
Introduction to the Cray XK6

Jeff Larkin
Cray Supercomputing Center of Excellence

larkin@cray.com

Agenda

● Cray XK6 Architecture
●  AMD Interlagos Processor
●  Cray Gemini Interconnect
●  Nvidia Kepler Accelerator
●  Lustre Filesystem Basics

● Cray Programming Environment
●  Available Compilers
●  Cray Scientific Libraries
●  Cray MPICH2
●  Cray Performance Tools
●  Cray Debugging Tools

● It’s unlikely we’ll get through all the slides, these
are meant to serve as a reference for you after
this workshop.

October 8, 2012 OLCF Fall User Training 2012
2

Titan Configuration
Name Titan
Architecture XK6
Processor AMD

Interlagos
Cabinets 200
Nodes 18,688
CPU Memory/
Node

32 GB

GPU Memory/
Node

6 GB

Interconnect Gemini
GPUs Nvidia Kepler

October 8, 2012 OLCF Fall User Training 2012
3

Cray XK6 Architecture

AMD Interlagos Processor
Cray Gemini Interconnect
Nvidia Kepler Accelerator
Lustre Filesystem Basics

Cray XK6 Architecture

HT3

HT3

PCIe Gen2

AMD
Series
6200 CPU

NVIDIA Kepler
GPU

1600 MHz
DDR3; 16, 32 or
64 GB

6GB
GDDR5;
138 GB/s

Cray Gemini High
Speed
Interconnect OLCF Fall User Training 2012

 5

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

XK6 Node Details

●  1 Interlagos Processor, 2 Dies
●  8 “Compute Units”
●  8 256-bit FMAC Floating Point Units
●  16 Integer Cores

●  4 Channels of DDR3 Bandwidth to 4 DIMMs
●  1 Nvidia Kepler Accelerator

●  Connected via PCIe Gen 2

To Interconnect

PCIe

HT3

Shared L3 Cache

Shared L3 Cache
H

T3

October 8, 2012 OLCF Fall User Training 2012
6

October 8, 2012 OLCF Fall User Training 2012
7

Interlagos Core Definition

●  In order to optimize the utilization of the shared and dedicated
resources on the chip for different types of applications, modern x86
processors offer flexible options for running applications. As a result,
the definition of a core has become ambiguous.

●  Definition of a Core from Blue Waters proposal:
●  Equivalent to an AMD “Interlagos” Compute Unit, which is an AMD

Interlagos “Bulldozer module” consisting of: one instruction fetch/
decode unit, one floating point scheduler with two FMAC execution
units, two integer schedulers with multiple pipelines and L1 Dcache,
and a L2 cache. This is sometimes also called a “Core Module.” A
“core” = “compute unit” = “core module.”

October 8, 2012 OLCF Fall User Training 2012
8

Interlagos Processor Architecture

●  Interlagos is composed of a
number of “Bulldozer
modules” or “Compute Unit”
●  A compute unit has shared

and dedicated components
●  There are two independent

integer units; shared L2 cache,
instruction fetch, Icache; and a
shared, 256-bit Floating Point
resource

●  A single Integer unit can
make use of the entire
Floating Point resource with
256-bit AVX instructions
●  Vector Length

●  32 bit operands, VL = 8
●  64 bit operands, VL = 4

Shared L2 Cache

Fetch

Decode

Shared L3 Cache and NB

FP
Scheduler

12
8-

bi
t F

M
A

C

L1 DCache L1 DCache

12
8-

bi
t F

M
A

C

Pi
pe

lin
e

Pi
pe

lin
e

Pi
pe

lin
e

Pi
pe

lin
e

Pi
pe

lin
e

Pi
pe

lin
e

Pi
pe

lin
e

Pi
pe

lin
e

Int
Scheduler

Int
Scheduler

Int Core 0 Int Core 1

Dedicated
Components

Shared at the
module level

Shared at the
chip level

October 8, 2012 OLCF Fall User Training 2012
9

Building an Interlagos Processor

●  Each processor die is
composed of 4 compute units
●  The 4 compute units share a

memory controller and 8MB
L3 data cache
●  Each processor die is

configured with two DDR3
memory channels and
multiple HT3 links

Shared L3 C
ache

NB/HT Links Memory Controller

October 8, 2012 OLCF Fall User Training 2012
10

Interlagos Die Floorplan

October 8, 2012 OLCF Fall User Training 2012
11

Interlagos Processor

●  Two die are packaged
on a multi-chip
module to form an
Interlagos processor
●  Processor socket is

called G34 and is
compatible with Magny
Cours

●  Package contains
●  8 compute units
●  16 MB L3 Cache
●  4 DDR3 1333 or 1600

memory channels

Shared L3 C
ache

NB/HT
Links

Memory
Controller

Shared L3 C
ache

NB/HT
Links

Memory
Controller

Interlagos Caches and Memory

●  L1 Cache
●  16 KB, 4-way predicted, parity protected
●  Write-through and inclusive with respect to L2
●  4 cycle load to use latency

●  L2 Cache
●  2MB, Shared within core-module
●  18-20 cycle load to use latency

●  L3 Cache
●  8 MB, non-inclusive victim cache (mostly exclusive)

●  Entries used by multiple core-modules will remain in cache
●  1 to 2 MB used by probe filter (snoop bus)
●  4 sub-caches, one close to each compute module
●  Minimum Load to latency of 55-60 cycles

● Minimum latency to memory is 90-100 cycles

October 8, 2012 OLCF Fall User Training 2012
13

Two MPI Tasks on a Compute Unit
 ("Dual-Stream Mode")
●  An MPI task is pinned to each

integer unit
●  Each integer unit has exclusive

access to an integer scheduler,
integer pipelines and L1 Dcache

●  The 256-bit FP unit, instruction
fetch, and the L2 Cache are shared
between the two integer units
●  256-bit AVX instructions are

dynamically executed as two
128-bit instructions if the 2nd FP
unit is busy

●  When to use
●  Code is highly scalable to a large

number of MPI ranks
●  Code can run with a 2GB per task

memory footprint
●  Code is not well vectorized

Shared L2 Cache

Fetch

Decode

FP
Scheduler

12
8-

bi
t F

M
A

C

L1 DCache L1 DCache

12
8-

bi
t F

M
A

C

Pi
pe

lin
e

Pi
pe

lin
e

Pi
pe

lin
e

Pi
pe

lin
e

Pi
pe

lin
e

Pi
pe

lin
e

Pi
pe

lin
e

Pi
pe

lin
e

Int
Scheduler

Int
Scheduler

Int Core 0 Int Core 1

MPI Task 0 Shared
Components

MPI Task 1

One MPI Task on a Compute Unit
("Single Stream Mode")
●  Only one integer unit is used per

