ICL

Matrix Algebra on GPU and
Multicore Architectures

Stan Tomov and Jack Dongarra
Research Director

Innovative Computing Laboratory

Department of Computer Science

University of Tennessee, Knoxville

Workshop on “Electronic Structure Calculation Methods on Accelerators’
Oak Ridge National Laboratory, TN
February 5-8, 2012

N
= The Need for HP Linear Algebra

Electronic structure calculations

e Density functional theory

Many-body Schrodinger equation (exact but exponential scaling)
* Nuclei fixed, generating external potential

‘ W(r,. Ty E¥(r,. Ty (system dependent, non-trivial)
{2 'ElrrIZIrRI}(l)= B 1)

* N is number of electrons

Kohn Sham Equation: The many body problem of interacting
electrons is reduced to non-interacting electrons (single particle
problem) with the same electron density and a different effective
potential (cubic scaling).

~_

V2 de 2 +V. . J.(r)=Ew.(r) - V. represents effects of the Coulomb interactions
xcI¥i ivi
lr—rl lr- R, | between electrons
_ 2_ 2
p(r) = 2 |¢,~(r) =l lp(,] ="’:\') | * p is the density (of the original many-body system)
i

V.. is not known except special cases = use approximation, e.g. Local Density Approximation (LDA)
where V, . depends only on p
« A model leading to self-consistent iteration computation with
need for HP LA (e.g, diagonalization and orthogonalization)

{\
<~ The Need for HP Linear Algebra

From Schodinger equation to
eigenvalue solver

* Schodinger equation:
Hy = Ey
 Choose a basis set of wave functions

« Two cases:
= QOrthonormal basis:

Hx=EX

in general it needs a big basis set
= Non-orthonormal basis:

Hx=ESXx

where S is the overlap matrix.

< Hardware Trends

Performance Has Also Slowed,

Along with Power

1ERO7 Power is the root cause of all this
» Power consumption and the T Ay [e .
move towards multicore = Frequency (MHz) MY~ < N
. . Power (W)
+ Hybrid architectures 12404 1 Gores
. GPU A hardware issue just became a
) software problem = § ® g9®¥%° .
+ Hybrid GPU-based systems e
- CPU and GPU to get integrated| |.s+.* .
(NVIDIA to make ARM CPU Y
Cores alongSide GPUS) 1.E—O11970 19'75 19'80 19l85 19'90 19'95 20'00 20'05 2010

Data from Kunle Olukotun, Lance Hammond, Herb Sutter,
Burton Smith, Chris Batten, and Krste Asanovi¢
Slide from Kathy Yelick

PR @A NVIDIA.
x86 host Hi A

PCl-e 3.0

6
“ Future Computer Systems

* Most likely be a hybrid design

* Think standard multicore chips and
accelerator (GPUs)

 Today accelerators are attached
* Next generation more integrated

* Intel’s MIC architecture “Knights Ferry” and
“Knights Corner” to come.
48 x86 cores

. AMD’s Fusion in 2012 - 2013 AMD

« Multicore with embedded graphics AT| RUCRCUUCIEMUSly
* Nvidia’s Project Denver plans to develop
an integrated chip using ARM
architecture in 2013.

{\
A %
ICL :

Major change to Software

> Must rethink the design of our software

»Another disruptive technology
+ Similar to what happened with cluster computing
and message passing

»Rethink and rewrite the applications, algorithms, and
software

> Numerical libraries for example will change

> For example, both LAPACK and ScalLAPACK will
undergo major changes to accommodate this

e
<A New Generation of Software

Software/Algorithms follow hardware evolution in time

LINPACK (70’s) Rely on

(Vector operations) - Level-1 BLAS
operations

LAPACK (80’s) Rely on

(Blocking, cache - Level-3 BLAS

friendly) operations

ScalLAPACK (90’s) Rely on

(Distributed Memory) - PBLAS Mess Passing

PLASMA (00’s) Rely on

New Algorithms - a DAG/scheduler

(many-core friendly) - block data layout

- some extra kernels

MAGMA

Rely on
Hybrid Algorithms :\;.2“." - hybrid scheduler (of DAGs)
(heterogeneity friendly) - hybrid kernels
V (for nested parallelism)

- existing software infrastructure

Critical Path

= Challenges of using GPUs

. High levels of parallelism

Many GPU cores
[e.g. Tesla C2050 (Fermi) has 448 CUDA cores]

