


  A model leading to self-consistent iteration computation with 
need for HP LA (e.g, diagonalization and orthogonalization) 



•  Schodinger equation:    
                    Hψ = Eψ 

•  Choose a basis set of wave functions 
•  Two cases:  

   Orthonormal basis:   

                    H x = E x  

 in general it needs a big basis set 
   Non-orthonormal basis:   

                    H x = E S x 

 where S is the overlap matrix. 



  Power consumption and the 
move towards multicore 

  Hybrid architectures 
  GPU 
  Hybrid GPU-based systems 

–  CPU and GPU to get integrated 
(NVIDIA to make ARM CPU  
 cores alongside GPUs)  

DMA 

PCI-e 3.0 
7.5 GB/s 

x86 host 

   host 
memory 



•  Most likely be a hybrid design 
•  Think standard multicore chips and 

accelerator (GPUs) 
•  Today accelerators are attached 
•  Next generation more integrated 
•  Intel’s MIC architecture “Knights Ferry” and 

“Knights Corner” to come. 
•  48 x86 cores 

•  AMD’s Fusion in 2012 - 2013 
•  Multicore with embedded graphics ATI 

•  Nvidia’s Project Denver plans to develop               
an integrated chip using ARM                      
architecture in 2013. 



  Must rethink the design of our software 
 Another disruptive technology 

•  Similar to what happened with cluster computing  
  and message passing 

 Rethink and rewrite the applications, algorithms, and            
  software 

  Numerical libraries for example will change 
  For example, both LAPACK and ScaLAPACK will     
  undergo major changes to accommodate this 



Software/Algorithms follow hardware evolution in time 

LINPACK (70’s) 

(Vector operations) 

Rely on  

   - Level-1 BLAS 

operations 

LAPACK (80’s) 

(Blocking, cache 

friendly) 

Rely on  

   - Level-3 BLAS 

operations 

ScaLAPACK (90’s) 

(Distributed Memory) 

Rely on  

   - PBLAS Mess Passing 

PLASMA (00’s) 

New Algorithms  

(many-core friendly) 

Rely on  

   - a DAG/scheduler 

   - block data layout 

   - some extra kernels 

Those new algorithms  
    - have a very low granularity, they scale very well (multicore, petascale computing, … ) 
    - removes of dependencies among the tasks, (multicore, distributed computing) 
    - avoid latency (distributed computing, out-of-core) 
    - rely on fast kernels  
 Those new algorithms need new kernels and rely on efficient scheduling algorithms. 

 MAGMA 
 Hybrid Algorithms 
 (heterogeneity friendly)  

Rely on 
 - hybrid scheduler (of DAGs) 
 - hybrid kernels  
    (for nested parallelism) 
 - existing software infrastructure 



"   High levels of parallelism 
Many GPU cores  
[ e.g. Tesla C2050 (Fermi) has 448 CUDA cores ] 

"   Hybrid/heterogeneous architectures 
Match algorithmic requirements to architectural 
strengths 
[ e.g. small, non-parallelizable tasks to run on CPU, large and parallelizable on 
GPU ] 

"   Compute vs communication gap 
Exponentially growing gap; persistent challenge 
[ Processor speed improves 59%, memory bandwidth 23%, latency 5.5% ] 
[ on all levels, e.g. a GPU Tesla C1070 (4 x C1060) has compute power of  
  O(1,000) Gflop/s but GPUs communicate through the CPU using  
  O(1) GB/s connection ]  



Matrix Algebra on GPU and Multicore Architectures 
(MAGMA) 

"  MAGMA: a new generation linear algebra (LA) libraries to achieve the fastest possible  
                time to  an accurate solution on hybrid/heterogeneous architectures 
Homepage: http://icl.cs.utk.edu/magma/ 

"  MAGMA & LAPACK 

-  MAGMA uses LAPACK and extends its functionality to hybrid systems (w/ GPUs);  

-  MAGMA is designed to be similar to LAPACK in  
functionality, data storage and interface 

-  MAGMA leverages years of experience in developing open source LA software 
packages like LAPACK, ScaLAPACK, BLAS, ATLAS, and PLASMA 

"  MAGMA developers/collaborators 

-  U of Tennessee, Knoxville;  U of California, Berkeley;  U of Colorado, Denver 

-  INRIA Bordeaux - Sud Ouest & INRIA Paris ‒ Saclay, France; KAUST, Saudi Arabia 

-  Community effort [similarly to the development of LAPACK / ScaLAPACK] 



MAGMA 1.1     MAGNUM / Rectangular / PLASMA Tile Algorithms 

single 

multi 

distr. 