compute unit
●  This unit has exclusive access to

the 256-bit FP unit and is capable of
8 FP results per clock cycle

●  The unit has twice the memory
capacity and memory bandwidth in
this mode

●  The L2 cache is effectively twice as
large

●  The peak of the chip is not reduced

●  When to use
●  Code is highly vectorized and

makes use of AVX instructions
●  Code benefits from higher per task

memory size and bandwidth
Shared L2 Cache

Fetch

Decode

FP
Scheduler

12
8-

bi
t F

M
A

C

L1 DCache L1 DCache

12
8-

bi
t F

M
A

C

Pi
pe

lin
e

Pi
pe

lin
e

Pi
pe

lin
e

Pi
pe

lin
e

Pi
pe

lin
e

Pi
pe

lin
e

Pi
pe

lin
e

Pi
pe

lin
e

Integer
Scheduler

Integer
Scheduler

Integer Core
0

Integer Core
1

Idle
Components

Active
Components

One MPI Task per compute unit with Two OpenMP
Threads ("Dual-Stream Mode")

●  An MPI task is pinned to a compute
unit

●  OpenMP is used to run a thread on
each integer unit
●  Each OpenMP thread has exclusive

access to an integer scheduler, integer
pipelines and L1 Dcache

●  The 256-bit FP unit and the L2 Cache
is shared between the two threads

●  256-bit AVX instructions are
dynamically executed as two 128-bit
instructions if the 2nd FP unit is busy

●  When to use
●  Code needs a large amount of memory

per MPI rank
●  Code has OpenMP parallelism at each

MPI rank

Shared L2 Cache

Fetch

Decode

FP
Scheduler

12
8-

bi
t F

M
A

C

L1 DCache L1 DCache

12
8-

bi
t F

M
A

C

Pi
pe

lin
e

Pi
pe

lin
e

Pi
pe

lin
e

Pi
pe

lin
e

Pi
pe

lin
e

Pi
pe

lin
e

Pi
pe

lin
e

Pi
pe

lin
e

Int
Scheduler

Int
Scheduler

Int Core 0 Int Core 1

OpenMP
Thread 0

Shared
Components

OpenMP
Thread 1

AVX (Advanced Vector Extensions)

● Max Vector length doubled to 256 bit
● Much cleaner instruction set

●  Result register is unique from the source registers
●  Old SSE instruction set always destroyed a source register

●  Floating point multiple-accumulate
●  A(1:4) = B(1:4)*C(1:4) + D(1:4) ! Now one instruction

● Both AMD and Intel now have AVX

● Vectors are becoming more important, not less

October 8, 2012 OLCF Fall User Training 2012
17

Running in Dual-Stream mode

●  Dual-Stream mode is the current default mode. General use does not
require any options. CPU affinity is set automatically by ALPS.

●  Use the aprun -d option to set the number of OpenMP threads per
process. If OpenMP is not used, no -d option is required. The aprun
–N option is used to specify the number of MPI processes to assign
per compute node or -S to specify the number of MPI processes per
Interlagos die. These options are generally only needed in the case of
OpenMP programs or programs needed more memory per process.

October 8, 2012 OLCF Fall User Training 2012
18

Running in Single-Stream mode

●  Single-Stream mode is specified through the -j aprun option.
Specifying -j 1 tells aprun to place 1 process or thread on each
compute unit.

●  When OpenMP threads are used, the -d option must be used to
specify how many threads will be spawned per MPI process. See the
aprun(1) man page for more details. The aprun –N option may be
used to specify the number of MPI processes to assign per compute
node or -S to specify the number of processes per Interlagos die.
Also, the environment variable $OMP_NUM_THREADS needs to be set to
the correct number of threads per process.

●  For example, the following spawns 4 MPI processes, each with 8
threads, using 1 thread per compute unit.

OMP_NUM_THREADS=8 aprun -n 4 -d 8 -j 1 ./a.out

October 8, 2012 OLCF Fall User Training 2012
19

aprun Examples (XK6)

●  No-OpenMP, 16 MPI processes per node
<default>
●  No-OpenMP, 8 MPI processes per node
-j 1
●  OpenMP, 2 MPI processes, 8 threads per process
-d 8
●  OpenMP, 2 MPI processes, 4 threads per process
-d 4 -j 1
●  OpenMP, 1 MPI process, 16 threads
-d 16
●  OpenMP, 1 MPI process, 8 threads
-d 8 -j 1

October 8, 2012 OLCF Fall User Training 2012
20

NUMA Considerations

●  An XK6 compute node with 1 Interlagos processors has 2 NUMA
memory domains, each with 4 Bulldozer Modules. Access to memory
located in a remote NUMA domain is slower than access to local
memory. Bandwidth is lower, and latency is higher.

●  OpenMP performance is usually better when all threads in a process
execute in the same NUMA domain. For the Dual-Stream case, 8 CPUs
share a NUMA domain, while in Single-Stream mode 4 CPUs share a
NUMA domain. Using a larger number of OpenMP threads per MPI
process than these values may result in lower performance due to
cross-domain memory access.

●  When running 1 process with threads over both NUMA domains, it’s
critical to initialize (not just allocate) memory from the thread that will
use it in order to avoid NUMA side effects.

October 8, 2012 OLCF Fall User Training 2012
21

October 8, 2012 OLCF Fall User Training 2012
22

October 8, 2012 OLCF Fall User Training 2012
23

Cray Network Evolution

SeaStar
" Built for scalability to 250K+ cores
" Very effective routing and low contention switch

Gemini
" 100x improvement in message throughput
" 3x improvement in latency
" PGAS Support, Global Address Space
" Scalability to 1M+ cores

Aries
" Cray “Cascade” Systems
" Funded through DARPA program
" Details not yet publically available

