TCE run efficiently and scale to 1000
processors and beyond.

Jeff Hammond Electronic Structure Calculation Methods on Accelerators

Before TCE

CCSD/aug-cc-pVDZ – 192 b.f. – days on 1 processor

Benzene is close to crossover point between small and large.

Jeff Hammond Electronic Structure Calculation Methods on Accelerators

Linear response polarizability

CCSD/Z3POL – 1080 b.f. – 40 hours on 1024 processors

This problem is 20,000 times larger on the computer than benzene.

J. Chem. Phys. 129, 226101 (2008).

Jeff Hammond Electronic Structure Calculation Methods on Accelerators

http://link.aip.org/link/jcpsa6/v129/i22/p226101/s1

Quadratic response hyperpolarizability

CCSD/d-aug-cc-pVTZ – 812 b.f. – 20 hours on 1024 processors

Lower levels of theory are not reliable for this system.

J. Chem. Phys. 130, 194108 (2009).

Jeff Hammond Electronic Structure Calculation Methods on Accelerators

http://jcp.aip.org/resource/1/jcpsa6/v130/i19/p194108_s1

Charge-transfer excited-states of biomolecules

CR-EOMCCSD(T)/6-31G* – 584 b.f. – 1 hour on 256 cores

Lower levels of theory are wildly incorrect for this system.

Jeff Hammond Electronic Structure Calculation Methods on Accelerators

Excited-state calculation of conjugated arrays

CR-EOMCCSD(T)/6-31+G* – 1096 b.f. – 15 hours on 1024 cores

J. Chem. Phys. 132, 154103 (2010).

Jeff Hammond Electronic Structure Calculation Methods on Accelerators

http://link.aip.org/link/JCPSA6/v132/i15/p154103/s1

Summary of TCE module

http://cloc.sourceforge.net v 1.53 T=30.0 s

Language files blank comment code

Fortran 77 11451 1004 115129 2824724

SUM: 11451 1004 115129 2824724

Only <25 KLOC are hand-written; ∼100 KLOC is utility code
following TCE data-parallel template.

Jeff Hammond Electronic Structure Calculation Methods on Accelerators

My thesis work

http://cloc.sourceforge.net v 1.53 T=13.0 s

Language files blank comment code

Fortran 77 5757 0 29098 983284

SUM: 5757 0 29098 983284

Total does not include ∼1M LOC that was reused (EOM).

CCSD quadratic response hyperpolarizability was derived,
implemented and verified during a two week trip to PNNL.
Over 100 KLOC were “written” in under an hour.

Jeff Hammond Electronic Structure Calculation Methods on Accelerators

Before Automation

(The Benz comes before the Ford)

Jeff Hammond Electronic Structure Calculation Methods on Accelerators

What code are we going to generate?

Legacy design limits options

NVIDIA hardware was changing fast

CUDA Fortran didn’t exist in 2009

Eugene had a loop-based CEPA code in C. . .

Assume that data motion across PCI bus was limiting

Code changed a lot as CUBLAS supported streams, etc.

Jeff Hammond Electronic Structure Calculation Methods on Accelerators

Coupled-cluster theory

Jeff Hammond Electronic Structure Calculation Methods on Accelerators

Coupled-cluster theory

The coupled–cluster (CC) wavefunction ansatz is

|CC 〉 = eT |HF 〉

where T = T1 + T2 + · · ·+ Tn.

T is an excitation operator which promotes n electrons from
occupied orbitals to virtual orbitals in the Hartree-Fock Slater
determinant.

Inserting |CC 〉 into the Schödinger equation:

ĤeT |HF 〉 = ECCe
T |HF 〉 Ĥ|CC 〉 = ECC |CC 〉

Jeff Hammond Electronic Structure Calculation Methods on Accelerators

Coupled-cluster theory

|CC 〉 = exp(T)|0〉
T = T1 + T2 + · · ·+ Tn (n� N)

T1 =
∑
ia

tai â
†
aâi

T2 =
∑
ijab

tabij â†aâ
†
bâj âi

|ΨCCD〉 = exp(T2)|ΨHF 〉
= (1 + T2 + T 2

2)|ΨHF 〉
|ΨCCSD〉 = exp(T1 + T2)|ΨHF 〉

= (1 + T1 + · · ·+ T 4
1 + T2 + T 2

2 + T1T2 + T 2
1T2)|ΨHF 〉

Jeff Hammond Electronic Structure Calculation Methods on Accelerators

Coupled-cluster theory

Projective solution of CC:

ECC = 〈HF |e−THeT |HF 〉
0 = 〈X |e−THeT |HF 〉 (X = S ,D, . . .)

