

  A model leading to self-consistent iteration computation with
need for HP LA (e.g, diagonalization and orthogonalization)

•  Schodinger equation:
 Hψ = Eψ

•  Choose a basis set of wave functions
•  Two cases:

  Orthonormal basis:

 H x = E x

 in general it needs a big basis set
  Non-orthonormal basis:

 H x = E S x

 where S is the overlap matrix.

  Power consumption and the
move towards multicore

  Hybrid architectures
  GPU
  Hybrid GPU-based systems

–  CPU and GPU to get integrated
(NVIDIA to make ARM CPU
 cores alongside GPUs)

DMA

PCI-e 3.0
7.5 GB/s

x86 host

 host 
memory

•  Most likely be a hybrid design
•  Think standard multicore chips and

accelerator (GPUs)
•  Today accelerators are attached
•  Next generation more integrated
•  Intel’s MIC architecture “Knights Ferry” and

“Knights Corner” to come.
•  48 x86 cores

•  AMD’s Fusion in 2012 - 2013
•  Multicore with embedded graphics ATI

•  Nvidia’s Project Denver plans to develop
an integrated chip using ARM
architecture in 2013.

  Must rethink the design of our software
 Another disruptive technology

•  Similar to what happened with cluster computing
 and message passing

 Rethink and rewrite the applications, algorithms, and
 software

  Numerical libraries for example will change
  For example, both LAPACK and ScaLAPACK will
 undergo major changes to accommodate this

Software/Algorithms follow hardware evolution in time

LINPACK (70’s)

(Vector operations)

Rely on

 - Level-1 BLAS

operations

LAPACK (80’s)

(Blocking, cache

friendly)

Rely on

 - Level-3 BLAS

operations

ScaLAPACK (90’s)

(Distributed Memory)

Rely on

 - PBLAS Mess Passing

PLASMA (00’s)

New Algorithms

(many-core friendly)

Rely on

 - a DAG/scheduler

 - block data layout

 - some extra kernels

Those new algorithms
 - have a very low granularity, they scale very well (multicore, petascale computing, …)
 - removes of dependencies among the tasks, (multicore, distributed computing)
 - avoid latency (distributed computing, out-of-core)
 - rely on fast kernels
 Those new algorithms need new kernels and rely on efficient scheduling algorithms.

 MAGMA
 Hybrid Algorithms 
 (heterogeneity friendly)

Rely on
 - hybrid scheduler (of DAGs)
 - hybrid kernels  
 (for nested parallelism)
 - existing software infrastructure

"   High levels of parallelism
Many GPU cores
[e.g. Tesla C2050 (Fermi) has 448 CUDA cores]

"   Hybrid/heterogeneous architectures
Match algorithmic requirements to architectural
strengths
[e.g. small, non-parallelizable tasks to run on CPU, large and parallelizable on
GPU]

"   Compute vs communication gap
Exponentially growing gap; persistent challenge
[Processor speed improves 59%, memory bandwidth 23%, latency 5.5%]
[on all levels, e.g. a GPU Tesla C1070 (4 x C1060) has compute power of
 O(1,000) Gflop/s but GPUs communicate through the CPU using
 O(1) GB/s connection]

Matrix Algebra on GPU and Multicore Architectures
(MAGMA)

"  MAGMA: a new generation linear algebra (LA) libraries to achieve the fastest possible  
 time to an accurate solution on hybrid/heterogeneous architectures 
Homepage: http://icl.cs.utk.edu/magma/ 

"  MAGMA & LAPACK

-  MAGMA uses LAPACK and extends its functionality to hybrid systems (w/ GPUs);

-  MAGMA is designed to be similar to LAPACK in  
functionality, data storage and interface

-  MAGMA leverages years of experience in developing open source LA software
packages like LAPACK, ScaLAPACK, BLAS, ATLAS, and PLASMA 

"  MAGMA developers/collaborators

-  U of Tennessee, Knoxville; U of California, Berkeley; U of Colorado, Denver

-  INRIA Bordeaux - Sud Ouest & INRIA Paris ‒ Saclay, France; KAUST, Saudi Arabia

-  Community effort [similarly to the development of LAPACK / ScaLAPACK]

MAGMA 1.1 MAGNUM / Rectangular / PLASMA Tile Algorithms

single

multi

distr.

