

  A model leading to self-consistent iteration computation with
need for HP LA (e.g, diagonalization and orthogonalization)

•  Schodinger equation:
 Hψ = Eψ

•  Choose a basis set of wave functions
•  Two cases:

  Orthonormal basis:

 H x = E x

 in general it needs a big basis set
  Non-orthonormal basis:

 H x = E S x

 where S is the overlap matrix.

  Power consumption and the
move towards multicore

  Hybrid architectures
  GPU
  Hybrid GPU-based systems

–  CPU and GPU to get integrated
(NVIDIA to make ARM CPU
 cores alongside GPUs)

DMA

PCI-e 3.0
7.5 GB/s

x86 host

 host 
memory

•  Most likely be a hybrid design
•  Think standard multicore chips and

accelerator (GPUs)
•  Today accelerators are attached
•  Next generation more integrated
•  Intel’s MIC architecture “Knights Ferry” and

“Knights Corner” to come.
•  48 x86 cores

•  AMD’s Fusion in 2012 - 2013
•  Multicore with embedded graphics ATI

•  Nvidia’s Project Denver plans to develop
an integrated chip using ARM
architecture in 2013.

  Must rethink the design of our software
 Another disruptive technology

•  Similar to what happened with cluster computing
 and message passing

 Rethink and rewrite the applications, algorithms, and
 software

  Numerical libraries for example will change
  For example, both LAPACK and ScaLAPACK will
 undergo major changes to accommodate this

Software/Algorithms follow hardware evolution in time

LINPACK (70’s)

(Vector operations)

Rely on

 - Level-1 BLAS

operations

LAPACK (80’s)

(Blocking, cache

friendly)

Rely on

 - Level-3 BLAS

operations

ScaLAPACK (90’s)

(Distributed Memory)

Rely on

 - PBLAS Mess Passing

PLASMA (00’s)

New Algorithms

(many-core friendly)

Rely on

 - a DAG/scheduler

 - block data layout

 - some extra kernels

Those new algorithms
 - have a very low granularity, they scale very well (multicore, petascale computing, …)
 - removes of dependencies among the tasks, (multicore, distributed computing)
 - avoid latency (distributed computing, out-of-core)
 - rely on fast kernels
 Those new algorithms need new kernels and rely on efficient scheduling algorithms.

 MAGMA
 Hybrid Algorithms 
 (heterogeneity friendly)

Rely on
 - hybrid scheduler (of DAGs)
 - hybrid kernels  
 (for nested parallelism)
 - existing software infrastructure

"   High levels of parallelism
Many GPU cores
[e.g. Tesla C2050 (Fermi) has 448 CUDA cores]

"   Hybrid/heterogeneous architectures
Match algorithmic requirements to architectural
strengths
[e.g. small, non-parallelizable tasks to run on CPU, large and parallelizable on
GPU]

"   Compute vs communication gap
Exponentially growing gap; persistent challenge
[Processor speed improves 59%, memory bandwidth 23%, latency 5.5%]
[on all levels, e.g. a GPU Tesla C1070 (4 x C1060) has compute power of
 O(1,000) Gflop/s but GPUs communicate through the CPU using
 O(1) GB/s connection]

Matrix Algebra on GPU and Multicore Architectures
(MAGMA)

"  MAGMA: a new generation linear algebra (LA) libraries to achieve the fastest possible  
 time to an accurate solution on hybrid/heterogeneous architectures 
Homepage: http://icl.cs.utk.edu/magma/ 

"  MAGMA & LAPACK

-  MAGMA uses LAPACK and extends its functionality to hybrid systems (w/ GPUs);

-  MAGMA is designed to be similar to LAPACK in  
functionality, data storage and interface

-  MAGMA leverages years of experience in developing open source LA software
packages like LAPACK, ScaLAPACK, BLAS, ATLAS, and PLASMA 

"  MAGMA developers/collaborators

-  U of Tennessee, Knoxville; U of California, Berkeley; U of Colorado, Denver

-  INRIA Bordeaux - Sud Ouest & INRIA Paris ‒ Saclay, France; KAUST, Saudi Arabia

-  Community effort [similarly to the development of LAPACK / ScaLAPACK]

MAGMA 1.1 MAGNUM / Rectangular / PLASMA Tile Algorithms

single

multi

distr.