CCD is:

ECC = 〈HF |e−T2HeT2 |HF 〉
0 = 〈D|e−T2HeT2 |HF 〉

CCSD is:

ECC = 〈HF |e−T1−T2HeT1+T2 |HF 〉
0 = 〈S |e−T1−T2HeT1+T2 |HF 〉
0 = 〈D|e−T1−T2HeT1+T2 |HF 〉

Jeff Hammond Electronic Structure Calculation Methods on Accelerators

Notation

H = H1 + H2

= F + V

F is the Fock matrix. CC only uses the diagonal in the canonical
formulation.

V is the fluctuation operator and is composed of two-electron
integrals as a 4D array.

V has 8-fold permutation symmetry in V rs
pq and is divided into six

blocks: V kl
ij , V ka

ij , V jb
ia , V ab

ij , V bc
ia , V cd

ab .

Indices i , j , k , . . . (a, b, c , . . .) run over the occupied (virtual)
orbitals.

Jeff Hammond Electronic Structure Calculation Methods on Accelerators

CCD Equations

Rab
ij = V ab

ij + P(ia, jb)

[
T ae
ij I be − T ab

im Imj +
1

2
V ab
ef T

ef
ij +

1

2
T ab
mnI

mn
ij − T ae

mj I
mb
ie − Ima

ie T eb
mj + (2T ea

mi − T ea
im)Imb

ej

]

I ab = (−2Vmn
eb + Vmn

be)T ea
mn

I ij = (2Vmi
ef − V im

ef)T ef
mj

I ijkl = V ij
kl + V ij

ef T
ef
kl

I iajb = V ia
jb −

1

2
V im
eb T

ea
jm

I iabj = V ia
bj + V im

be (T ea
mj −

1

2
T ae
mj)−

1

2
Vmi
be T

ae
mj

Jeff Hammond Electronic Structure Calculation Methods on Accelerators

Turning CC into GEMM 1

Some tensor contractions are
trivially mapped to GEMM:

I ijkl + = V ij
ef T

ef
kl

I
(ij)
(kl) + = V

(ij)
(ef)T

(ef)
(kl)

I ba + = V b
c T

c
a

Other contractions require
reordering to use BLAS:

I iabj + = V im
be T

ea
mj

Ibj ,ia + = Vbe,imTmj ,ea

Jbi ,ja + = Wbi ,meUme,ja

J jabi + = Wme
bi U ja

me

J
(ja)
(bi) + = W

(me)
(bi) U

(ja)
(me)

Jzx + = W y
x U

z
y

Jeff Hammond Electronic Structure Calculation Methods on Accelerators

Turning CC into GEMM 2

Reordering can take as much time as GEMM. Why?

Routine flops mops pipelined

GEMM O(mnk) O(mn + mk + kn) yes
reorder 0 O(mn + mk + kn) no

Increased memory bandwidth on GPU makes reordering less
expensive (compare matrix transpose).

(There is a chapter in my thesis with profiling results and more
details if anyone cares.)

Jeff Hammond Electronic Structure Calculation Methods on Accelerators

Hardware Details

CPU GPU
X5550 2 X5550 C1060 C2050

processor speed (MHz) 2660 2660 1300 1150
memory bandwidth (GB/s) 32 64 102 144

memory speed (MHz) 1066 1066 800 1500
ECC available yes yes no yes
SP peak (GF) 85.1 170.2 933 1030
DP peak (GF) 42.6 83.2 78 515

power usage (W) 95 190 188 238

Note that power consumption is apples-to-oranges since CPU does
not include DRAM, whereas GPU does.