October 8, 2012 OLCF Fall User Training 2012
24

Cray Gemini

●  3D Torus network
●  Supports 2 Nodes per ASIC
●  168 GB/sec routing capacity
●  Scales to over 100,000

network endpoints
●  Link Level Reliability and

Adaptive Routing
●  Advanced Resiliency

Features
●  Provides global address

space
●  Advanced NIC designed to

efficiently support
●  MPI

●  Millions of messages/second
●  One-sided MPI
●  UPC, FORTRAN 2008 with

coarrays, shmem
●  Global Atomics

Hyper Transport 3

NIC 0

Hyper Transport 3

NIC 1

Netlink

48-Port
YARC Router

October 8, 2012 OLCF Fall User Training 2012
25

Gemini Advanced Features

● Globally addressable memory provides
efficient support for UPC, Co-array
FORTRAN, Shmem and Global Arrays
●  Cray Programming Environment will target this

capability directly

● Pipelined global loads and stores
●  Allows for fast irregular communication patterns

● Atomic memory operations
●  Provides fast synchronization needed for one-sided

communication models

October 8, 2012 OLCF Fall User Training 2012
26

Gemini NIC block diagram

●  FMA (Fast Memory Access)
●  Mechanism for most MPI transfers
●  Supports tens of millions of MPI requests per second

● BTE (Block Transfer Engine)
●  Supports asynchronous block transfers between local and remote

memory, in either direction
●  For use for large MPI transfers that happen in the background

HT
3

Ca
ve

vc0

vc1

vc1

vc0

LB Ring

LB
LM

NL

FMA

CQ

NPT

RMT net req

H
A
R
B

net
rsp

ht p
ireq

ht treq p

ht irsp

ht np
ireq

ht np req

ht np req
net req

ht p req O
R
B

RAT

NAT

BTE

net
req

net
rsp

ht treq np
ht trsp net

req
net
req

net
req

net
req

net
reqnet req

ht p req
ht p req

ht p req net rsp

CLM

AMO net rsp headers

T
A
R
B

net req
net rsp

S
S
I
D

Ro
ut

er
 T

ile
s

October 8, 2012 OLCF Fall User Training 2012
27

Gemini vs SeaStar – Topology

Gemini

Gemini

Module with
SeaStar

Module with
Gemini

Y

X

Z

October 8, 2012 OLCF Fall User Training 2012
28

A Question About the Torus…

It looks like for each x,y,z coordinate,
there are two node numbers
associated. Is there some reason for
this? Is each node number actually
indicating 8-cores rather than 16?

Node X Y Z

 0 0 0 0
 1 0 0 0
 2 0 0 1
 3 0 0 1
 4 0 0 2
 5 0 0 2

●  Unlike the XT-line of systems,
where each node had an
idividual SeaStar, a Gemini
services 2 compute nodes.

●  So, 2 compute nodes will have
the same dimensions in the
torus in an XE or XK system.

 Some slides taken from Nvidia GTC2012 “Inside Kepler” talk by
Stephen Jones and Lars Nyland (NVIDIA)

October 8, 2012 OLCF Fall User Training 2012
30

CPU/GPU Architectures

CPU GPU

RAM
RAM

Cache

Cache

Control
ALU
ALU
ALU

Cache

Control
ALU
ALU
ALU

Cache

October 8, 2012 OLCF Fall User Training 2012
31

CPU/GPU Architectures

CPU
●  Large memory, directly

accessible
● Each core has own,

independent control
logic
●  Allows independent

execution
● Coherent caches

between cores
●  Can share & synchronize

●  Fixed number of
registers per core
●  Context switches expensive

GPU
●  Relatively small memory,

must be managed by CPU
●  Groups of compute cores

share control logic
●  Saves space, power, …

●  Shared cache &
synchronization within
groups
●  None between groups

●  Fixed number of registers
per block (32768)
●  Context switched cheap

October 8, 2012 OLCF Fall User Training 2012
32

Play to your strengths

CPU
●  Tuned for serial

execution with short
vectors

● Multiple independent
threads of execution

● Branch-prediction
● Memory latency hidden

by cache & prefetching
●  Requires regular data

access patterns

GPU
●  Tuned for highly parallel

execution
●  Threads work in lockstep

within groups
●  Much like vectors

● Serializes branchy code
● Memory latency hidden

by swapping away
stalled threads
●  Requires 1000s of

concurrent threads

October 8, 2012 OLCF Fall User Training 2012
33

Cache

GPU Glossary: Hardware
Global Memory is the GPU’s main
memory. It’s shared across the
entire device.

The device has some number of
Streaming Multiprocessors (SM),
which work in parallel with each
other.

Each SM has 32 CUDA cores,
where the work happens. CUDA
cores within an SM work on the
same instruction in a SIMD
manner.

Each SM has a 64KB fast memory,
which is split between a L1 cache
a user managed shared memory.

RAM

October 8, 2012 OLCF Fall User Training 2012
34

GPU Glossary
Let’s imagine we want to multiply
the Blue matrix and Red matrix to
make the Purple matrix.

The code that will run on the GPU
to perform this calculation is a
kernel.

The act of copying input data to
the device, executing the kernel,
and copying results back is
executed in a stream.

So, what is a thread?

X =

October 8, 2012 OLCF Fall User Training 2012
35

GPU Glossary: Thread
A thread is the most atomic unit of
calculation, so in this case, it is a
single element of the result
(Purple) matrix.

In the case of these 12 x 12
matrices, there will be 144 threads,
but a real kernel will likely spawn
thousands of threads.

Unlike CPU threads, GPU threads
a very lightweight and can be
made active or inactive without a
costly context switch.

Each thread gets executed on a
CUDA Core on the hardware.

X =

October 8, 2012 OLCF Fall User Training 2012
36

GPU Glossary: Thread
block

Below I have a 4 x 3 x 1
thread block

Threads get put together into
thread blocks.

Threads within a thread block:
• Run on the same Streaming
Multiprocessor
• Can share data within a very fast,
64KB shared memory
• Can synchronize with each other

Thread blocks can be 1D, 2D, or
3D and have at most 1024 threads
on the current hardware.

What if I need more threads?

October 8, 2012 OLCF Fall User Training 2012
37

GPU Glossary: Grid

Below I have a 3 x 4 grid of 4
x 3 x 1 thread blocks

Multiple thread blocks for a grid to
solve the full problem.

An entire grid is running the same
kernel, but there is no guaranteed
order execution for the thread
blocks.

So what the heck is a WARP???

October 8, 2012 OLCF Fall User Training 2012
38

GPU Glossary: Warp

NOTE: The scale has changed,
we’re now looking at 1 thread
block.

The hardware always issues
instructions (SIMD) and requests
memory for a group of 32 threads,
known as a warp.

Think of a warp like a vector with
length 32.

When a warp stalls waiting for a
memory reference, the hardware
will find another warp on the SM
that can run and swap it on to the
hardware

If a branch occurs within a warp,
each branch will execute one after
the other, while the other branch
stalls. This is known as warp
divergence.

