
Experience Applying Fortran GPU
Compilers to Numerical Weather

Prediction

Tom Henderson
NOAA Global Systems Division

Thomas.B.Henderson@noaa.gov

Mark Govett, Jacques Middlecoff
Paul Madden, James Rosinski,

Craig Tierney

8/29/11

Hurricane Irene
7-Day Forecast
! Forecast valid@

8/21/2011 12Z UTC
! Black line is

observed track
!  White diamonds

are storm location
at 00z UTC each
day

! Green & cyan lines
are forecast tracks
from NWP models 2

8/29/11

Hurricane Irene
5-Day Forecast
! Forecast valid@

8/23/2011 12Z UTC

3

8/29/11

Hurricane Irene
3-Day Forecast
! Forecast valid@

8/25/2011 12Z UTC
! Forecast uncertainty

(estimated from
spread of forecast
tracks) already
smaller than the
hurricane

4

8/29/11

Hurricane Irene
1-Day Forecast
! Forecast valid@

8/27/2011 12Z UTC

5

2/22/12

Correlation of Forecast Skill and
Compute Power

MPP (1992-)

GPU
(2008-) 1st Operational MPP (2000)

2/22/12

GPU Fine-Grained Parallelism

!  “Blocks” of “threads”
!  Many threads per core (1000s)
!  Needs code that vectorizes well

!  Large on-chip (“global”) memory
!  ~3x higher bandwidth than CPUs
!  High latency (100s of cycles)

!  Need lots of threads to hide memory latency
!  Limited per-thread fast (“shared”) memory &

registers
!  User-managed cache
!  Limits number of threads

!  Slow data transfers between CPU & GPU
7

!  Invert traditional “GPU-as-accelerator” model
!  Model state lives on GPU
!  Initial data read by the CPU and passed to the GPU
!  Data passed back to the CPU only for output &

message-passing
!  GPU performs all computations

!  Fine-grained parallelism
!  CPU controls high level program flow

!  Coarse-grained parallelism
!  Minimizes overhead of data movement between CPU

& GPU
!  “Reverse offload” in MIC terms

2/22/12 8

For NWP Use CPU as a
“Communication Co-Processor”

2/22/12

NIM NWP Dynamical Core
!  NIM = “Non-Hydrostatic Icosahedral Model”

!  Research NWP dynamical core
!  Target: global “cloud-permitting” resolutions ~3km

(42 million columns), 2% of real-time
!  Rapidly evolving code base

!  “GPU-friendly” (also good for CPU)
!  Single-precision floating-point computations
!  Computations structured as simple vector ops

with indirect addressing and inner vertical loop
! Coarse-grained parallelism via Scalable

Modeling System (SMS)
!  Directive-based approach to distributed-

memory parallelism (implemented with MPI)

9

2/22/12 10

Icosahedral (Geodesic) Grid

10

Icosahedral Model Lat/Lon Model

•  Near constant resolution over the globe
•  Always 12 pentagons

(slide courtesy Dr. Jin Lee)

2/22/12

NIM Source Code Requirements

! Must maintain single Fortran source code
for all desired execution modes
!  Single and multiple CPU
!  Single and multiple GPU
!  Prefer a directive-based Fortran approach

for GPU that interoperates with SMS
directives

11

2/22/12

GPU Fortran Compilers
! Commercial directive-based compilers

!  CAPS HMPP 3.0.5
!  Portland Group PGI Accelerator 11.10
!  Cray (beta)

! Open-source directive-based compiler
developed at GSD
!  F2C-ACC (Govett, 2008)

!  “Application-specific” Fortran->CUDA-C compiler
for performance evaluation

!  Provide feedback to commercial compiler
developers
"  Bug identification
"  Performance improvement

12

2/22/12

Initial Performance Results

!  “G5-L96” test case
!  10242 columns, 96 levels, 1000 time steps
!  Expect similar number of columns on each

GPU at ~3km target resolution
! CPU = Intel Westmere (2.66GHz)
! GPU = NVIDIA C2050 “Fermi”
! Optimize for both CPU and GPU

!  Some code divergence
!  Always use fastest code

13

2/22/12

Good Performance on CPU

! Used PAPI to count flops (Intel compiler)
!  Requires –O1 (no vectorization) to

accurately count FLOPs
!  2nd run with –O3 (vectorization) to get

wallclock

~27% of peak on Westmere 2.8 GHz

14

!

2.8*10
12

940
= 2.98Gflops /sec

Fermi GPU vs. Single/Multiple
Westmere CPU cores, “G5-L96”

NIM
routine

CPU 1-
core Time

(sec)

CPU 6-
core Time

(sec)

F2C-ACC
GPU Time

(sec)

HMPP
GPU Time

(sec)

PGI GPU
Time
(sec)

F2C-ACC
Speedup vs.
6-core CPU

Total* 8654 2068 449 --** -- 4.6
vdmints 4559 1062 196 192 197 5.4
vdmintv 2119 446 91 101 88 4.9

flux 964 175 26 24 26 6.7
vdn 131 86 18 17 18 4.8

diag 389 74 42 33 -- 1.8
force 80 33 7 11 13 4.7

2/22/12 15

* Total time includes I/O, PCIe, etc.
** Recent result: HMPP now complete and faster

2/22/12

Early Work With Multi-GPU Runs

! F2C-ACC + SMS directives
!  Identical results using different numbers of

GPUs
!  Reduced scaling because compute has

sped up but communication has not
!  Working on communication optimizations

! Demonstrates that single source code
can be used for single/multiple CPU/
GPU runs

16

2/22/12

Conclusions

!  Some grounds for optimism
!  Fermi is ~4-5x faster than 6-core Westmere
!  Once compilers mature, expect level of effort

similar to OpenMP for “GPU-friendly” codes
like NIM

!  Debugging and validation are more difficult on
GPUs

!  For NWP we need:
!  More memory bandwidth
!  More per-thread resources
!  Eliminate PCIe overhead
!  More mature compilers

17

2/22/12

Work In-Progress

!  “FIM” (more mature NWP code scheduled
for operational implementation)

!  Intel MIC
! Cray GPU compiler
! Address multi-GPU scaling issues
! Continue to improve GPU performance

!  Tuning options via F2C-ACC and
commercial compilers

!  Convince compiler vendors to support key
optimizations

18

2/22/12

Thanks to!

! Guillaume Poirier, Yann Mevel, and others
at CAPS for assistance with HMPP

! Dave Norton and others at PGI for
assistance with PGI Accelerator

! Pete Johnsen at Cray for assistance with
beta Cray GPU compiler

! We want to see multiple successful
commercial directive-based Fortran
compilers for GPU/MIC

19

2/22/12 20

Thank You

20