Jeff Hammond Electronic Structure Calculation Methods on Accelerators

Relative Performance of GEMM

GPU versus SMP CPU (8 threads):

 0

 100

 200

 300

 400

 500

 600

 700

 0 1000 2000 3000 4000 5000

pe
rf

or
m

an
ce

 (
gi

ga
flo

p/
s)

rank

SGEMM performance

X5550
C2050

Maximum:
CPU = 156.2 GF
GPU = 717.6 GF

 0

 50

 100

 150

 200

 250

 300

 350

 0 500 1000 1500 2000 2500 3000 3500 4000

pe
rf

or
m

an
ce

 (
gi

ga
flo

p/
s)

rank

DGEMM performance

X5550
C2050

Maximum:
CPU = 79.2 GF

GPU = 335.6 GF

We expect roughly 4-5 times speedup based upon this evaluation.

Jeff Hammond Electronic Structure Calculation Methods on Accelerators

Chemistry Details

Molecule o v

C8H10 21 63
C10H8 24 72
C10H12 26 78
C12H14 31 93
C14H10 33 99
C14H16 36 108

C20 40 120
C16H18 41 123
C18H12 42 126
C18H20 46 138

6-31G basis set

C1 symmetry

F and V from PSI3.

GPU code now runs from PSI3.

Talk to Eugene about PSI4 (GPL).

Jeff Hammond Electronic Structure Calculation Methods on Accelerators

CCD Algorithm

Jeff Hammond Electronic Structure Calculation Methods on Accelerators

CCD Performance Results

Iteration time in seconds
our DP code X5550

C2050 C1060 X5550 Molpro TCE GAMESS

C8H10 0.3 0.8 1.3 2.3 5.1 6.2
C10H8 0.5 1.5 2.5 4.8 10.6 12.7
C10H12 0.8 2.5 3.5 7.1 16.2 19.7
C12H14 2.0 7.1 10.0 17.6 42.0 57.7
C14H10 2.7 10.2 13.9 29.9 59.5 78.5
C14H16 4.5 16.7 21.6 41.5 90.2 129.3

C20 8.8 29.9 40.3 103.0 166.3 238.9
C16H18 10.5 35.9 50.2 83.3 190.8 279.5
C18H12 12.7 42.2 50.3 111.8 218.4 329.4
C18H20 20.1 73.0 86.6 157.4 372.1 555.5

Jeff Hammond Electronic Structure Calculation Methods on Accelerators

CCD Performance Summary

 0

 100

 200

 300

 400

 500

 600

 700

C
8
H
1
0

C
1
0
H
8

C
1
0
H
1
2

C
1
2
H
1
4

C
1
4
H
1
0

C
1
4
H
1
6

C
2
0

C
1
6
H
1
8

C
1
8
H
1
2

C
1
8
H
2
0

p
e
r
f
o
r
m
a
n
c
e

(
g
i
g
a
f
l
o
p
/
s
)

molecule

C1060 SP
C1060 DP
C2050 SP
C2050 DP

Xeon X5550 SP
Xeon X5550 DP

Jeff Hammond Electronic Structure Calculation Methods on Accelerators

Numerical Precision versus Performance

Iteration time in seconds
C1060 C2050 X5550

molecule SP DP SP DP SP DP

C8H10 0.2 0.8 0.2 0.3 0.7 1.3
C10H8 0.4 1.5 0.2 0.5 1.3 2.5
C10H12 0.7 2.5 0.4 0.8 2.0 3.5
C12H14 1.8 7.1 1.0 2.0 5.6 10.0
C14H10 2.6 10.2 1.5 2.7 8.4 13.9
C14H16 4.1 16.7 2.4 4.5 12.1 21.6

C20 6.7 29.9 4.1 8.8 22.3 40.3
C16H18 9.0 35.9 5.0 10.5 28.8 50.2
C18H12 10.1 42.2 5.6 12.7 29.4 50.3
C18H20 17.2 73.0 10.1 20.1 47.0 86.6

Almost no work on single-precision or mixed-precision for
standard CPU packages even though it is worth 2x.

Jeff Hammond Electronic Structure Calculation Methods on Accelerators

CCSD Equations

Jeff Hammond Electronic Structure Calculation Methods on Accelerators

CCSD Algortihm

Guiding principles:

Too many arrays to fit into GPU memory.

Copy-in every iteration in CCD was not a problem

Want multi-GPU, mixed CPU-GPU algorithms.

Design:

Persistent buffers but push all large arrays every iteration.