When enough warps can fit on an
SM to hide all memory requests, it
has 100% occupancy.

October 8, 2012 OLCF Fall User Training 2012
39

GPU Glossary

●  A Grid is a group of related Thread Blocks running the same
kernel

●  A Warp is Nvidia’s term for 32 Threads running in lock-step
●  Warp Diversion is what happens when some threads within a

warp stall due to a branch
●  Shared Memory is a user-managed cache within a Thread Block

●  64KB memory per SM, split 48/16 between SM and L1 (configurable)
●  Occupancy is the degree to which all of the GPU hardware can be

used in a Kernel
●  Heavily influenced by registers/thread, threads/block, and SM used
●  Higher occupancy results in better hiding latency to GPU memory

●  Stream is a series of data transfers and kernel launches that
happen in series
●  Multiple streams can run concurrently on the device
●  Streams allow overlapping of PCIe transfers and GPU execution

Hardware Software
(CUDA) Core Thread/Work Unit
Streaming Multiprocessor (SM) Thread Block/Work Group

October 8, 2012 OLCF Fall User Training 2012
40

Nvidia Kepler Specifics

October 8, 2012 OLCF Fall User Training 2012
41

October 8, 2012 OLCF Fall User Training 2012
42

October 8, 2012 OLCF Fall User Training 2012
43

October 8, 2012
44

OLCF Fall User Training 2012

Term Meaning Purpose
MDS Metadata Server Manages all file metadata for

filesystem. 1 per FS
OST Object Storage Target The basic “chunk” of data written

to disk. Max 160 per file.
OSS Object Storage Server Communicates with disks,

manages 1 or more OSTs. 1 or
more per FS

Stripe Size Size of chunks. Controls the size of file chunks
stored to OSTs. Can’t be
changed once file is written.

Stripe Count Number of OSTs used per
file.

Controls parallelism of file. Can’t
be changed once file is writte.

Key Lustre Terms

October 8, 2012 OLCF Fall User Training 2012
45

Lustre File System Basics

October 8, 2012 OLCF Fall User Training 2012
46

File Striping: Physical and Logical Views

October 8, 2012 OLCF Fall User Training 2012
47

Single writer performance and Lustre

●  32 MB per OST (32 MB – 5 GB) and 32 MB Transfer Size
●  Unable to take advantage of file system parallelism
●  Access to multiple disks adds overhead which hurts performance

 Lustre

0

20

40

60

80

100

120

1 2 4 16 32 64 128 160

W
rit

e
(M

B
/s

)

Stripe Count

Single Writer
Write Performance

1 MB Stripe

32 MB Stripe

October 8, 2012 OLCF Fall User Training 2012
48

Stripe size and I/O Operation size

 Lustre

0

20

40

60

80

100

120

140

1 2 4 8 16 32 64 128

W
rit

e
(M

B
/s

)

Stripe Size (MB)

Single Writer
Transfer vs. Stripe Size

32 MB Transfer

8 MB Transfer

1 MB Transfer

● Single OST, 256 MB File Size
●  Performance can be limited by the process (transfer size) or file

system (stripe size)

October 8, 2012 OLCF Fall User Training 2012
49

● Use the lfs command, libLUT, or MPIIO hints to adjust
your stripe count and possibly size
●  lfs setstripe -c -1 -s 4M <file or directory> (160 OSTs, 4MB stripe)
●  lfs setstripe -c 1 -s 16M <file or directory> (1 OST, 16M stripe)
●  export MPICH_MPIIO_HINTS=‘*: striping_factor=160’

●  Files inherit striping information from the parent
directory, this cannot be changed once the file is
written
●  Set the striping before copying in files

Lustre: Important Information

October 8, 2012 OLCF Fall User Training 2012
50

Cray Programming Environment

Available Compilers
Cray Scientific Libraries

Cray MPICH2
Cray Performance Tools
Cray Debugging Tools

●  Cray Systems come with compiler wrappers to simplify building parallel
applications (similar the mpicc/mpif90)
●  Fortran Compiler: ftn
●  C Compiler: cc
●  C++ Compiler: CC

●  Using these wrappers ensures that your code is built for the compute
nodes and linked against important libraries
●  Cray MPT (MPI, Shmem, etc.)
●  Cray LibSci (BLAS, LAPACK, etc.)
●  …

●  Choosing the underlying compiler is via the PrgEnv-* modules, do not
call the PGI, Cray, etc. compilers directly.

●  Always load the appropriate xtpe-<arch> module for your machine
●  Enables proper compiler target
●  Links optimized math libraries

●  Cray Compiler wrappers try to hide the complexities of using the proper
header files and libraries
●  So does autoconf (./configure) and CMake, so unfortunately, sometimes

these tools need massaging to work with compiler wrappers, especially
in a cross-compiling environment, like titan

Compiler Wrappers

October 8, 2012 OLCF Fall User Training 2012
52

●  PGI – Very good Fortran and C, pretty good C++
●  Good vectorization
●  Good functional correctness with optimization enabled
●  Good manual and automatic prefetch capabilities
●  Very interested in the Linux HPC market, although that is not their only

focus
●  Excellent working relationship with Cray, good bug responsiveness
●  OpenACC support for accelerators

●  Intel – Good Fortran, excellent C and C++ (if you ignore vectorization)
●  Automatic vectorization capabilities are modest, compared to PGI and

CCE
●  Use of inline assembly is encouraged
●  Focus is more on best speed for scalar, non-scaling apps
●  Tuned for Intel architectures, but actually works well for some

applications on AMD
●  Does not support the Interlagos FMA instruction, so achievable floating

point performance is cut in half

Compiler Choices – Relative Strengths
…from Cray’s Perspective

October 8, 2012 OLCF Fall User Training 2012
53

●  GNU pretty-good Fortran, outstanding C and C++ (if you ignore
vectorization)
●  Very good scalar optimizer
●  Vectorization capabilities focus mostly on inline assembly
●  De-facto C++ compiler (for better or worse)

●  CCE – Outstanding Fortran, very good C, and okay C++
●  Very good vectorization
●  Very good Fortran language support; only real choice for Coarrays
●  C support is quite good, with UPC support
●  Very good scalar optimization and automatic parallelization
●  Clean implementation of OpenMP 3.0, with tasks
●  Sole delivery focus is on Linux-based Cray hardware systems
●  Best bug turnaround time (if it isn’t, let us know!)
●  Cleanest integration with other Cray tools (performance tools,

debuggers, upcoming productivity tools)
●  No inline assembly support
●  OpenACC support for accelerators

