


  A model leading to self-consistent iteration computation with 
need for HP LA (e.g, diagonalization and orthogonalization) 



•  Schodinger equation:    
                    Hψ = Eψ 

•  Choose a basis set of wave functions 
•  Two cases:  

   Orthonormal basis:   

                    H x = E x  

 in general it needs a big basis set 
   Non-orthonormal basis:   

                    H x = E S x 

 where S is the overlap matrix. 



  Power consumption and the 
move towards multicore 

  Hybrid architectures 
  GPU 
  Hybrid GPU-based systems 

–  CPU and GPU to get integrated 
(NVIDIA to make ARM CPU  
 cores alongside GPUs)  

DMA 

PCI-e 3.0 
7.5 GB/s 

x86 host 

   host 
memory 



•  Most likely be a hybrid design 
•  Think standard multicore chips and 

accelerator (GPUs) 
•  Today accelerators are attached 
•  Next generation more integrated 
•  Intel’s MIC architecture “Knights Ferry” and 

“Knights Corner” to come. 
•  48 x86 cores 

•  AMD’s Fusion in 2012 - 2013 
•  Multicore with embedded graphics ATI 

•  Nvidia’s Project Denver plans to develop               
an integrated chip using ARM                      
architecture in 2013. 



  Must rethink the design of our software 
 Another disruptive technology 

•  Similar to what happened with cluster computing  
  and message passing 

 Rethink and rewrite the applications, algorithms, and            
  software 

  Numerical libraries for example will change 
  For example, both LAPACK and ScaLAPACK will     
  undergo major changes to accommodate this 



Software/Algorithms follow hardware evolution in time 

LINPACK (70’s) 

(Vector operations) 

Rely on  

   - Level-1 BLAS 

operations 

LAPACK (80’s) 

(Blocking, cache 

friendly) 

Rely on  

   - Level-3 BLAS 

operations 

ScaLAPACK (90’s) 

(Distributed Memory) 

Rely on  

   - PBLAS Mess Passing 

PLASMA (00’s) 

New Algorithms  

(many-core friendly) 

Rely on  

   - a DAG/scheduler 

   - block data layout 

   - some extra kernels 

Those new algorithms  
    - have a very low granularity, they scale very well (multicore, petascale computing, … ) 
    - removes of dependencies among the tasks, (multicore, distributed computing) 
    - avoid latency (distributed computing, out-of-core) 
    - rely on fast kernels  
 Those new algorithms need new kernels and rely on efficient scheduling algorithms. 

 MAGMA 
 Hybrid Algorithms 
 (heterogeneity friendly)  

Rely on 
 - hybrid scheduler (of DAGs) 
 - hybrid kernels  
    (for nested parallelism) 
 - existing software infrastructure 



"   High levels of parallelism 
Many GPU cores  
[ e.g. Tesla C2050 (Fermi) has 448 CUDA cores ] 

"   Hybrid/heterogeneous architectures 
Match algorithmic requirements to architectural 
strengths 
[ e.g. small, non-parallelizable tasks to run on CPU, large and parallelizable on 
GPU ] 

"   Compute vs communication gap 
Exponentially growing gap; persistent challenge 
[ Processor speed improves 59%, memory bandwidth 23%, latency 5.5% ] 
[ on all levels, e.g. a GPU Tesla C1070 (4 x C1060) has compute power of  
  O(1,000) Gflop/s but GPUs communicate through the CPU using  
  O(1) GB/s connection ]  



Matrix Algebra on GPU and Multicore Architectures 
(MAGMA) 

"  MAGMA: a new generation linear algebra (LA) libraries to achieve the fastest possible  
                time to  an accurate solution on hybrid/heterogeneous architectures 
Homepage: http://icl.cs.utk.edu/magma/ 

"  MAGMA & LAPACK 

-  MAGMA uses LAPACK and extends its functionality to hybrid systems (w/ GPUs);  

-  MAGMA is designed to be similar to LAPACK in  
functionality, data storage and interface 

-  MAGMA leverages years of experience in developing open source LA software 
packages like LAPACK, ScaLAPACK, BLAS, ATLAS, and PLASMA 

"  MAGMA developers/collaborators 

-  U of Tennessee, Knoxville;  U of California, Berkeley;  U of Colorado, Denver 

-  INRIA Bordeaux - Sud Ouest & INRIA Paris ‒ Saclay, France; KAUST, Saudi Arabia 

-  Community effort [similarly to the development of LAPACK / ScaLAPACK] 



MAGMA 1.1     MAGNUM / Rectangular / PLASMA Tile Algorithms 

single 

multi 

distr. 