. Hybrid/heterogeneous architectures

Match algorithmic requirements to architectural
strengths

[e.g. small, non-parallelizable tasks to run on CPU, large and parallelizable on
GPU]

. Compute vs communication gap

Exponentially growing gap; persistent challenge

[Processor speed improves 59%, memory bandwidth 23%, latency 5.5%]
[on all levels, e.g. a GPU Tesla C1070 (4 x C1060) has compute power of
0(1,000) Gflop/s but GPUs communicate through the CPU using
O(1) GB/s connection]

{\
~ _ Matrix Algebra on GPU and Multicore Architectures
(MAGMA)

s« MAGMA: a new generation linear algebra (LA) libraries to achieve the fastest possible

time to an accurate solution on hybrid/heterogeneous architectures
Homepage: http://icl.cs.utk.edu/magma/

» MAGMA & LAPACK

MAGMA uses LAPACK and extends its functionality to hybrid systems (w/ GPUs);

MAGMA is designed to be similar to LAPACK in
functionality, data storage and interface

MAGMA leverages years of experience in developing open source LA software
packages like LAPACK, ScaLAPACK, BLAS, ATLAS, and PLASMA

« MAGMA developers/collaborators

U of Tennessee, Knoxville; U of California, Berkeley; U of Colorado, Denver
INRIA Bordeaux - Sud Ouest & INRIA Paris — Saclay, France; KAUST, Saudi Arabia
- Community effort [similarly to the development of LAPACK / ScaLAPACK]

{\

A
ICL

-MAGMA Software Stack

distr. <

-

multi {

N7

single <

\

CPU HYBRID GPU

/ |
Tile & LAPACK Algorithms with DAGUE
:
MAGMA 1.1 MAGNUM / Rectangular / PLASMA Tile Algorithms
PLASMA / Quark Scheduler
MAGMA 1.1 LAPACK Algorithms and Tile Kernels
|
MAGMA 1.0
MAGMA SPARSE
|
MAGMA BLAS
|
LAPACK , BLAS
|
N BLAS : CUDA

Linux, Windows, Mac OS X | C/C++, Fortran | Matlab, Python

NEW

)
“ MAGMA 1.1

. 50+ hybrid LAPACK algorithms have been developed (total of 200+ routines)

. Every algorithm is in 4 precisions (s/c/d/z)

. There are 3 mixed precision algorithms (zc & ds)

. These are hybrid algorithms, expressed in terms of BLAS

. Support is for CUDA-enabled NVIDIA GPUs

. MAGMA BLAS

. Asubset of GPU BLAS, optimized for Tesla and Fermi GPUs

One-sided Factorizations (LU, QR, Cholesky)
Linear System Solvers
Linear Least Squares (LLS) Solvers

Matrix Inversion

Singular Value Problem (SVP)
Non-symmetric Eigenvalue Problem
Symmetric Eigenvalue Problem

Generalized Symmetric Eigenvalue Problem

SSNNN SN

MULTI-GPU MULTI-GPU

STATIC DYNAMIC

v v
v
v
v

SINGLE GPU
MULTI-GPU
STATIC

MULTI-GPU
DYNAMIC

Hybrid LAPACK algorithms with static scheduling
and LAPACK data layout

Hybrid LAPACK algorithms with 1D block cyclic
static scheduling and LAPACK data layout

Tile algorithms with StarPU scheduling and tile
matrix layout

COMPUTATIONAL ROUTINES IN MAGMA 1.1

N

\ % INTERFACES

IcLYr M ﬁ GM ﬁ 1 1 MATRIX OPERATION ROUTINE <py GgpuU
L LU {sdczigetrf v /

GE Solve {sdcz}getrs v
m% Invert {sdcz}getri v
EE Cholesky {sdcz}potrf v /
=3 SPD/HPD Solve {sdcz}potrs v
- Invert {sdcz}potri v
TR Invert {sdczjtrtri v
QR {sdcz}geqrf v
Generate Q {sd}orgqr /
E'% GE | | {czbungqr 5 j
= E Multiply matrix by Q {sd}ormqr
S E {czlunmqr v /
= S LQ factorization {sdcigelsf v
S E’ QL factorization {sdcz}igeqlf v
GE Multiply matrix by Q {sd}ormq| /
{cztunmq| v /
Hessenberg reduction {sdcz}gehrd v
GE Generate Q {sd}orghr v
{cztunghr v
g Tridiagonalization {sd}sytrd v
g% {czthetrd v
E SY/HE Generate Q {sd}orgtr v
{cz}ungtr v
Multiply by Q {sd}ormtr v /
{cztunmtr /7
SVD GE Bidiagonalization {sdczjgebrd v/
gﬂ\lzlé% SPD/HPD Reduction to standard {sd}sygst /
EVP form {czthegst v /

)
“ MAGMA 1.1

DRIVER ROUTINES IN MAGMA 1.1

LINEAR
LLS EQUATIONS

STANDARD

STAND.