Compiler Choices – Relative Strengths …from Cray’s Perspective

October 8, 2012 OLCF Fall User Training 2012
54

●  PGI
●  -fast –Mipa=fast(,safe)
●  If you can be flexible with precision, also try -Mfprelaxed
●  Compiler feedback: -Minfo=all -Mneginfo
●  man pgf90; man pgcc; man pgCC; or pgf90 -help

●  Cray
●  <none, turned on by default>
●  Compiler feedback: -rm (Fortran) -hlist=m (C)
●  If you know you don’t want OpenMP: -xomp or -Othread0
●  man crayftn; man craycc ; man crayCC

●  GNU
●  -O2 / -O3
●  Compiler feedback: -ftree-vectorizer-verbose=2
●  man gfortran; man gcc; man g++

●  Intel
●  -fast
●  Compiler feedback:
●  man ifort; man icc; man iCC

Starting Points for Each Compiler

October 8, 2012 OLCF Fall User Training 2012
55

October 8, 2012 OLCF Fall User Training 2012
56

●  Traditional (scalar) optimizations are controlled via -
O# compiler flags
●  Default: -O2

● More aggressive optimizations (including
vectorization) are enabled with the -fast or -
fastsse metaflags
●  These translate to: -O2 -Munroll=c:1 -Mnoframe -Mlre
 –Mautoinline -Mvect=sse -Mscalarsse
 -Mcache_align -Mflushz –Mpre

●  Interprocedural analysis allows the compiler to
perform whole-program optimizations. This is enabled
with –Mipa=fast

● See man pgf90, man pgcc, or man pgCC for more
information about compiler options.

PGI Optimization Options

October 8, 2012 OLCF Fall User Training 2012
57

● Compiler feedback is enabled with -Minfo and -
Mneginfo
●  This can provide valuable information about what optimizations

were or were not done and why.
●  To debug an optimized code, the -gopt flag will insert

debugging information without disabling optimizations
●  It’s possible to disable optimizations included with -

fast if you believe one is causing problems
●  For example: -fast -Mnolre enables -fast and then disables

loop redundant optimizations
●  To get more information about any compiler flag, add -
help with the flag in question
●  pgf90 -help -fast will give more information about the -fast

flag
● OpenMP is enabled with the -mp flag

PGI: Other Important Options

October 8, 2012 OLCF Fall User Training 2012
58

Some compiler options may effect both performance
and accuracy. Lower

accuracy is often higher performance, but it’s also able
to enforce accuracy.

●  -Kieee: All FP math strictly conforms to IEEE 754 (off
by default)

●  -Ktrap: Turns on processor trapping of FP exceptions
●  -Mdaz: Treat all denormalized numbers as zero
●  -Mflushz: Set SSE to flush-to-zero (on with -fast)
●  -Mfprelaxed: Allow the compiler to use relaxed

(reduced) precision to speed up some floating point
optimizations
●  Some other compilers turn this on by default, PGI chooses to

favor accuracy to speed by default.

PGI: Optimizations and Accuracy

October 8, 2012 OLCF Fall User Training 2012
59

October 8, 2012 OLCF Fall User Training 2012
60

Cray Opteron Compiler: How to use it

●  To access the Cray compiler
●  module load PrgEnv-cray (most likely module swap from current

environment)
●  To target the various chip

●  module load craype-interlagos (loaded by default)
●  To enable OpenACC

●  module load craype-accel-nvidia35
● Once you have loaded the module “cc” and “ftn” are the

Cray compilers
●  Recommend just using default options
●  Use –rm (fortran) and –hlist=m (C) to find out what happened

● man crayftn

October 8, 2012 OLCF Fall User Training 2012
61

Cray Opteron Compiler: Current Capabilities

● Excellent Vectorization
●  Vectorize more loops than other compilers

● OpenMP 3.0
●  Task and Nesting

● OpenACC 1.0
● PGAS: Functional UPC and CAF available today
● C++ Support
● Automatic Parallelization

●  Modernized version of Cray X1 streaming capability
●  Interacts with OMP directives

● Cache optimizations
●  Automatic Blocking
●  Automatic Management of what stays in cache

● Prefetching, Interchange, Fusion, and much more…

October 8, 2012 OLCF Fall User Training 2012
62

Cray Opteron Compiler Strengths

●  Loop Based Optimizations
●  Vectorization
●  OpenMP

●  Autothreading
●  Interchange
●  Pattern Matching
●  Cache blocking/ non-temporal / prefetching

●  Fortran 2003 Standard; most of Fortran 2008
● PGAS (UPC and Co-Array Fortran)

●  Optimized for Gemini Interconnect
● Optimization Feedback: Loopmark
● Close integration with Cray Performance Tools

October 8, 2012 OLCF Fall User Training 2012
63

Cray Opteron Compiler: Directives

● Cray compiler supports a full and growing set of directives
and pragmas

!dir$ concurrent
!dir$ ivdep
!dir$ interchange
!dir$ unroll
!dir$ loop_info [max_trips] [cache_na] ... Many
more
!dir$ blockable

man directives
man loop_info

October 8, 2012 OLCF Fall User Training 2012
64

Loopmark: Compiler Feedback

●  Compiler can generate an filename.lst file.
●  Contains annotated listing of your source code with letter indicating

important optimizations
%%% L o o p m a r k L e g e n d %%%
 Primary Loop Type Modifiers
 ------- ---- ---- ---------
 a - vector atomic memory operation
 A - Pattern matched b - blocked
 C - Collapsed f - fused
 D - Deleted i - interchanged
 E - Cloned m - streamed but not partitioned
 I - Inlined p - conditional, partial and/or computed
 M - Multithreaded r - unrolled
 P - Parallel/Tasked s - shortloop
 V - Vectorized t - array syntax temp used
 W - Unwound w - unwound