C P U G P U H Y B R I D 

MAGMA BLAS 

Linux, Windows, Mac OS X   ¦   C/C++, Fortran  ¦  Matlab, Python 

MAGMA SPARSE 

MAGMA 1.0 

MAGMA 1.1          LAPACK Algorithms and Tile Kernels  

Tile & LAPACK Algorithms with DAGuE 

NEW 



  50+	
  hybrid	
  LAPACK	
  algorithms	
  have	
  been	
  developed	
  (total	
  of	
  200+	
  rou4nes)	
  
  Every	
  algorithm	
  is	
  in	
  4	
  precisions	
  (s/c/d/z)	
  

  There	
  are	
  3	
  mixed	
  precision	
  algorithms	
  	
  (zc	
  &	
  ds)	
  

  These	
  are	
  hybrid	
  algorithms,	
  expressed	
  in	
  terms	
  of	
  BLAS	
  

  Support	
  is	
  for	
  CUDA-­‐enabled	
  NVIDIA	
  GPUs	
  

  MAGMA	
  BLAS	
  	
  
  A	
  subset	
  of	
  GPU	
  BLAS,	
  op4mized	
  for	
  Tesla	
  and	
  Fermi	
  GPUs	
  







14 

48 cores 
POTRF, TRTRI and LAUUM. 
The matrix is 4000 x 4000,tile size is 200 x 200, 



  MAGMA uses HYBRIDIZATION methodology based on 
–  Representing linear algebra algorithms as collections  

of TASKS and DATA DEPENDENCIES among them 
–  Properly SCHEDULING tasks' execution over  

multicore and GPU hardware components 

  Successfully applied to fundamental 
linear algebra algorithms 
–  One and two-sided factorizations and solvers 
–  Iterative linear and eigen-solvers 

  Productivity 
–  High-level 
–  Leveraging prior developments 
–  Exceeding in performance homogeneous solutions 

Hybrid CPU+GPU algorithms 
(small tasks for multicores and large  
      tasks for GPUs) 



  Hybridization 
–  Panels (Level 2 BLAS) are factored on CPU using LAPACK 
–  Trailing matrix updates (Level 3 BLAS) are done on the  

GPU using “look-ahead”  

  Note 
–  Panels are memory bound but are only O(N2) flops and can be overlapped  

with the O(N3) flops of the updates 
–  In effect, the GPU is used only for the high-performance Level 3 BLAS 

updates,  
i.e., no low performance Level 2 BLAS is scheduled on the GPU 



  Left-looking hybrid Cholesky factorization in MAGMA 1.0 

  The difference with LAPACK – the 3 additional lines in red 
  Line 10 (done on CPU) is overlapped with work on the GPU (line 7)  







•  Mixed precision, use the lowest 
precision required to achieve a given 
accuracy outcome 
  Improves runtime, reduce power 

consumption, lower data movement 
  Reformulate to find correction to 

solution, rather than solution 
[ Δx rather than x ]. 



FERMI       Tesla C2050: 448 CUDA cores @ 1.15GHz 
                  SP/DP peak is 1030 / 515 GFlop/s 

MAGMA LU-based solvers on Fermi (C2050) 

"   Similar results for Cholesky & QR 







"   Used in singular-value and eigen-value problems  
"   LAPACK-based two-sided factorizations are rich in Level 2 BLAS and 

therefore can not be properly accelerated on multicore CPUs 
"   We developed hybrid algorithms exploring GPUs' high bandwidth 

GPU:  GTX280  (240 cores   @ 1.30GHz, 141    GB/s)  ‏
CPU:  2 x 4 cores Intel Xeon @ 2.33GHz,  10.4 GB/s)‏ 

High-performance CUDA kernels were developed  
for various matrix-vector products 
[ e.g., ssymv reaching up to 102 Gflop/s for the  
  symmetric eigenvalue problem ] 



  Hybridization 
–  Trailing matrix updates (Level 3 BLAS) are done on the GPU 

(similar to the one-sided factorizations) 
–  Panels (Level 2 BLAS) are hybrid 

– operations with memory footprint restricted to the panel are done on CPU 
– The time consuming matrix-vector products involving the entire trailing  
   matrix are done on the GPU 

  Note 
–  CPU-to-GPU communications and subsequent computations always stay in 

surface-to-volume ratio 
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Keeneland system, using one node	


3 NVIDIA GPUs (M2070@ 1.1 GHz, 5.4 GB)	


2 x 6 Intel Cores (X5660 @ 2.8 GHz, 23 GB)	



   MAGMA Hessenberg reduction in double precision on Fermi	



Matrix size	



  Developed routines for multiGPUs ���
   obtaining scalable performance���

  GPUs on a Keeneneland node	


   bring a speedup of  16 x  	
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  w/  Mark Gates, UTK   