EVP

w
<<
)

GENERALIZED

EVP

MATRIX

GE

SPD/HPD

GE

GE

SY/HE

GE

SPD/HPD

OPERATION

Solve using LU
Solve using MP
Solve using Cholesky
Solve using MP
Solve LLS using QR
Solve using MP
Compute e-values,
optionally e-vectors
Computes all e-values,
optionally e-vectors
Range (D&C)
Range (B &I t.)
Range (MRRR)
Compute SVD,
optionally s-vectors
Compute all e-values,
optionally e-vectors
Range (D&C)
Range (B &I It.)
Range (MRRR)

ROUTINE

{sdcz}gesv
{zc,ds}gesv
{sdcz}posv
{zc,ds}posv
{sdcz}geqrs

{zc,ds}geqrsv

{sdcz}geev

{sd}syevd
{cztheevd
{cztheevdx
{cztheevx
{cztheevr
{sdcz}lgesvd

{sd}sygvd
{czthegvd
{czthegvdx
{czthegvx
{czthegvr

INTERFACES
CPU GPU

v
v

SSSNSAS

NSSSAKS

NSSNSSNSASNSSN SN S

| .: i 1 T II'I - .
or e o
1 . .
= L
B me
48 cores
POTRF, TRTRI and LAUUM.
The matrix is 4000 x 4000.tile size is 200 x 200,

N
“ Methodology overview

+ MAGMA uses HYBRIDIZATION methodology based on

Representing linear algebra algorithms as collections

of TASKS and DATA DEPENDENCIES among them

— Properly SCHEDULING tasks' execution over
multicore and GPU hardware components

Hybrid CPU+GPU algorithms
(small tasks for multicores and large
tasks for GPUs)

+ Successfully applied to fundamental K
linear algebra algorithms J'®<

— One and two-sided factorizations and solvers
— Iterative linear and eigen-solvers | GPU

Ve
+ Productivity

-~ High-level
-~ Leveraging prior developments
-~ Exceeding in performance homogeneous solutions

(‘Statically Scheduled One-Sided Factorizations
(LU, QR, and Cholesky)

+ Hybridization
- Panels (Level 2 BLAS) are factored on CPU using LAPACK

- Trailing matrix updates (Level 3 BLAS) are done on the
GPU using “look-ahead”

TRAILING
MATRIX

rmZ>»T0

+ Note

~ Panels are memory bound but are only O(N2) flops and can be overlapped
with the O(N3) flops of the updates

- In effect, the GPU is used only for the high-performance Level 3 BLAS
updates,

i.e., no low performance Level 2 BLAS is scheduled on the GPU

(\

A
ICL

A hybrid algorithm example

. Left-looking hybrid Cholesky factorization in MAGMA 1.0

O OoO~NO”OUd WNDE

for (j = 0; j < *n; j 4= nb) {

}

jb = min(nb, xn—j);
cublasSsyrk(’1’,’n’, jb, j, —1, da(j,0),xlda, 1, da(j,j),xlda);
cudaMemcpy2DAsync(work, jbxsizeof(float), da(j,j), *xldaxsizeof(float),
sizeof (float)x*jb, jb, cudaMemcpyDeviceToHost, stream [1]) ;
if (j + jb < =xn)
cublasSgemm (’n’,’t’, *xn—j—jb, jb, j, —1, da(j+jb,0), =xlda, da(j,0),
xlda, 1, da(j+ib,j), *lda);
cudaStreamSynchronize (stream [1]) ;
spotrf_(”Lower” , &jb, work, &jb, info);
if (xinfo != 0)
*info = xinfo 4+ j, break;
cudaMemcpy2DAsync(da(j,j), *ldaxsizeof(float), work, jbxsizeof(float),
sizeof (float)x*jb, jb, cudaMemcpyHostToDevice, stream [0]) ;
if (j + jb < *n)
cublasStrsm (’r’,’1’,’t’,’n’, *xn—j—jb, jb, 1, da(j,j), =lda,
da(j+ib,j), xlda);