October 8, 2012 OLCF Fall User Training 2012
65

Example: Cray loopmark messages for Resid

•  ftn –rm … or cc –hlist=m …
 29. b-------< do i3=2,n3-1
 30. b b-----< do i2=2,n2-1
 31. b b Vr--< do i1=1,n1
 32. b b Vr u1(i1) = u(i1,i2-1,i3) + u(i1,i2+1,i3)
 33. b b Vr > + u(i1,i2,i3-1) + u(i1,i2,i3+1)
 34. b b Vr u2(i1) = u(i1,i2-1,i3-1) + u(i1,i2+1,i3-1)
 35. b b Vr > + u(i1,i2-1,i3+1) + u(i1,i2+1,i3+1)
 36. b b Vr--> enddo
 37. b b Vr--< do i1=2,n1-1
 38. b b Vr r(i1,i2,i3) = v(i1,i2,i3)
 39. b b Vr > - a(0) * u(i1,i2,i3)
 40. b b Vr > - a(2) * (u2(i1) + u1(i1-1) + u1(i1+1))
 41. b b Vr > - a(3) * (u2(i1-1) + u2(i1+1))
 42. b b Vr--> enddo
 43. b b-----> enddo
 44. b-------> enddo

October 8, 2012 OLCF Fall User Training 2012
66

Example: Cray loopmark messages for Resid (cont)

 ftn-6289 ftn: VECTOR File = resid.f, Line = 29
 A loop starting at line 29 was not vectorized because a recurrence was found on "U1"

between lines 32 and 38.
ftn-6049 ftn: SCALAR File = resid.f, Line = 29
 A loop starting at line 29 was blocked with block size 4.
ftn-6289 ftn: VECTOR File = resid.f, Line = 30
 A loop starting at line 30 was not vectorized because a recurrence was found on "U1"

between lines 32 and 38.
ftn-6049 ftn: SCALAR File = resid.f, Line = 30
 A loop starting at line 30 was blocked with block size 4.
ftn-6005 ftn: SCALAR File = resid.f, Line = 31
 A loop starting at line 31 was unrolled 4 times.
ftn-6204 ftn: VECTOR File = resid.f, Line = 31
 A loop starting at line 31 was vectorized.
ftn-6005 ftn: SCALAR File = resid.f, Line = 37
 A loop starting at line 37 was unrolled 4 times.
ftn-6204 ftn: VECTOR File = resid.f, Line = 37
 A loop starting at line 37 was vectorized.

October 8, 2012 OLCF Fall User Training 2012
67

Byte Swapping

●  -hbyteswapio
●  Link time option
●  Applies to all unformatted fortran IO

● Assign command
●  With the PrgEnv-cray module loaded do this:

●  setenv FILENV assign.txt
●  assign -N swap_endian g:su
●  assign -N swap_endian g:du

● Can use assign to be more precise

October 8, 2012 OLCF Fall User Training 2012
68

OpenMP

● OpenMP is ON by default
●  Optimizations controlled by –Othread#
●  To shut off use –Othread0 or –xomp or –hnoomp

● Autothreading is NOT on by default;
●  -hautothread to turn on
●  Modernized version of Cray X1 streaming capability
●  Interacts with OMP directives

If you do not want to use OpenMP and have OMP directives
in the code, make sure to make a run with OpenMP shut off

at compile time

October 8, 2012 OLCF Fall User Training 2012
69

October 8, 2012 OLCF Fall User Training 2012
70

What are libraries for?

● Building blocks for writing scientific applications
● Historically – allowed the first forms of code re-use
●  Later – became ways of running optimized code
●  These days the complexity of the hardware is very high
● Cray PE insulates the user from that complexity

●  Cray module environment
●  CCE
●  Performance tools
●  Tuned MPI libraries (+PGAS)
●  Optimized Scientific libraries

●  Cray scientific libraries are designed to give maximum
possible performance from Cray systems with minimum
effort

October 8, 2012 OLCF Fall User Training 2012
71

What makes Cray libraries special

● Node performance
●  Highly tune BLAS etc at the low-level

● Network performance
●  Optimize for network performance
●  Overlap between communication and computation
●  Use the best available low-level mechanism
●  Use adaptive parallel algorithms

● Highly adaptive software
●  Using auto-tuning and adaptation, give the user the known best (or

very good) codes at runtime
● Productivity features

●  Simpler interfaces into complex software

October 8, 2012 OLCF Fall User Training 2012
72

Cray Scientific Libraries

IRT – Iterative Refinement Toolkit
CASK – Cray Adaptive Sparse Kernels
CRAFFT – Cray Adaptive FFT
CASE – Cray Adaptive Simple Eigensolver

FFT

CRAFFT

FFTW

P-CRAFFT

Dense
BLAS

LAPACK

ScaLAPACK

IRT

CASE

Spars
e

CASK

PETSc

Trilinos

October 8, 2012 OLCF Fall User Training 2012
73

Libsci Usage all fits on one slide

●  LIbSci
●  The drivers should do it all for you. Don’t explicitly link.
●  For threads, set OMP_NUM_THREADS

●  Threading is used within libsci.
●  If you call within parallel region, single thread used
●  -Wl, -ydgemm_ reveals where the link was resolved

●  FFTW
●  module load fftw (there are also wisdom files you can pick up)

●  PETSc
●  module load cray-petsc (or module load cray-petsc-

complex)
●  Use as you would your normal petsc build

●  Trilinos
●  module load cray-trilinos

●  CASK – no need to do anything you get optimizations free

October 8, 2012 OLCF Fall User Training 2012
74

● module command
(module --help)

● PrgEnv modules :

● Component modules

●  csmlversion (tool)

● Cray driver scripts ftn, cc, CC

Your friends
TUNER/STUNER> module avail PrgEnv

PrgEnv-cray/3.1.35 PrgEnv-gnu/4.0.12A PrgEnv-pathscale/
3.1.37G
PrgEnv-cray/3.1.37AA PrgEnv-gnu/4.0.26A PrgEnv-pathscale/
3.1.49A
PrgEnv-cray/3.1.37C PrgEnv-gnu/4.0.36(default) PrgEnv-
pathscale/3.1.61
PrgEnv-cray/3.1.37E PrgEnv-intel/3.1.35 PrgEnv-pathscale/
4.0.12A
PrgEnv-cray/3.1.37G PrgEnv-intel/3.1.37AA PrgEnv-pathscale/
4.0.26A
PrgEnv-cray/3.1.49A PrgEnv-intel/3.1.37C PrgEnv-pathscale/
4.0.36(default)
PrgEnv-cray/3.1.61 PrgEnv-intel/3.1.37E PrgEnv-pgi/3.1.35
PrgEnv-cray/4.0.12A PrgEnv-intel/3.1.37G PrgEnv-pgi/
3.1.37AA
PrgEnv-cray/4.0.26A PrgEnv-intel/3.1.49A PrgEnv-pgi/3.1.37C
PrgEnv-cray/4.0.36(default) PrgEnv-intel/3.1.61 PrgEnv-pgi/3.1.37E
PrgEnv-gnu/3.1.35 PrgEnv-intel/4.0.12A PrgEnv-pgi/3.1.37G
PrgEnv-gnu/3.1.37AA PrgEnv-intel/4.0.26A PrgEnv-pgi/3.1.49A
PrgEnv-gnu/3.1.37C PrgEnv-intel/4.0.36(default) PrgEnv-pgi/3.1.61
PrgEnv-gnu/3.1.37E PrgEnv-pathscale/3.1.35 PrgEnv-pgi/
4.0.12A
PrgEnv-gnu/3.1.37G PrgEnv-pathscale/3.1.37AA PrgEnv-pgi/
4.0.26A
PrgEnv-gnu/3.1.49A PrgEnv-pathscale/3.1.37C PrgEnv-pgi/
4.0.36(default)
PrgEnv-gnu/3.1.61 PrgEnv-pathscale/3.1.37E