O(N6), O(N5) on GPU.

O(N5), O(N4) on CPU.

Dynamically schedule some diagrams each iteration to
load-balance.

Overlap computation and communication with CUDA streams
(CUBLAS compatible now).

Jeff Hammond Electronic Structure Calculation Methods on Accelerators

Hybrid CCSD

Iteration time in seconds
Hybrid CPU Molpro NWChem PSI3 TCE GAMESS

C8H10 0.6 1.4 2.4 3.6 7.9 8.4 7.2
C10H8 0.9 2.6 5.1 8.2 17.9 16.8 15.3
C10H12 1.4 4.1 7.2 11.3 23.6 25.2 23.6
C12H14 3.3 11.1 19.0 29.4 54.2 64.4 65.1
C14H10 4.4 15.5 31.0 49.1 61.4 90.7 92.9
C14H16 6.3 24.1 43.1 65.0 103.4 129.2 163.7

C20 10.5 43.2 102.0 175.7 162.6 233.9 277.5
C16H18 10.0 38.9 84.1 117.5 192.4 267.9 345.8
C18H12 14.1 57.1 116.2 178.6 216.4 304.5 380.0
C18H20 22.5 95.9 161.4 216.3 306.9 512.0 641.3

We do at least twice as many flops as Molpro due to CC formalism.

Jeff Hammond Electronic Structure Calculation Methods on Accelerators

More hybrid CCSD

molecule Basis o v Hybrid CPU Molpro CPU Molpro
CH3OH aTZ 7 175 2.5 4.5 2.8 1.8 1.1
benzene aDZ 15 171 5.1 14.7 17.4 2.9 3.4

C2H6SO4 aDZ 23 167 9.0 33.2 31.2 3.7 3.5
C10H12 DZ 26 164 10.7 39.5 56.8 3.7 5.3
C10H12 6-31G 26 78 1.4 4.1 7.2 2.9 5.1

Molpro optimized for v/o � 1.

Our code doesn’t favor any limit except o, v � 1.

Jeff Hammond Electronic Structure Calculation Methods on Accelerators

Programming Models

Jeff Hammond Electronic Structure Calculation Methods on Accelerators

Categorizing parallel models

MPI-1 Private address space, explicit communication,
independent execution.

MPI-RMA Private-ish address space, explicit communication,
independent execution.

OpenMP (loops) Shared address space, implicit
communication, collective execution.

OpenMP (sections) Shared address space, implicit
communication, semi-independent execution.

Pthreads Shared address space, independent execution.

GA Global view of data (not coherent), explicit
communication, independent execution.

PGAS Shared address space, implicit/explicit communication,
independent execution.

OpenMP is always implemented on top of Pthreads.
PGAS can use MPI and/or Pthreads.

Jeff Hammond Electronic Structure Calculation Methods on Accelerators

Categorizing models

Execution model: independent/tasks vs.
cooperative/data-parallel

Memory sharing: private by default vs. public by
default

Threading: parallel by default vs. serial by
default

Jeff Hammond Electronic Structure Calculation Methods on Accelerators

Decision making process

MPI exists in a constructive cycle of ubiquity
and optimization.

OpenMP is reaching ubiquity; optimization is
debatable.

Pthreads is ubiquitous but invisible (system
programmers only).

PGAS portability, especially performance
portability, is still emerging.

Jeff Hammond Electronic Structure Calculation Methods on Accelerators

OpenMP: from 1 to N or N to 1?

Jeff Hammond Electronic Structure Calculation Methods on Accelerators

OpenMP: from 1 to N or N to 1?

#pragma omp parallel

{ /* thread-safe */ }
#pragma omp single

{ /* thread-unsafe */ }
#pragma omp parallel for

{ /* threaded loops */ }
#pragma omp sections

{ /* threaded work */ }

{ /* thread-unsafe */ }
#pragma omp parallel for

{ /* threaded loops */ }
{ /* thread-unsafe */ }
#pragma omp parallel for

{ /* threaded loops */ }
/* thread-unsafe work */

Jeff Hammond Electronic Structure Calculation Methods on Accelerators

Addition thoughts

Pthreads very useful for driving communication

OpenMP NUMA catastrophe (on Linux

MPI+SHM vs. Pthreads (shared vs. private question)

Learn from linear algebra community:
DAG-scheduling with Pthreads not OpenMP

– SK+KK TCE task pools in EOMCCSD, MRCC
– our GPU-CC code using task parallelism throughout

Jeff Hammond Electronic Structure Calculation Methods on Accelerators

Beyond one node

NWChem, MADNESS, MPQC, GAMESS (?) burn core(s)
for communication

Multi-socket, multi-GPU, multi-rail all gets nasty

Pthread support for affinity becomes more critical

NWChem data-server uses ∼ 25% of cores with Infiniband

Do your GPUs need communication helper threads?