C P U G P U H Y B R I D 

MAGMA BLAS 

Linux, Windows, Mac OS X   ¦   C/C++, Fortran  ¦  Matlab, Python 

MAGMA SPARSE 

MAGMA 1.0 

MAGMA 1.1          LAPACK Algorithms and Tile Kernels  

Tile & LAPACK Algorithms with DAGuE 

NEW 



  50+	  hybrid	  LAPACK	  algorithms	  have	  been	  developed	  (total	  of	  200+	  rou4nes)	  
  Every	  algorithm	  is	  in	  4	  precisions	  (s/c/d/z)	  

  There	  are	  3	  mixed	  precision	  algorithms	  	  (zc	  &	  ds)	  

  These	  are	  hybrid	  algorithms,	  expressed	  in	  terms	  of	  BLAS	  

  Support	  is	  for	  CUDA-‐enabled	  NVIDIA	  GPUs	  

  MAGMA	  BLAS	  	  
  A	  subset	  of	  GPU	  BLAS,	  op4mized	  for	  Tesla	  and	  Fermi	  GPUs	  
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48 cores 
POTRF, TRTRI and LAUUM. 
The matrix is 4000 x 4000,tile size is 200 x 200, 



  MAGMA uses HYBRIDIZATION methodology based on 
–  Representing linear algebra algorithms as collections  

of TASKS and DATA DEPENDENCIES among them 
–  Properly SCHEDULING tasks' execution over  

multicore and GPU hardware components 

  Successfully applied to fundamental 
linear algebra algorithms 
–  One and two-sided factorizations and solvers 
–  Iterative linear and eigen-solvers 

  Productivity 
–  High-level 
–  Leveraging prior developments 
–  Exceeding in performance homogeneous solutions 

Hybrid CPU+GPU algorithms 
(small tasks for multicores and large  
      tasks for GPUs) 



  Hybridization 
–  Panels (Level 2 BLAS) are factored on CPU using LAPACK 
–  Trailing matrix updates (Level 3 BLAS) are done on the  

GPU using “look-ahead”  

  Note 
–  Panels are memory bound but are only O(N2) flops and can be overlapped  

with the O(N3) flops of the updates 
–  In effect, the GPU is used only for the high-performance Level 3 BLAS 

updates,  
i.e., no low performance Level 2 BLAS is scheduled on the GPU 



  Left-looking hybrid Cholesky factorization in MAGMA 1.0 

  The difference with LAPACK – the 3 additional lines in red 
  Line 10 (done on CPU) is overlapped with work on the GPU (line 7)  







•  Mixed precision, use the lowest 
precision required to achieve a given 
accuracy outcome 
  Improves runtime, reduce power 

consumption, lower data movement 
  Reformulate to find correction to 

solution, rather than solution 
[ Δx rather than x ]. 



FERMI       Tesla C2050: 448 CUDA cores @ 1.15GHz 
                  SP/DP peak is 1030 / 515 GFlop/s 

MAGMA LU-based solvers on Fermi (C2050) 

"   Similar results for Cholesky & QR 







"   Used in singular-value and eigen-value problems  
"   LAPACK-based two-sided factorizations are rich in Level 2 BLAS and 

therefore can not be properly accelerated on multicore CPUs 
"   We developed hybrid algorithms exploring GPUs' high bandwidth 

GPU:  GTX280  (240 cores   @ 1.30GHz, 141    GB/s)  
CPU:  2 x 4 cores Intel Xeon @ 2.33GHz,  10.4 GB/s) 

High-performance CUDA kernels were developed  
for various matrix-vector products 
[ e.g., ssymv reaching up to 102 Gflop/s for the  
  symmetric eigenvalue problem ] 



  Hybridization 
–  Trailing matrix updates (Level 3 BLAS) are done on the GPU 

(similar to the one-sided factorizations) 
–  Panels (Level 2 BLAS) are hybrid 

– operations with memory footprint restricted to the panel are done on CPU 
– The time consuming matrix-vector products involving the entire trailing  
   matrix are done on the GPU 

  Note 
–  CPU-to-GPU communications and subsequent computations always stay in 

surface-to-volume ratio 
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Keeneland system, using one node	

3 NVIDIA GPUs (M2070@ 1.1 GHz, 5.4 GB)	

2 x 6 Intel Cores (X5660 @ 2.8 GHz, 23 GB)	