--- /opt/cray/modulefiles

xt-libsci/10.5.02 xt-libsci/11.0.04 xt-libsci/11.0.05.1
xt-libsci/11.0.03 xt-libsci/11.0.04.8 xt-libsci/11.0.05.2(default)

October 8, 2012 OLCF Fall User Training 2012
75

● Add options to the linker to make sure you have the
correct library loaded.

●  -Wl adds a command to the linker from the driver
● You can ask for the linker to tell you where an object

was resolved from using the –y option.
●  E.g. –Wl, -ydgemm_

Note : explicitly linking “-lsci” is bad! This won’t be found from
libsci 11+ (and means single core library for 10.x!)

Check you got the right library!

.//main.o: reference to dgemm_
/opt/xt-libsci/11.0.05.2/cray/73/mc12/lib/libsci_cray_mp.a(dgemm.o):
definition of dgemm_

October 8, 2012 OLCF Fall User Training 2012
76

Threading

●  LibSci is compatible with OpenMP
●  Control the number of threads to be used in your program using
OMP_NUM_THREADS

●  e.g. in job script
●  setenv OMP_NUM_THREADS 16
●  Then run with aprun –n1 –d16

● What behavior you get from the library depends on your
code
●  No threading in code

●  The BLAS call will use OMP_NUM_THREADS threads
●  Threaded code, outside parallel region

●  The BLAS call will use OMP_NUM_THREADS threads
●  Threaded code, inside parallel region

●  The BLAS call will use a single thread

October 8, 2012 OLCF Fall User Training 2012
77

Emphasis

●  A large subset of HPC customers care very deeply about each
of the following

●  BLAS – explicit calls in their code

●  LAPACK – linear solvers

●  LAPACK – eigensolvers

●  ScaLAPACK

●  Serial FFT

●  Our job is to make them work at extreme performance on Cray
hardware

● A flaming-hot GEMM library can support wide usage

GEMM

October 8, 2012 OLCF Fall User Training 2012
78

●  Threaded LAPACK works exactly the same as
threaded BLAS

● Anywhere LAPACK uses BLAS, those BLAS can be
threaded

● Some LAPACK routines are threaded at the higher
level

● No special instructions

Threaded LAPACK

October 8, 2012 OLCF Fall User Training 2012
79

ScaLAPACK

● ScaLAPACK in libsci is optimized for Gemini interconnect

●  New collective communication procedures are added

●  Default topologies are changed to use the new optimizations

●  Much better strong scaling

●  It also benefits from the optimizations in CrayBLAS

●  IRT can provide further improvements (see later)

October 8, 2012 OLCF Fall User Training 2012
80

Iterative Refinement Toolkit

●  Mixed precision can yield a big win on x86 machines.
●  SSE (and AVX) units issue double the number of single precision

operations per cycle.
●  On CPU, single precision is always 2x as fast as double
●  Accelerators sometimes have a bigger ratio

●  Cell – 10x
●  Older NVIDIA cards – 7x
●  New NVIDIA cards (2x)
●  Newer AMD cards (> 2x)

●  IRT is a suite of tools to help exploit single precision
●  A library for direct solvers
●  An automatic framework to use mixed precision under the covers

October 8, 2012 OLCF Fall User Training 2012
81

●  Various tools for solves linear systems in mixed precision
●  Obtaining solutions accurate to double precision

●  For well conditioned problems
●  Serial and Parallel versions of LU, Cholesky, and QR
●  2 usage methods

●  IRT Benchmark routines
●  Uses IRT 'under-the-covers' without changing your code

●  Simply set an environment variable
●  Useful when you cannot alter source code

●  Advanced IRT API
●  If greater control of the iterative refinement process is required

●  Allows
●  condition number estimation
●  error bounds return
●  minimization of either forward or backward error
●  'fall back' to full precision if the condition number is too high
●  max number of iterations can be altered by users

Iterative Refinement Toolkit - Library

October 8, 2012 OLCF Fall User Training 2012
82

Decide if you want to use advanced API or benchmark API
 benchmark API :

 setenv IRT_USE_SOLVERS 1
 advanced API :

1.  locate the factor and solve in your code (LAPACK or
ScaLAPACK)

2.  Replace factor and solve with a call to IRT routine
●  e.g. dgesv -> irt_lu_real_serial
●  e.g. pzgesv -> irt_lu_complex_parallel
●  e.g pzposv -> irt_po_complex_parallel

3.  Set advanced arguments
●  Forward error convergence for most accurate solution
●  Condition number estimate
●  “fall-back” to full precision if condition number too high

Note : “info” does not return zero when using IRT !!