Jeff Hammond Electronic Structure Calculation Methods on Accelerators

Pragmas

Jeff Hammond Electronic Structure Calculation Methods on Accelerators

PGI pragmas

Q Can I call a CUDA kernel function from my PGI-compiled code?

A PGI is working on the design of a feature to allow you to call
kernel functions written in CUDA or PTX or other languages
directly from your C or Fortran program. We will announce this
feature when it is available.

Simple tensor contractions are done with DGEMM; nonsimple ones
redistribution to simple ones (permutation).

CUBLAS DGEMM with CUDA permutation codes

Pragma DGEMM with pragma permutation codes

Pragma code only works with Fortran
(C is a terrible language to optimize)

Jeff Hammond Electronic Structure Calculation Methods on Accelerators

PGI pragmas

#pragma acc region

{
for(i=0; i<num; i++)

for(j=0; i<num; j++)

for(k=0; i<num; k++)

c[i*1000+j] += (a[i*1000+k] * b[k*1000+j]);

}

Jeff Hammond Electronic Structure Calculation Methods on Accelerators

PGI pragmas

42, Accelerator region ignored

44, Accelerator restriction: size of the GPU copy of an array

depends on values computed in this loop

45, Accelerator restriction: size of the GPU copy of ’c’ is

unknown

Accelerator restriction: size of the GPU copy of an array

depends on values computed in this loop

Accelerator restriction: one or more arrays have unknown size

46, Accelerator restriction: size of the GPU copy of ’a’ is

unknown

Accelerator restriction: size of the GPU copy of ’b’ is unknown

Accelerator restriction: one or more arrays have unknown size

Jeff Hammond Electronic Structure Calculation Methods on Accelerators

PGI: loop-based matrix multiplication

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 1000 2000 3000 4000 5000 6000

gi
ga

flo
p/

s

rank

Matrix multiplication with pragmas

GPU KIJ

GotoBLAS on my Core2 laptop does 20 GF.

Jeff Hammond Electronic Structure Calculation Methods on Accelerators

Pragmas

Usage:

Must allow native function calls

Pragmas to generate native object rather than offload

Explicit data movement

Explicit data movement is something scientists can do!

Things compilers cannot do well:

Optimize for cache (Netlib vs. Goto)

Generate network communication (PGAS)

Move data across PCI bus (GPU pragmas)

Prove me wrong. . .

Jeff Hammond Electronic Structure Calculation Methods on Accelerators

Acknowledgments

Computational Fellowship (AED)
ANL-MCS Breadboard cluster
ANL-LCRC Fusion cluster

Dirac cluster

Jeff Hammond Electronic Structure Calculation Methods on Accelerators

Shameless promotion

Jeff Hammond Electronic Structure Calculation Methods on Accelerators

SAAHPC 2012

What: Symposium on Application Accelerators in HPC
When: July 10-12, 2012
Where: Argonne (Chicago, IL)

Jeff Hammond Electronic Structure Calculation Methods on Accelerators

TCE on GPUs

Jeff Hammond Electronic Structure Calculation Methods on Accelerators

NWChem TCE module

Automatically generated code: easy to rewrite (in
principle).

Data-parallel over tiles using Global Arrays.

Näive dynamic load-balancing (shared counter).