   MAGMA Hessenberg reduction in double precision on Fermi	


Matrix size	


  Developed routines for multiGPUs ���
   obtaining scalable performance���

  GPUs on a Keeneneland node	

   bring a speedup of  16 x  	
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Generalized Hermitian-definite eigenproblem  solver ( A x = λ B x ) 
[double complex arithmetic; based on Divide & Conquer; eigenvalues + eigenvectors]  

       GPU   Fermi C2050 [448 CUDA Cores @ 1.15 GHz ]                                CPU     AMD ISTANBUL   
                 + Intel Q9300 [ 4 cores @ 2.50 GHz]                                                            [ 8 sockets x 6 cores (48 cores) @2.8GHz ] 
                  DP peak               515 + 40 GFlop/s                                                             DP peak                 538 GFlop/s  
                  System cost ̃ $3,000                                                                                  System cost  ̃ $30,000  
                Power *       ̃      220 W                                                                               Power *         ̃     1,022 W 

                   *    Computation consumed power rate (total system rate minus idle rate), measured with KILL  A  WATT  PS, Model P430 
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•  Solve   A x  = λ B x  
•  Compute Cholesky factorization of B. 

B = LLH 

   xPOTRF  
•  Transform the problem to a standard eigenvalue problem  

A = L−1AL−H  
  xHEGST 

•  Solve Hermitian standard Eigenvalue problem  
A’ y = λy 
  xHEEVx 

•  Transform back the eigenvectors 
x = L−H y  
  xTRSM 



•  Solve  A y = λ y   
•  Tridiagonalize A 

                               T = QH A’ Q 
  xHETRD  

•  Compute eigenvalues and eigenvectors of the 
tridiagonal matryx  
                                 T y = λ y’  
  xSTExx  

•  Transform back the eigenvectors 
                                  y = Q y’ 
  xUNMTR 
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  w/  Ichitaro Yamazaki, UTK  
        Tingxing Dong, UTK  

Keeneland system, using one node	

3 NVIDIA GPUs (M2070@ 1.1 GHz, 5.4 GB)	

2 x 6 Intel Cores (X5660 @ 2.8 GHz, 23 GB)	
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  Number of GEMM variants 
   generated and tested 
   - automatically from “stencils”  
     (parameterized code)   

  w/  Jakub Kurzak, UTK   
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  Performance on Fermi 
   (C2050) in Gflop/s  

  ZGEMM improved significantly 
   compared to CUBLAS 

  from 308 to 341 Gflop/s 

  Improvement up to 2x on  
   some specific matrices 
   (e.g., of “rectangular” shape) 

  w/  Jakub Kurzak, UTK   



// Sequential Tile Cholesky 
FOR k = 0..TILES-1 
     DPOTRF(A[k][k]) 
     FOR m = k+1..TILES-1 

    DTRSM(A[k][k], A[m][k])        
   FOR n = k+1..TILES-1 
         DSYRK(A[n][k], A[n][n]) 

              FOR m = n+1..TILES-1 
     DGEMM(A[m][k], A[n][k], A[m][n]) 

// Hybrid Tile Cholesky 
FOR k = 0..TILES-1 
    Insert_Task(DPOTRF, …) 
    FOR m = k+1..TILES-1 
        Insert_Task(DTRSM, …) 
        FOR n = k+1..TILES-1 
            Insert_Task(DSYRK, …) 
            FOR m = n+1..TILES-1 
                Insert_Task(DGEMM, …) 

  Productivity - develop parallel multicore + multiGPU algorithms from 
                        sequential algorithms using DAG-based runtime systems 

  Tile kernels and one-sided factorizations and solvers (using StarPU) 
   are released in MAGMA 1.1 



  The hybridization approach naturally 
works 
[e.g., Richardson iteration in mixed-
precision 
 iterative refinement solvers, Krylov space 
 iterative solvers and eigen-solvers ] 

  Fast sparse matrix-vector product on 
Fermi 

  Explore ideas to reduce communication 
[ e.g., mixed precision, reduced storage 
for integers for the indexing, etc. ] 

  Need high bandwidth 



  MAGMA [Matrix Algebra on GPU 
and Multicore Architectures] team 
http://icl.cs.utk.edu/magma/ 

  PLASMA [Parallel Linear Algebra 
for Scalable Multicore  
Architectures] team 
http://icl.cs.utk.edu/plasma 

  Collaborating partners 
     University of Tennessee, Knoxville 

University of California, Berkeley 
University of Colorado, Denver 

INRIA, France 
KAUST, Saudi Arabia 