. The difference with LAPACK - the 3 additional lines in red
. Line 10 (done on CPU) is overlapped with work on the GPU (line 7)

ICL

MAGMA Performance (single GPU)

MAGMA LU in double precision on single GPU (C2050)

o 1,090 MFlop/W
180
d
2 120
B
50 55 MFlop/W?
0
1024 2048 3072 4032 5184 6016 7040 8064 9088 10112
Matrix Size
Fermi C2050 (448 CUDA Cores @ 1.15 GHz) AMD Istanbul
+ Intel Q9300 (4 cores @ 2.50 GHz) [8 sockets x 6 cores (48 cores) @2.8GHz |
DP peak 515 + 40 GFlop/s DP peak 538 GFlop/s
Power * ~220 W Power* ~1,022 W

* Computation consumed power rate (total system rate minus idle rate), measured with KILL A WATT PS, Model P430

ICL

MAGMA Performance (scaling)

MAGMA LU in double precision on multi-GPUs (Fermi C2070)

500 o s GPUs.
600
—o HI{
]
S 400
o
sl 1GPU_
200
0
0 6000 12000 18000 24000 30000

Matrix Size

Keeneland system, using one node
3 NVIDIA GPUs (M2070 @ 1.1 GHz, 5.4 GB)
2 x 6 Intel Cores (X5660 @ 2.8 GHz, 23 GB)

{\

A

“ Mixed Precision Methods

» Mixed precision, use the lowest
precision required to achieve a given
accuracy outcome

= [mproves runtime, reduce power
consumption, lower data movement

= Reformulate to find correction to
solution, rather than solution
[Ax rather than x].

&

A % °
ICL ’ —
Results - linear solvers
MAGMA LU-based solvers on Fermi (C2050)
500
450 48 Single Prec
<-Double Prec FERMI Tesla C2050: 448 CUDA cores @ 1.15GHz
400 V' |ter Ref SP/DP peak is 1030 / 515 GFlop/s
350
300 » Direct solvers
o - Factor and solve in working precision
o 250 » Mixed Precision Iterative Refinement
B 200 - Factor in single (i.e. the bulk of the computation

in fast arithmetic) and use it as preconditioner
in simple double precision iteration, e.g.
X, =X+ (LU_)" P (b-Ax)

150
100
50

0
960 3200 5120 7040 8360 11200 13120

Matrix size

» Similar results for Cholesky & QR

Two-sided matrix factorizations

Two-sided factorizations
Q'AQ=H , H— upper Hessenberg / tridiagonal,
Q'AP=B , B — bidiagonal

Q and P - orthogonal similarity transformations

Importance

One-sided factorizations | | Two-sided factorizations
- bases for linear solvers - bases for eigen-solvers

Block algorithm
Q — a product of n-1 elementary reflectors
Q=HH,..H . H=I-7vv/'

H. . H -I V T "4 (WYtransform the bases for delayed update or block algorithm)

Can we accelerate it ?
[similarly to the one-sided using hybrid GPU-based computing]
[to see much higher acceleration due to a removed bottleneck]

Homogeneous multicore acceleration?

Hessenberg factorization in double precision arithmetic with MKL

6
5 “&* MKL 8 cores
V MKL 1 core

4
% v
2 3 7k 7x A
LL v v v v v

\%

0 \Y

2

1

0

1 2 3 4 5 6 7 8
Matrix size x 1000
CPU : Intel Xeon dual socket quad-core (8 cores @2.33 GHz) CPUBLAS : MKL 10.0 , dgemm peak: 65 GFlop/s

@ There have been difficulties in accelerating it on homogeneous multicores

€

=~ Two-sided matrix factorizations

GFlop/s

Used in singular-value and eigen-value problems

LAPACK-based two-sided factorizations are rich in Level 2 BLAS and
therefore can not be properly accelerated on multicore CPUs

We developed hybrid algorithms exploring GPUs' high bandwidth

GPU vs CPU GEMV

70

60 High-performance CUDA kernels were developed
50 = GPU SGEMV for various matrix-vector products

o Qﬁiﬂ DeEM [e.g., ssymv reaching up to 102 Gflop/s for the

» * CPU DGEMV symmetric eigenvalue problem]