C P U G P U H Y B R I D

MAGMA BLAS

Linux, Windows, Mac OS X ¦ C/C++, Fortran ¦ Matlab, Python

MAGMA SPARSE

MAGMA 1.0

MAGMA 1.1 LAPACK Algorithms and Tile Kernels

Tile & LAPACK Algorithms with DAGuE

NEW

  50+	
 hybrid	
 LAPACK	
 algorithms	
 have	
 been	
 developed	
 (total	
 of	
 200+	
 rou4nes)	

  Every	
 algorithm	
 is	
 in	
 4	
 precisions	
 (s/c/d/z)	

  There	
 are	
 3	
 mixed	
 precision	
 algorithms	
 	
 (zc	
 &	
 ds)	

  These	
 are	
 hybrid	
 algorithms,	
 expressed	
 in	
 terms	
 of	
 BLAS	

  Support	
 is	
 for	
 CUDA-­‐enabled	
 NVIDIA	
 GPUs	

  MAGMA	
 BLAS	
 	

  A	
 subset	
 of	
 GPU	
 BLAS,	
 op4mized	
 for	
 Tesla	
 and	
 Fermi	
 GPUs	

14

48 cores
POTRF, TRTRI and LAUUM.
The matrix is 4000 x 4000,tile size is 200 x 200,

  MAGMA uses HYBRIDIZATION methodology based on
–  Representing linear algebra algorithms as collections

of TASKS and DATA DEPENDENCIES among them
–  Properly SCHEDULING tasks' execution over

multicore and GPU hardware components

  Successfully applied to fundamental
linear algebra algorithms
–  One and two-sided factorizations and solvers
–  Iterative linear and eigen-solvers

  Productivity
–  High-level
–  Leveraging prior developments
–  Exceeding in performance homogeneous solutions

Hybrid CPU+GPU algorithms 
(small tasks for multicores and large  
 tasks for GPUs)

  Hybridization
–  Panels (Level 2 BLAS) are factored on CPU using LAPACK
–  Trailing matrix updates (Level 3 BLAS) are done on the

GPU using “look-ahead”

  Note
–  Panels are memory bound but are only O(N2) flops and can be overlapped

with the O(N3) flops of the updates
–  In effect, the GPU is used only for the high-performance Level 3 BLAS

updates,
i.e., no low performance Level 2 BLAS is scheduled on the GPU

  Left-looking hybrid Cholesky factorization in MAGMA 1.0

  The difference with LAPACK – the 3 additional lines in red
  Line 10 (done on CPU) is overlapped with work on the GPU (line 7)

•  Mixed precision, use the lowest
precision required to achieve a given
accuracy outcome
  Improves runtime, reduce power

consumption, lower data movement
  Reformulate to find correction to

solution, rather than solution
[Δx rather than x].

FERMI Tesla C2050: 448 CUDA cores @ 1.15GHz 
 SP/DP peak is 1030 / 515 GFlop/s

MAGMA LU-based solvers on Fermi (C2050)

"  Similar results for Cholesky & QR

"   Used in singular-value and eigen-value problems
"   LAPACK-based two-sided factorizations are rich in Level 2 BLAS and

therefore can not be properly accelerated on multicore CPUs
"   We developed hybrid algorithms exploring GPUs' high bandwidth

GPU: GTX280 (240 cores @ 1.30GHz, 141 GB/s) ‏
CPU: 2 x 4 cores Intel Xeon @ 2.33GHz, 10.4 GB/s)‏

High-performance CUDA kernels were developed  
for various matrix-vector products 
[e.g., ssymv reaching up to 102 Gflop/s for the  
 symmetric eigenvalue problem]

  Hybridization
–  Trailing matrix updates (Level 3 BLAS) are done on the GPU

(similar to the one-sided factorizations)
–  Panels (Level 2 BLAS) are hybrid

– operations with memory footprint restricted to the panel are done on CPU
– The time consuming matrix-vector products involving the entire trailing
 matrix are done on the GPU

  Note
–  CPU-to-GPU communications and subsequent computations always stay in

surface-to-volume ratio

26

Keeneland system, using one node	

3 NVIDIA GPUs (M2070@ 1.1 GHz, 5.4 GB)	

2 x 6 Intel Cores (X5660 @ 2.8 GHz, 23 GB)	

 MAGMA Hessenberg reduction in double precision on Fermi	

Matrix size	

  Developed routines for multiGPUs ���
 obtaining scalable performance���

  GPUs on a Keeneneland node	

 bring a speedup of 16 x 	

0

20

40

60

80

100

120

140

160

180

2048 5184 10112 20000

3 GPUs
2 GPUs
1 GPU (MAGMA 1.1)
CPU (MKL)

 w/ Mark Gates, UTK

Generalized Hermitian-definite eigenproblem solver (A x = λ B x) 
[double complex arithmetic; based on Divide & Conquer; eigenvalues + eigenvectors]

 GPU Fermi C2050 [448 CUDA Cores @ 1.15 GHz] CPU AMD ISTANBUL  
 + Intel Q9300 [4 cores @ 2.50 GHz] [8 sockets x 6 cores (48 cores) @2.8GHz] 
 DP peak 515 + 40 GFlop/s DP peak 538 GFlop/s  
 System cost ̃ $3,000 System cost ̃ $30,000  
 Power * ̃ 220 W Power * ̃ 1,022 W 

 * Computation consumed power rate (total system rate minus idle rate), measured with KILL A WATT PS, Model P430

0

20

40

60

80

100

120

140

2000 2500 3000 3500 4000 4500 5000 5500 6000

Ti
m

e
(s

)

Matrix size

CPU (MKL)

GPU (MAGMA)

w/ Thomas Schulthess &
 Raffaele Solca
 ETH Zurich, Switzerland

•  Solve A x = λ B x
•  Compute Cholesky factorization of B.