Standard GA programming model:
check out, compute, check in

Jeff Hammond Electronic Structure Calculation Methods on Accelerators

TCE CPU algorithm

for (P3,P4,H1,H2) in all (P,P,H,H) tiles:

if (my turn) and (nonzero symmetry):

allocate and zero buffer Jc

for (P5,P6) in all (P,P) tiles:

if (nonzero symmetry):

allocate and zero buffer Tc

get Tb from global T

reorder Tc

allocate and zero buffer Ic

get Ib from global I

reorder Ic

compute Jc += Tc*Ic

reorder Jc

acc Jc onto global J

Jeff Hammond Electronic Structure Calculation Methods on Accelerators

TCE GPU algorithm

grab from pool and zero buffer pair (Tc,Tg)

grab from pool and zero buffer pair (Ic,Ig)

if (push gpucompute pull < cpucompute):

iget and push Tg from global T

iget and push Ig from global I

igpu reorder Tg

igpu reorder Ig

gpucompute Jg += Tg*Ig

else:

iget Tc from global T

iget Ic from global I

compute Jc += Tc*Ic

ireorder Jg

reorder Jc

pull and acc Jc += Jg

acc Jc onto global J

Jeff Hammond Electronic Structure Calculation Methods on Accelerators

Evaluating the GPU algorithm

Tilesizes not big enough to justify GPU all the time (bad).

Jg stays on the GPU through each pass (good).

Possibly good overlap of data movement (good).

Can unroll inner loop for maximum overlap (good), but
this doubles the memory required (bad).

Threaded CPU code helps memory issues but GA/ARMCI
not thread-safe (funneled or serialized should be okay).

Many of the GPU-oriented optimizations will help with
multicore CPUs. Fully rewritten GPU TCE in NWChem will
probably coincide with porting to BGQ for this reason.

Jeff Hammond Electronic Structure Calculation Methods on Accelerators

Partial bibliography

Jeff Hammond Electronic Structure Calculation Methods on Accelerators

MD on GPUs (of many more)

All major MD packages have or will soon have a GPU implementation.

J. E. Stone, J. C. Phillips, P. L. Freddolino, D. J. Hardy, L. G. Trabuco,
and K. Schulten. “Accelerating molecular modeling applications with
graphics processors.” J. Comp. Chem., 28 (16), 2618–2640, 2007.

J. A. Anderson, C. D. Lorenz, and A. Travesset. “General purpose
molecular dynamics simulations fully implemented on graphics processing
units.” J. Comp. Phys., 227 (10), 5342–5359, 2008.

P. Friedrichs, M. S.and Eastman, V. Vaidyanathan, M. Houston,
S. Legrand, A. L. Beberg, D. L. Ensign, C. M. Bruns, and V. S. Pande.
“Accelerating molecular dynamic simulation on graphics processing
units.” J. Comp. Chem., 30 (6), 864–872, 2009.

R. Yokota, T. Hamada, J. P. Bardhan, M. G. Knepley, and L. A. Barba.
“Biomolecular electrostatics simulation by an FMM-based BEM on 512
GPUs.” CoRR, abs/1007.4591, 2010.

Jeff Hammond Electronic Structure Calculation Methods on Accelerators

DFT on GPUs

K. Yasuda, “Accelerating density functional calculations with graphics
processing unit.” J. Chem. Theo. Comp., 4 (8), 1230–1236, 2008.

L. Genovese, M. Ospici, T. Deutsch, J.-F. Mehaut, A. Neelov, and
S. Goedecker. “Density functional theory calculation on many-cores
hybrid central processing unit-graphic processing unit architectures.” J.
Chem. Phys., 131 (3), 034103, 2009.

I. S. Ufimtsev and T. J. Mart́ınez. “Quantum chemistry on graphical
processing units. 2. Direct self-consistent-field (SCF) implementation.”
J. Chem. Theo. Comp., 5 (4), 1004–1015, 2009; “Quantum chemistry on
graphical processing units. 3. Analytical energy gradients, geometry
optimization, and first principles molecular dynamics.” J. Chem. Theo.
Comp., 5 (10), 2619–2628, 2009.

C. J. Woods, P. Brown, and F. R. Manby. “Multicore parallelization of
Kohn-Sham theory.” J. Chem. Theo. Comp., 5 (7), 1776–1784, 2009.

P. Brown, C. J. Woods, S. McIntosh-Smith, and F. R. Manby. “A
massively multicore parallelization of the Kohn-Sham energy gradients.”
J. Comp. Chem., 31 (10), 2008–2013, 2010.