20 A i ke up

10 &%

ofZ ¢ § Y Vi Vi S
1000 2000 3000 4000 5000 6000 700C
Matrix size

GPU: GTX280 (240 cores @ 1.30GHz, 141 GB/s)
CPU: 2 x 4 cores Intel Xeon @ 2.33GHz, 10.4 GB/s)

A

'S : . . .
~ Statically Scheduled Two-Sided Factorizations
[Hessenber, tridiagonal, and bidiagonal reductions]

+ Hybridization
- Trailing matrix updates (Level 3 BLAS) are done on the GPU
(similar to the one-sided factorizations)

— Panels (Level 2 BLAS) are hybrid

- operations with memory footprint restricted to the panel are done on CPU
- The time consuming matrix-vector products involving the entire trailing
matrix are done on the GPU

+ Note

- CPU-to-GPU communications and subsequent computations always stay in
surface-to-volume ratio

i= Task scheduling:
B Multicore+GPU
0 GPU
W Multicore
Gi
critical
path
C P U Work . G P U dWork
0
Y dY
\§i§§§\\\\ dv
RMAMMIMIDBaIIY
4. Copy Nto CP -
H— \\\ .] /'
3. Copy y to CP ‘ :
| N\

1. Copy dP to CP

2. Copy v to GPU

A
|CL . [} [] [} [}
Two-sided factorizations in MAGMA
MAGMA Hessenberg reduction in double precision on Fermi
180 + Developed routines for multiGPUs
160 obtaining scalable performance
140
120 + GPUs on a Keeneneland node
= 100 bring a speedup of 16 X
é 80 =3 GPUs
&) =#-2 GPUs
60 =41 GPU (MAGMA 1.1)
40 =8-CPU (MKL)
Zg — = = = m
2048 5184 10112 20000

Matrix size

Keeneland system, using one node
3 NVIDIA GPUs (M2070@ 1.1 GHz, 5.4 GB)
2 x 6 Intel Cores (X5660 @ 2.8 GHz, 23 GB)

w/ Mark Gates, UTK

{\

< Complete Eigensolvers

Generalized Hermitian-definite eigenproblem solver (Ax=AB x)
[double complex arithmetic; based on Divide & Conquer; eigenvalues + eigenvectors]

140

120 -=-CPU (MKL)
100 —+—GPU (MAGMA)

80
w/ Thomas Schulthess &

Raffaele Solca
ETH Zurich, Switzerland

Time (s)

60

40

20

F
0 A
2000 2500 3000 3500 4000 4500 5000 5500 6000
Matrix size

GPU Fermi C2050 [448 CUDA Cores @ 1.15 GHz] CPU AMD ISTANBUL
+ Intel Q9300 [4 cores @ 2.50 GHz] [8 sockets x 6 cores (48 cores) @2.8GHz]
DP peak 515 + 40 GFlop/s DP peak 538 GFlop/s
System cost ~ $3,000 System cost ~ $30,000
Power* ~ 220w Power * ~ 1,022 w

* Computation consumed power rate (total system rate minus idle rate), measured with KILL A WATT PS, Model P430

{\
< Complete Eigensolvers

Hermitian general eigenvalue solver

- Solve AXx =ABX
« Compute Cholesky factorization of B.
B =LLH
= XxPOTRF
« Transform the problem to a standard eigenvalue problem
A = L-TAL-H
= XHEGST
* Solve Hermitian standard Eigenvalue problem
A’y = Ay
= xXHEEVXx
« Transform back the eigenvectors
x=LHy
= XTRSM

N
“~ Complete Eigensolvers

Hermitian standard eigenvalue solver

- Solve Ay=Ay
- Tridiagonalize A
T=Q'AQ
= XHETRD

« Compute eigenvalues and eigenvectors of the
tridiagonal matryx
Ty=Ay

= XSTExx

* Transform back the eigenvectors
y=Qy’
= XUNMTR

{\

< Tridiagonalization on multiGPUs

Gflop/s

zhetrd

220
200
1807
160
140+
120

100+

AN
o
T

0 A 1 1 1

0 0.5 1 1.5 2

N x 10*
Keeneland system, using one node
3 NVIDIA GPUs (M2070@ 1.1 GHz, 5.4 GB)
2 x 6 Intel Cores (X5660 @ 2.8 GHz, 23 GB)