B = LLH

  xPOTRF
•  Transform the problem to a standard eigenvalue problem

A = L−1AL−H
  xHEGST

•  Solve Hermitian standard Eigenvalue problem
A’ y = λy
  xHEEVx

•  Transform back the eigenvectors
x = L−H y
  xTRSM

•  Solve A y = λ y
•  Tridiagonalize A

 T = QH A’ Q
  xHETRD

•  Compute eigenvalues and eigenvectors of the
tridiagonal matryx
 T y = λ y’
  xSTExx

•  Transform back the eigenvectors
 y = Q y’
  xUNMTR

0 0.5 1 1.5 2
x 104

0

20

40

60

80

100

120

140

160

180

200

220

N

G
flo

p/
s

zhetrd

CPU
1 GPU
2 GPUs
3 GPUs

 w/ Ichitaro Yamazaki, UTK  
 Tingxing Dong, UTK

Keeneland system, using one node	

3 NVIDIA GPUs (M2070@ 1.1 GHz, 5.4 GB)	

2 x 6 Intel Cores (X5660 @ 2.8 GHz, 23 GB)	

!
"
!
!

#
!
!

$
!
!

%
!
!

&
!
!

'
(
)

*
+
,-
.
/-
0
1
,2
1
'
34

!
""
"!

"#

!
""
"!

"#
$

!
$
"!

"#
$

!
$
"!

"#

!
""
"!

"#

!
""
"!

"#
$

!
$
"!

"#
$

!
$
"!

"#

!
""
"!

"#

!
""
"!

"#
$

!
$
"!

"#
$

!
$
"!

"#

!
""
"!

"#

!
""
"!

"#
$

!
$
"!

"#
$

!
$
"!

"#

5
6
7
8

8

9
6
7
8

8

:
6
7
8

8

;
6
7
8

8

  Number of GEMM variants 
 generated and tested 
 - automatically from “stencils”  
 (parameterized code)

 w/ Jakub Kurzak, UTK

! "!!! #!!! $!!! %!!! &!!!!

!

&!!

"!!

'!!

#!!

(!!

$!!

)!!

%!!

*!!

+,-./012/34

5
67
8
9
:2

;5<==

>5<==

?5<==

@5<==

  Performance on Fermi
 (C2050) in Gflop/s  

  ZGEMM improved significantly 
 compared to CUBLAS

  from 308 to 341 Gflop/s

  Improvement up to 2x on  
 some specific matrices 
 (e.g., of “rectangular” shape)

 w/ Jakub Kurzak, UTK

// Sequential Tile Cholesky
FOR k = 0..TILES-1
 DPOTRF(A[k][k])
 FOR m = k+1..TILES-1

 DTRSM(A[k][k], A[m][k])
 FOR n = k+1..TILES-1
 DSYRK(A[n][k], A[n][n])

 FOR m = n+1..TILES-1
 DGEMM(A[m][k], A[n][k], A[m][n])

// Hybrid Tile Cholesky
FOR k = 0..TILES-1
 Insert_Task(DPOTRF, …)
 FOR m = k+1..TILES-1
 Insert_Task(DTRSM, …)
 FOR n = k+1..TILES-1
 Insert_Task(DSYRK, …)
 FOR m = n+1..TILES-1
 Insert_Task(DGEMM, …)

  Productivity - develop parallel multicore + multiGPU algorithms from 
 sequential algorithms using DAG-based runtime systems

  Tile kernels and one-sided factorizations and solvers (using StarPU) 
 are released in MAGMA 1.1

  The hybridization approach naturally
works
[e.g., Richardson iteration in mixed-
precision
 iterative refinement solvers, Krylov space
 iterative solvers and eigen-solvers]

  Fast sparse matrix-vector product on
Fermi

  Explore ideas to reduce communication
[e.g., mixed precision, reduced storage
for integers for the indexing, etc.]

  Need high bandwidth

  MAGMA [Matrix Algebra on GPU
and Multicore Architectures] team
http://icl.cs.utk.edu/magma/

  PLASMA [Parallel Linear Algebra
for Scalable Multicore
Architectures] team
http://icl.cs.utk.edu/plasma

  Collaborating partners
 University of Tennessee, Knoxville

University of California, Berkeley
University of Colorado, Denver

INRIA, France
KAUST, Saudi Arabia

