
Optimizing Tensor Contraction 
Expressions for Hybrid CPU-
GPU Execution 
February 2012 
 
Sriram Krishnamoorthy 
 
Wenjing Ma, Oreste Villa, Karol Kowalski, Gagan Agrawal 



Deep Dive into GPU Programming 

Experience with Optimizing Tensor Contractions 
 
How to think about programming GPUs 

CUDA, OpenCL, … 
 
Lessons Learned 
 
Computer scientist perspective 
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NWChem-TCE 
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Phase Complexity 
Hartree–Fock N^4 
4-index transformation N^5 
CCSD - Iterative no^2 * nu^4 
CCSD(T) – Not iterative no^3 * nu^4 

N=no+nu  

C
om

pu
ta

tio
na

l C
om

pl
ex

ity
 



Tensor Contraction Expressions – CCSD(T) 
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Matrix Multiplication Formulation 
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Direct GPU Implementation 
(Tesla T10) 
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Steps 

Manage GPU memory 
Transfer data between CPU and GPU 
Map work to thread blocks and threads 
Decode mapping in each thread 
Execute concurrently 
… 
Party! 
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Host Code Aspects 
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Avoid frequent allocation/deallocation (pool allocator) 

CPU does work common to all threads (dimension offset for C arrays) 



Parallelization Across Thread Blocks 
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Tile one dimension of each tensor 

16x16 work for each thread block 

Decode work to be done on each thread 



Baseline Host Implementation 
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Copy inputs, invoke kernel, copy output 



Kernel Code (I) 

11 

Set things up for each thread 



Kernel Code (II) 
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Execute the loop 



Index Combining 
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Index decoding is expensive 
Duplicated across threads 
Division and modulo arithmetic 



Dimension Flattening 
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Maximize full thread blocks 



Dimension Flattening  
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Baseline approach works 
well only when index 
dimensions are multiple 
of the thread block 
configuration. We flatten 
the loops and we 
recreate them of the 
“right” size, with some 
index operations  
increase of index 
operations but better 
utilization 



Pipelining 
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Overlap data transfer and computation 



Pipelining  

We can avoid the O(N6) copy IN and just have the copy 
OUT and then accumulate on the host 
We can create “streams” of kernels using one loop 
dimension and asynchronously copy out partial data  
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Copy Data Out 

Execute 

Host Accumulates 

Copy Data Out 

Execute 

Host Accumulates 4 4 4 4 

16 ms 
18 ms Copy Data In 

Execute + acc 
Copy Data Out 18 ms 

“Default” 

“Host Support” 

“Host Support 
and streams” 

Pipeline of 
GPU / PCI express/ Host 
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CPU-GPU Hybrid Execution 
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Host has more many cores – use them 



What did we do? 

Optimized memory allocation 
 

Offload redundant calculations to CPUs 
 

Index combining to reduce overhead 
 

Flatten to maximize full thread blocks 
 

Pipeline data transfer with computation 
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Single  Tile Performance 
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Optimizations help 
Greater improvements for irregular sizes 



CCSD(T) - Results for 60 nodes GPU and CPU 
– Tesla C1060 
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Double precision calculations for the 
chromophore  of green fluorescent protein 
(GFP) with 284 and 476 basis functions. In 
all calculations core electrons were not 
correlated. 

1 core 2 cores 4 cores 
(1 socket) 

8 cores 
(2 sockets) 

1 GPU 2 GPUs +  
6 cores 

Two level Hybrid execution 
GPUs share the PCI bus 

One level Hybrid execution 
GPU performs contraction and  
CPU accumulates 



Fermi GPU 
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Fermi GPU Features 

More FLOPS for the same PCIe bandwidth 
 

Larger register file size 
 

Larger shared memory 
 

Cache 
 

Bi-direction PCIe transfer 
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Performance Estimate 
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Minimize PCIe Data Transfer 
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Keep intermediates in memory 



Register Tiling 

Just painful, but mechanical (see reference) 
Improves data reuse 
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Index Calculation to Favor Output 
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Access to input arrays optimized by cache 
Global memory coalescing for outputs 



Reversed Evaluation of Conditionals 
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Minimize count of executed conditionals 



What did we do? 

Register tiling 
Reduce overall work 

Index calculation order 
Favor memory access coalescing for output 

Reverse execution of conditionals 
Minimizing thread divergence 
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Evaluation 
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Baseline: single core 
Not comparing with CPU, just GPU 
versions 
Tesla codes run faster on Fermi 
Fermi specific optimizations further 
improve performance 
More results in references 

Different versions result in different 
performance 

Complicate compiler models 



Iterative Coupled Cluster 

Just copy-paste? Not really  
 

Cannot eliminate data movement as in CCSD(T) 
 

Varied tensor contractions 
Often limited FLOP count 

 

… 
 

Back at the drawing board  
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Observations 

GPU programming is hard 
Bad news: vectorization is hard 

Even for compilers (PLDI’04 – memory copy; PACT’06 – 
matrix transpose) 

Non-obvious performance implications 
Let the compiler do the most for you 

They are getting better 
Knowing how to vectorize the code goes a long way 

Get the best out of a compiler 
Isolate performance critical code 

You will rewrite it many times 
Keeps relationship good between you and computer 
scientists 
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