w/ Ichitaro Yamazaki, UTK
Tingxing Dong, UTK

e

A\
ICL

- Autotuning in MAGMA 1.1

(an}
,,,,,,,,,,,,,,,,4,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,J‘, ,,,,,,,,,,,,,,,, O
! LN
S | S |
3 S +« Number of GEMM variants
1 _ = generated and tested
R L o e = § - automatically from “stencils”
e (parameterized code)
| o 5
—————————————————————— w11 S 3
| I N
| I ‘ =
| | =
| | o F
- -- - - ---- + - - - - (e}
I | —
I ANRER _
| = e | &
m A MMM MAaMm
X X X X! X X X X
! ~ ! e
LT LTS w/ Jakub Kurzak, UTK

SGEMM
CGEMM
DGEMM
ZGEMM

(\

= Autotuning in MAGMA 1.1

Gflop/s

900

800

700

600

500

400

300

200

100

2000

4000 6000

matrix size

8000

L 2

10000

+ Performance on Fermi

(C2050) in Gflop/s

« ZGEMM improved significantly

compared to CUBLAS
+ from 308 to 341 Gflop/s

Improvement up to 2x on
some specific matrices
(e.g., of “rectangular” shape)

w/ Jakub Kurzak, UTK

N
“~ Productivity: sequential to hybrid code

+ Productivity - develop parallel multicore + multiGPU algorithms from
sequential algorithms using DAG-based runtime systems

Il Sequential Tile Cholesky Il Hybrid Tile Cholesky
FOR k =0..TILES-1 FOR k =0..TILES-1
DPOTRF(A[K][K]) Insert_Task(DPOTREF, ...)
FOR m = k+1..TILES-1 FOR m = k+1..TILES-1
DTRSM(A[k][k], A[m][k]) Insert_Task(DTRSM, ...)
FOR n = k+1..TILES-1 FOR n = k+1..TILES-1
DSYRK(A[n][k], A[n][n]) Insert_Task(DSYRK, ...)
FOR m = n+1..TILES-1 FOR m = n+1..TILES-1
DGEMM(A[m][k], A[n][k], A[m][n]) Insert_Task(DGEMM, ...)

. Tile kernels and one-sided factorizations and solvers (using StarPU)
are released in MAGMA 1.1

{\

A
ICL

‘Sparse iterative solvers

Algorithm 1 GMRES for GPUs

1: forz=10,1, ... do

10:
11:
12:
13:
14:
15:
16:

r=b— Axr, (magma_sspmv)
B=hio=|r|2 (cublasSnrm2)
check convergence and exit if done
fork=1,..., m do
vk =71 [Ak k-1 (magma_sscal)
r=A v (magma_sspmv)
for j=1.... k do
hix = ?‘T't'J (cublasSdot)
r=r—Rh;iv; (cublasSaxpy)

end for
g1k = ||rlf2
end for
Define Vi = [v1,...,u%], Hix = {k; ;}
Find gz that minimizes ||Fe; — Hy yg||2
Tiy1 = T + Vi Uk (magma_sgemv)

(cublasSnrm2)

17: end for

Algorithm 2 LOBPCG for GPUs

1: forz=10,1,... do

.

4:

R =P(AX; - AX;)

(magma_sspmv)

check convergence and exit if done
[X;.A) = Rayleigh-Ritz on
span{X;. X;_1. R} (hybrid)

5: end for

The hybridization approach naturally
works

[e.g., Richardson iteration in mixed-
precision

iterative refinement solvers, Krylov space
iterative solvers and eigen-solvers]

Fast sparse matrix-vector product on
Fermi

Explore ideas to reduce communication
[e.g., mixed precision, reduced storage
for integers for the indexing, etc.]

Need high bandwidth

4 Collaborators / Support

. MAGMA [Matrix Algebra on GPU \ &
and Multicore Architectures] team @:{g 3
http://icl.cs.utk.edu/magma/ #vVIDIA. Microsoft

. PLASMA [Parallel Linear Algebra #\ The MathWorks

for Scalable Multicore
Architectures] team

http://icl.cs.utk.edu/plasma <'ntel,) "l

. Collaborating partners @

University of Tennessee, Knoxville
University of California, Berkeley
University of Colorado, Denver

INRIA, France
KAUST, Saudi Arabia

AMD

U.S. DEPARTMENT QF

PVENERGY