C P U G P U H Y B R I D

MAGMA BLAS

Linux, Windows, Mac OS X ¦ C/C++, Fortran ¦ Matlab, Python

MAGMA SPARSE

MAGMA 1.0

MAGMA 1.1 LAPACK Algorithms and Tile Kernels

Tile & LAPACK Algorithms with DAGuE

NEW

  50+	 hybrid	 LAPACK	 algorithms	 have	 been	 developed	 (total	 of	 200+	 rou4nes)	
  Every	 algorithm	 is	 in	 4	 precisions	 (s/c/d/z)	

  There	 are	 3	 mixed	 precision	 algorithms	 	 (zc	 &	 ds)	

  These	 are	 hybrid	 algorithms,	 expressed	 in	 terms	 of	 BLAS	

  Support	 is	 for	 CUDA-‐enabled	 NVIDIA	 GPUs	

  MAGMA	 BLAS	 	
  A	 subset	 of	 GPU	 BLAS,	 op4mized	 for	 Tesla	 and	 Fermi	 GPUs	

14

48 cores
POTRF, TRTRI and LAUUM.
The matrix is 4000 x 4000,tile size is 200 x 200,

  MAGMA uses HYBRIDIZATION methodology based on
–  Representing linear algebra algorithms as collections

of TASKS and DATA DEPENDENCIES among them
–  Properly SCHEDULING tasks' execution over

multicore and GPU hardware components

  Successfully applied to fundamental
linear algebra algorithms
–  One and two-sided factorizations and solvers
–  Iterative linear and eigen-solvers

  Productivity
–  High-level
–  Leveraging prior developments
–  Exceeding in performance homogeneous solutions

Hybrid CPU+GPU algorithms 
(small tasks for multicores and large  
 tasks for GPUs)

  Hybridization
–  Panels (Level 2 BLAS) are factored on CPU using LAPACK
–  Trailing matrix updates (Level 3 BLAS) are done on the

GPU using “look-ahead”

  Note
–  Panels are memory bound but are only O(N2) flops and can be overlapped

with the O(N3) flops of the updates
–  In effect, the GPU is used only for the high-performance Level 3 BLAS

updates,
i.e., no low performance Level 2 BLAS is scheduled on the GPU

  Left-looking hybrid Cholesky factorization in MAGMA 1.0

  The difference with LAPACK – the 3 additional lines in red
  Line 10 (done on CPU) is overlapped with work on the GPU (line 7)

•  Mixed precision, use the lowest
precision required to achieve a given
accuracy outcome
  Improves runtime, reduce power

consumption, lower data movement
  Reformulate to find correction to

solution, rather than solution
[Δx rather than x].

FERMI Tesla C2050: 448 CUDA cores @ 1.15GHz 
 SP/DP peak is 1030 / 515 GFlop/s

MAGMA LU-based solvers on Fermi (C2050)

"  Similar results for Cholesky & QR

"   Used in singular-value and eigen-value problems
"   LAPACK-based two-sided factorizations are rich in Level 2 BLAS and

therefore can not be properly accelerated on multicore CPUs
"   We developed hybrid algorithms exploring GPUs' high bandwidth

GPU: GTX280 (240 cores @ 1.30GHz, 141 GB/s)
CPU: 2 x 4 cores Intel Xeon @ 2.33GHz, 10.4 GB/s)

High-performance CUDA kernels were developed  
for various matrix-vector products 
[e.g., ssymv reaching up to 102 Gflop/s for the  
 symmetric eigenvalue problem]

  Hybridization
–  Trailing matrix updates (Level 3 BLAS) are done on the GPU

(similar to the one-sided factorizations)
–  Panels (Level 2 BLAS) are hybrid

– operations with memory footprint restricted to the panel are done on CPU
– The time consuming matrix-vector products involving the entire trailing
 matrix are done on the GPU

  Note
–  CPU-to-GPU communications and subsequent computations always stay in

surface-to-volume ratio

26

Keeneland system, using one node	

3 NVIDIA GPUs (M2070@ 1.1 GHz, 5.4 GB)	

2 x 6 Intel Cores (X5660 @ 2.8 GHz, 23 GB)	

 MAGMA Hessenberg reduction in double precision on Fermi	

Matrix size	

  Developed routines for multiGPUs ���
 obtaining scalable performance���

  GPUs on a Keeneneland node	

 bring a speedup of 16 x 	

0

20

40

60

80

100

120

140

160

180

2048 5184 10112 20000

3 GPUs
2 GPUs
1 GPU (MAGMA 1.1)
CPU (MKL)

 w/ Mark Gates, UTK

Generalized Hermitian-definite eigenproblem solver (A x = λ B x) 
[double complex arithmetic; based on Divide & Conquer; eigenvalues + eigenvectors]

 GPU Fermi C2050 [448 CUDA Cores @ 1.15 GHz] CPU AMD ISTANBUL  
 + Intel Q9300 [4 cores @ 2.50 GHz] [8 sockets x 6 cores (48 cores) @2.8GHz] 
 DP peak 515 + 40 GFlop/s DP peak 538 GFlop/s  
 System cost ̃ $3,000 System cost ̃ $30,000  
 Power * ̃ 220 W Power * ̃ 1,022 W 

 * Computation consumed power rate (total system rate minus idle rate), measured with KILL A WATT PS, Model P430

0

20

40

60

80

100

120

140

2000 2500 3000 3500 4000 4500 5000 5500 6000

Ti
m

e
(s

)

Matrix size

CPU (MKL)

GPU (MAGMA)

w/ Thomas Schulthess &
 Raffaele Solca
 ETH Zurich, Switzerland

•  Solve A x = λ B x
•  Compute Cholesky factorization of B.

