
Optimizing Tensor Contraction
Expressions for Hybrid CPU-
GPU Execution
February 2012

Sriram Krishnamoorthy

Wenjing Ma, Oreste Villa, Karol Kowalski, Gagan Agrawal

Deep Dive into GPU Programming

Experience with Optimizing Tensor Contractions

How to think about programming GPUs

CUDA, OpenCL, …

Lessons Learned

Computer scientist perspective

2

NWChem-TCE

3

Phase Complexity
Hartree–Fock N^4
4-index transformation N^5
CCSD - Iterative no^2 * nu^4
CCSD(T) – Not iterative no^3 * nu^4

N=no+nu

C
om

pu
ta

tio
na

l C
om

pl
ex

ity

Tensor Contraction Expressions – CCSD(T)

4

Matrix Multiplication Formulation

5

Direct GPU Implementation
(Tesla T10)

6

Steps

Manage GPU memory
Transfer data between CPU and GPU
Map work to thread blocks and threads
Decode mapping in each thread
Execute concurrently
…
Party!

7

Host Code Aspects

8

Avoid frequent allocation/deallocation (pool allocator)

CPU does work common to all threads (dimension offset for C arrays)

Parallelization Across Thread Blocks

9

Tile one dimension of each tensor

16x16 work for each thread block

Decode work to be done on each thread

Baseline Host Implementation

10

Copy inputs, invoke kernel, copy output

Kernel Code (I)

11

Set things up for each thread

Kernel Code (II)

12

Execute the loop

Index Combining

13

Index decoding is expensive
Duplicated across threads
Division and modulo arithmetic

Dimension Flattening

14

Maximize full thread blocks

Dimension Flattening

15

Baseline approach works
well only when index
dimensions are multiple
of the thread block
configuration. We flatten
the loops and we
recreate them of the
“right” size, with some
index operations 
increase of index
operations but better
utilization

Pipelining

16

Overlap data transfer and computation

Pipelining

We can avoid the O(N6) copy IN and just have the copy
OUT and then accumulate on the host
We can create “streams” of kernels using one loop
dimension and asynchronously copy out partial data

14 ms

3.5 3.5 3.5 3.5

18 ms

4.5 4.5 4.5 4.5

16 ms

Copy Data Out

Execute

Host Accumulates

Copy Data Out

Execute

Host Accumulates 4 4 4 4

16 ms
18 ms Copy Data In

Execute + acc
Copy Data Out 18 ms

“Default”

“Host Support”

“Host Support
and streams”

Pipeline of
GPU / PCI express/ Host

17

CPU-GPU Hybrid Execution

18

Host has more many cores – use them

What did we do?

Optimized memory allocation

Offload redundant calculations to CPUs

Index combining to reduce overhead

Flatten to maximize full thread blocks

Pipeline data transfer with computation

19

Single Tile Performance

20

Ti
m

e
(m

s)

Optimizations help
Greater improvements for irregular sizes

CCSD(T) - Results for 60 nodes GPU and CPU
– Tesla C1060

21

0

20

40

60

80

100

120
113

5

28

56

17 13 M
in

ut
es

 to
 C

om
pl

et
io

n

Double precision calculations for the
chromophore of green fluorescent protein
(GFP) with 284 and 476 basis functions. In
all calculations core electrons were not
correlated.

1 core 2 cores 4 cores
(1 socket)

8 cores
(2 sockets)

1 GPU 2 GPUs +
6 cores

Two level Hybrid execution
GPUs share the PCI bus

One level Hybrid execution
GPU performs contraction and
CPU accumulates

Fermi GPU

22

Fermi GPU Features

More FLOPS for the same PCIe bandwidth

Larger register file size

Larger shared memory

Cache

Bi-direction PCIe transfer

23

Performance Estimate

24

Minimize PCIe Data Transfer

25

Keep intermediates in memory

Register Tiling

Just painful, but mechanical (see reference)
Improves data reuse

26

Index Calculation to Favor Output

27

Access to input arrays optimized by cache
Global memory coalescing for outputs

Reversed Evaluation of Conditionals

28

Minimize count of executed conditionals

What did we do?

Register tiling
Reduce overall work

Index calculation order
Favor memory access coalescing for output

Reverse execution of conditionals
Minimizing thread divergence

29

Evaluation

30

Baseline: single core
Not comparing with CPU, just GPU
versions
Tesla codes run faster on Fermi
Fermi specific optimizations further
improve performance
More results in references

Different versions result in different
performance

Complicate compiler models

Iterative Coupled Cluster

Just copy-paste? Not really 

Cannot eliminate data movement as in CCSD(T)

Varied tensor contractions
Often limited FLOP count

…

Back at the drawing board

31

Observations

GPU programming is hard
Bad news: vectorization is hard

Even for compilers (PLDI’04 – memory copy; PACT’06 –
matrix transpose)

Non-obvious performance implications
Let the compiler do the most for you

They are getting better
Knowing how to vectorize the code goes a long way

Get the best out of a compiler
Isolate performance critical code

You will rewrite it many times
Keeps relationship good between you and computer
scientists

32

References

W. Ma, S. Krishnamoorthy, O. Villa, and K. Kowalski. “Optimizing
Tensor Contraction Expressions for Hybrid CPU-GPU Execution”.
Cluster Computing Special Issue, 2011

W. Ma, S. Krishnamoorthy, O. Villa, and K. Kowalski. “GPU-based
implementations of the non- iterative regularized-CCSD(T)
corrections: applications to strongly correlated systems”. Journal of
Chemical Theory and Computation vol:7(5) pp:1316-1327, 2011

W. Ma, S. Krishnamoorthy, O. Villa, and K. Kowalski. “Acceleration of
Streamed Tensor Contraction Expressions on GPGPU-based
Clusters”. IEEE International Conference on Cluster Computing,
September 2010

33

	Optimizing Tensor Contraction Expressions for Hybrid CPU-GPU Execution
	Deep Dive into GPU Programming
	NWChem-TCE
	Tensor Contraction Expressions – CCSD(T)
	Matrix Multiplication Formulation
	Slide Number 6
	Steps
	Host Code Aspects
	Parallelization Across Thread Blocks
	Baseline Host Implementation
	Kernel Code (I)
	Kernel Code (II)
	Index Combining
	Dimension Flattening
	Dimension Flattening
	Pipelining
	Pipelining
	CPU-GPU Hybrid Execution
	What did we do?
	Single Tile Performance
	CCSD(T) - Results for 60 nodes GPU and CPU�– Tesla C1060
	Slide Number 22
	Fermi GPU Features
	Performance Estimate
	Minimize PCIe Data Transfer
	Register Tiling
	Index Calculation to Favor Output
	Reversed Evaluation of Conditionals
	What did we do?
	Evaluation
	Iterative Coupled Cluster
	Observations
	References