R. Farmber, E. Bylaska, S. Baden and students. “(Car-Parrinello on
GPGPUs).” Work in progress, 2011.

Jeff Hammond Electronic Structure Calculation Methods on Accelerators

MP2 on GPUs

MP2 using the resolution-of-identity approximation involves a few large
GEMMs.

L. Vogt, R. Olivares-Amaya, S. Kermes, Y. Shao, C. Amador-Bedolla, and
A. Aspuru-Guzik. “Accelerating resolution-of-the-identity second-order
Møller-Plesset quantum chemistry calculations with graphical processing
units.” J. Phys. Chem. A, 112 (10), 2049–2057, 2008.

R. Olivares-Amaya, M. A. Watson, R. G. Edgar, L. Vogt, Y. Shao, and
A. Aspuru-Guzik. “Accelerating correlated quantum chemistry
calculations using graphical processing units and a mixed precision matrix
multiplication library.” J. Chem. Theo. Comp., 6 (1), 135–144, 2010.

A. Koniges, R. Preissl, J. Kim, D. Eder, A. Fisher, N. Masters, V. Mlaker,
S. Ethier, W. Wang, and M. Head-Gordon. “Application acceleration on
current and future Cray platforms.” In CUG 2010, Edinburgh, Scotland,
May 2010.

Jeff Hammond Electronic Structure Calculation Methods on Accelerators

QMC on GPUs

QMC is ridiculously parallel at the node-level hence implementation of the
kernel implies the potential for scaling to many thousands of GPUs.

A. G. Anderson, W. A. Goddard III, and P. Schröder. “Quantum Monte
Carlo on graphical processing units.” Comp. Phys. Comm., 177 (3),
298–306, 2007.

A. Gothandaraman, G. D. Peterson, G. Warren, R. J. Hinde, and R. J.
Harrison. “FPGA acceleration of a quantum Monte Carlo application.”
Par. Comp., 34 (4-5), 278–291, 2008.

K. Esler, J. Kim, L. Shulenburger, and D. Ceperley. “Fully accelerating
quantum Monte Carlo simulations of real materials on GPU clusters.”
Comp. Sci. Eng., 99 (PrePrints), 2010.

Jeff Hammond Electronic Structure Calculation Methods on Accelerators

CC on GPUs

Since we started this project, two groups have implemented non-iterative triples
corrections to CCSD on GPUs. These procedures involve a few very large
GEMMs and a reduction. At least two other groups are working on CC on
GPUs but have not reported any results.

M. Melicherč́ık, L. Demovič, and P. N. Michal Pitoňák. “Acceleration of
CCSD(T) computations using technology of graphical processing unit.”
2010.

W. Ma, S. Krishnaoorthy, O. Villa, and K. Kowalski. “GPU-based
implementations of the regularized CCSD(T) method: applications to
strongly correlated systems.” Submitted to J. Chem. Theo. Comp., 2010.

A. E. DePrince and J. .R. Hammond. “Coupled-cluster theory on
graphics processing units I. The coupled-cluster doubles method.”
Submitted to J. Chem. Theo. Comp., 2010.

Jeff Hammond Electronic Structure Calculation Methods on Accelerators

Gaussian Integrals on GPUs

Quantum chemistry methods spend a lot of time generating matrix elements of
operators in a Gaussian basis set. All published implementations are either
closed-source (commercial) or the source is unpublished, otherwise we would be
using these in our code.

I. S. Ufimtsev and T. J. Mart́ınez. “Quantum chemistry on graphical
processing units. 1. Strategies for two-electron integral evaluation.” J.
Chem. Theo. Comp., 4 (2), 222–231, 2008.

A. V. Titov, V. V. Kindratenko, I. S. Ufimtsev, and T. J. Mart́ınez.
“Generation of kernels for calculating electron repulsion integrals of high
angular momentum functions on GPUs – preliminary results.” In Proc.
SAAHPC 2010, pages 1–3, 2010.

A. Asadchev, V. Allada, J. Felder, B. M. Bode, M. S. Gordon, and T. L.
Windus. “Uncontracted Rys quadrature implementation of up to G
functions on graphical processing units.” J. Chem. Theo. Comp., 6 (3),
696–704, 2010.

Jeff Hammond Electronic Structure Calculation Methods on Accelerators