B = LLH

  xPOTRF
•  Transform the problem to a standard eigenvalue problem

A = L−1AL−H
  xHEGST

•  Solve Hermitian standard Eigenvalue problem
A’ y = λy
  xHEEVx

•  Transform back the eigenvectors
x = L−H y
  xTRSM

•  Solve A y = λ y
•  Tridiagonalize A

 T = QH A’ Q
  xHETRD

•  Compute eigenvalues and eigenvectors of the
tridiagonal matryx
 T y = λ y’
  xSTExx

•  Transform back the eigenvectors
 y = Q y’
  xUNMTR

0 0.5 1 1.5 2
x 104

0

20

40

60

80

100

120

140

160

180

200

220

N

G
flo

p/
s

zhetrd

CPU
1 GPU
2 GPUs
3 GPUs

 w/ Ichitaro Yamazaki, UTK  
 Tingxing Dong, UTK

Keeneland system, using one node	

3 NVIDIA GPUs (M2070@ 1.1 GHz, 5.4 GB)	

2 x 6 Intel Cores (X5660 @ 2.8 GHz, 23 GB)	

!
"
!
!

#
!
!

$
!
!

%
!
!

&
!
!

'
(
)

*
+
,-
.
/-
0
1
,2
1
'
34

!
""
"!

"#

!
""
"!

"#
$

!
$
"!

"#
$

!
$
"!

"#

!
""
"!

"#

!
""
"!

"#
$

!
$
"!

"#
$

!
$
"!

"#

!
""
"!

"#

!
""
"!

"#
$

!
$
"!

"#
$

!
$
"!

"#

!
""
"!

"#

!
""
"!

"#
$

!
$
"!

"#
$

!
$
"!

"#

5
6
7
8

8

9
6
7
8

8

:
6
7
8

8

;
6
7
8

8

  Number of GEMM variants 
 generated and tested 
 - automatically from “stencils”  
 (parameterized code)

 w/ Jakub Kurzak, UTK

! "!!! #!!! $!!! %!!! &!!!!

!

&!!

"!!

'!!

#!!

(!!

$!!

)!!

%!!

*!!

+,-./012/34

5
67
8
9
:2

;5<==

>5<==

?5<==

@5<==

  Performance on Fermi
 (C2050) in Gflop/s  

  ZGEMM improved significantly 
 compared to CUBLAS

  from 308 to 341 Gflop/s

  Improvement up to 2x on  
 some specific matrices 
 (e.g., of “rectangular” shape)

 w/ Jakub Kurzak, UTK

// Sequential Tile Cholesky
FOR k = 0..TILES-1
 DPOTRF(A[k][k])
 FOR m = k+1..TILES-1

 DTRSM(A[k][k], A[m][k])
 FOR n = k+1..TILES-1
 DSYRK(A[n][k], A[n][n])

 FOR m = n+1..TILES-1
 DGEMM(A[m][k], A[n][k], A[m][n])

// Hybrid Tile Cholesky
FOR k = 0..TILES-1
 Insert_Task(DPOTRF, …)
 FOR m = k+1..TILES-1
 Insert_Task(DTRSM, …)
 FOR n = k+1..TILES-1
 Insert_Task(DSYRK, …)
 FOR m = n+1..TILES-1
 Insert_Task(DGEMM, …)

  Productivity - develop parallel multicore + multiGPU algorithms from 
 sequential algorithms using DAG-based runtime systems

  Tile kernels and one-sided factorizations and solvers (using StarPU) 
 are released in MAGMA 1.1

  The hybridization approach naturally
works
[e.g., Richardson iteration in mixed-
precision
 iterative refinement solvers, Krylov space
 iterative solvers and eigen-solvers]

  Fast sparse matrix-vector product on
Fermi

  Explore ideas to reduce communication
[e.g., mixed precision, reduced storage
for integers for the indexing, etc.]

  Need high bandwidth

  MAGMA [Matrix Algebra on GPU
and Multicore Architectures] team
http://icl.cs.utk.edu/magma/

  PLASMA [Parallel Linear Algebra
for Scalable Multicore
Architectures] team
http://icl.cs.utk.edu/plasma

  Collaborating partners
 University of Tennessee, Knoxville

University of California, Berkeley
University of Colorado, Denver

INRIA, France
KAUST, Saudi Arabia