Generalized Hermitian-definite eigenproblem  solver ( A x = λ B x ) 
[double complex arithmetic; based on Divide & Conquer; eigenvalues + eigenvectors]  

       GPU   Fermi C2050 [448 CUDA Cores @ 1.15 GHz ]                                CPU     AMD ISTANBUL   
                 + Intel Q9300 [ 4 cores @ 2.50 GHz]                                                            [ 8 sockets x 6 cores (48 cores) @2.8GHz ] 
                  DP peak               515 + 40 GFlop/s                                                             DP peak                 538 GFlop/s  
                  System cost ̃ $3,000                                                                                  System cost  ̃ $30,000  
                Power *       ̃      220 W                                                                               Power *         ̃     1,022 W 

                   *    Computation consumed power rate (total system rate minus idle rate), measured with KILL  A  WATT  PS, Model P430 
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•  Solve   A x  = λ B x  
•  Compute Cholesky factorization of B. 

B = LLH 

   xPOTRF  
•  Transform the problem to a standard eigenvalue problem  

A = L−1AL−H  
  xHEGST 

•  Solve Hermitian standard Eigenvalue problem  
A’ y = λy 
  xHEEVx 

•  Transform back the eigenvectors 
x = L−H y  
  xTRSM 



•  Solve  A y = λ y   
•  Tridiagonalize A 

                               T = QH A’ Q 
  xHETRD  

•  Compute eigenvalues and eigenvectors of the 
tridiagonal matryx  
                                 T y = λ y’  
  xSTExx  

•  Transform back the eigenvectors 
                                  y = Q y’ 
  xUNMTR 



0 0.5 1 1.5 2
x 104

0

20

40

60

80

100

120

140

160

180

200

220

N

G
flo

p/
s

zhetrd

 

 

CPU
1 GPU
2 GPUs
3 GPUs

  w/  Ichitaro Yamazaki, UTK  
        Tingxing Dong, UTK  

Keeneland system, using one node	


3 NVIDIA GPUs (M2070@ 1.1 GHz, 5.4 GB)	


2 x 6 Intel Cores (X5660 @ 2.8 GHz, 23 GB)	
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  Number of GEMM variants 
   generated and tested 
   - automatically from “stencils”  
     (parameterized code)   

  w/  Jakub Kurzak, UTK   
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  Performance on Fermi 
   (C2050) in Gflop/s  

  ZGEMM improved significantly 
   compared to CUBLAS 

  from 308 to 341 Gflop/s 

  Improvement up to 2x on  
   some specific matrices 
   (e.g., of “rectangular” shape) 

  w/  Jakub Kurzak, UTK   



// Sequential Tile Cholesky 
FOR k = 0..TILES-1 
     DPOTRF(A[k][k]) 
     FOR m = k+1..TILES-1 

    DTRSM(A[k][k], A[m][k])        
   FOR n = k+1..TILES-1 
         DSYRK(A[n][k], A[n][n]) 

              FOR m = n+1..TILES-1 
     DGEMM(A[m][k], A[n][k], A[m][n]) 

// Hybrid Tile Cholesky 
FOR k = 0..TILES-1 
    Insert_Task(DPOTRF, …) 
    FOR m = k+1..TILES-1 
        Insert_Task(DTRSM, …) 
        FOR n = k+1..TILES-1 
            Insert_Task(DSYRK, …) 
            FOR m = n+1..TILES-1 
                Insert_Task(DGEMM, …) 

  Productivity - develop parallel multicore + multiGPU algorithms from 
                        sequential algorithms using DAG-based runtime systems 

  Tile kernels and one-sided factorizations and solvers (using StarPU) 
   are released in MAGMA 1.1 



  The hybridization approach naturally 
works 
[e.g., Richardson iteration in mixed-
precision 
 iterative refinement solvers, Krylov space 
 iterative solvers and eigen-solvers ] 

  Fast sparse matrix-vector product on 
Fermi 

  Explore ideas to reduce communication 
[ e.g., mixed precision, reduced storage 
for integers for the indexing, etc. ] 

  Need high bandwidth 



  MAGMA [Matrix Algebra on GPU 
and Multicore Architectures] team 
http://icl.cs.utk.edu/magma/ 

  PLASMA [Parallel Linear Algebra 
for Scalable Multicore  
Architectures] team 
http://icl.cs.utk.edu/plasma 

  Collaborating partners 
     University of Tennessee, Knoxville 

University of California, Berkeley 
University of Colorado, Denver 

INRIA, France 
KAUST, Saudi Arabia 