IRT library usage

October 8, 2012 OLCF Fall User Training 2012
83

0

5

10

15

20

25

30

10
0

40
0

70
0

10
00

13

00

16
00

19

00

22
00

25

00

28
00

31

00

34
00

37

00

40
00

43

00

46
00

49

00

52
00

55

00

58
00

61

00

64
00

67

00

70
00

73

00

76
00

79

00

82
00

85

00

88
00

91

00

94
00

97

00

G
FL

O
PS

/s

Matrix DImension (M,N)

IRT with LAPACK LU DGETRF
AMD Bulldozer 2.1 GHz

2threads :: September 2012

IRT+LAPACK

LAPACK

October 8, 2012 OLCF Fall User Training 2012
84

● Cray’s main FFT library is FFTW from MIT
●  Some additional optimizations for Cray hardware

● Usage is simple
●  Load the module
●  In the code, call an FFTW plan

● Cray’s FFTW provides wisdom files for these systems
● You can use the wisdom files to skip the plan stage
●  This can be a significant performance boost

●  FFTW 3.1.0.1 includes Cray optimizations for IL
processors

FFTW

October 8, 2012 OLCF Fall User Training 2012
85

● Serial CRAFFT is largely a productivity enhancer
● Also a performance boost due to “wisdom” usage
● Some FFT developers have problems such as

●  Which library choice to use?
●  How to use complicated interfaces (e.g., FFTW)

● Standard FFT practice
●  Do a plan stage
●  Do an execute

●  CRAFFT is designed with simple-to-use interfaces
●  Planning and execution stage can be combined into one function

call
●  Underneath the interfaces, CRAFFT calls the appropriate FFT

kernel

Cray Adaptive FFT (CRAFFT)

October 8, 2012 OLCF Fall User Training 2012
86

1.  Load module fftw/3.2.0 or higher.
2.  Add a Fortran statement “use crafft”
3.  call crafft_init()
4.  Call crafft transform using none, some or all optional

arguments (as shown in red)
 In-place, implicit memory management :

call crafft_z2z3d(n1,n2,n3,input,ld_in,ld_in2,isign)
 in-place, explicit memory management

call crafft_z2z3d(n1,n2,n3,input,ld_in,ld_in2,isign,work)
 out-of-place, explicit memory management :

crafft_z2z3d(n1,n2,n3,input,ld_in,ld_in2,output,ld_out,ld_out2,isign,work)

Note : the user can also control the planning strategy of CRAFFT using the

CRAFFT_PLANNING environment variable and the do_exe optional
argument, please see the intro_crafft man page.

CRAFFT usage

October 8, 2012 OLCF Fall User Training 2012
87

●  Parallel CRAFFT is meant as a performance improvement to FFTW2
distributed transforms
●  Uses FFTW3 for the serial transform
●  Uses ALLTOALL instead of ALLTOALLV where possible
●  Overlaps the local transpose with the parallel communications
●  Uses a more adaptive communication scheme based on input
●  Lots of more advanced research in one-sided messaging and active

messages
●  Can provide impressive performance improvements over FFTW2
●  Currently implemented

●  complex-complex
●  Real-complex and complex-real
●  3-d and 2-d
●  In-place and out-of-place
●  1 data distribution scheme but looking to support more (please tell us)
●  C language support for serial and parallel
●  Generic interfaces for C users (use C++ compiler to get these)

Parallel CRAFFT

October 8, 2012 OLCF Fall User Training 2012
88

1.  Add “use crafft” to Fortran code
2.  Initialize CRAFFT using crafft_init
3.  Assume MPI initialized and data distributed (see manpage)
4.  Call crafft, e.g. (optional arguments in red)

 2-d complex-complex, in-place, internal mem management :
 call crafft_pz2z2d(n1,n2,input,isign,flag,comm)
 2-d complex-complex, in-place with no internal memory :
 call crafft_pz2z2d(n1,n2,input,isign,flag,comm,work)
 2-d complex-complex, out-of-place, internal mem manager :
 call crafft_pz2z2d(n1,n2,input,output,isign,flag,comm)
 2-d complex-complex, out-of-place, no internal memory :
 crafft_pz2z2d(n1,n2,input,output,isign,flag,comm,work)

Each routine above has manpage. Also see 3d equivalent :
 man crafft_pz2z3d

parallel CRAFFT usage

October 8, 2012 OLCF Fall User Training 2012
89

●  Sparse matrix operations in PETSc and Trilinos on Cray
systems are optimized via CASK

●  CASK is a product developed at Cray using the Cray Auto-tuning
Framework

●  Offline :
●  ATF program builds many thousands of sparse kernel
●  Testing program defines matrix categories based on density,

dimension etc
●  Each kernel variant is tested against each matrix class
●  Performance table is built and adaptive library constructed

●  Runtime
●  Scan matrix at very low cost
●  Map user’s calling sequence to nearest table match
●  Assign best kernel to the calling sequence
●  Optimized kernel used in iterative solver execution

Cray Adaptive Sparse Kernel (CASK)

October 8, 2012 OLCF Fall User Training 2012
90

LibSci for Accelerators

●  Provide basic libraries for accelerators, tuned for Cray

●  Must be independent to OpenACC, but fully compatible

●  Multiple use case support

●  Get the base use of accelerators with no code change

●  Get extreme performance of GPU with or without code change

●  Extra tools for support of complex code

●  Incorporate the existing GPU libraries into libsci

●  Provide additional performance and usability

●  Maintain the Standard APIs where possible!

October 8, 2012 OLCF Fall User Training 2012
91

● Simple interface

dgetrf(M, N, A, lda, ipiv, &info)

dgetrf(M, N, d_A, lda, ipiv, &info)

● Device interface

 dgetrf_acc(M, N, d_A, lda, ipiv, &info)

● CPU interface

 dgetrf_cpu(M, N, A, lda, ipiv, &info)

Three interfaces for three use cases

CPU

GPU

GPU + CPU

October 8, 2012 OLCF Fall User Training 2012
92

● Supports Cray and GNU compilers.

● Fortran and C interfaces (column-major assumed)
●  Load the module craype-accel-nvidia35.

●  Compile as normal (dynamic libraries used)

●  To enable threading in the CPU library, set

OMP_NUM_THREADS
●  E.g. export OMP_NUM_THREADS=16

●  Assign 1 single MPI process per node
●  Multiple processes cannot share the single GPU

●  Execute your code as normal

Usage - Basics

October 8, 2012 OLCF Fall User Training 2012
93

Libsci_acc Example

●  Starting with a code
that relies on
dgemm.

●  The library will
check the
parameters at
runtime.

●  If the size of the
matrix multiply is
large enough, the
library will run it on
the GPU, handling
all data movement
behind the scenes.

●  NOTE: Input and
Output data are in
CPU memory.

call dgemm('n','n',m,n,k,alpha,&

a,lda,b,ldb,beta,c,ldc)

October 8, 2012 OLCF Fall User Training 2012
94

Libsci_acc Example

●  If the rest of the
code uses
OpenACC, it’s
possible to use the
library with
directives.

●  All data
management
performed by
OpenACC.

●  Calls the device
version of dgemm.

●  All data is in CPU
memory before and
after data region.

!$acc data copy(a,b,c)

!$acc parallel
!Do Something
!$acc end parallel

!$acc host_data use_device(a,b,c)

call dgemm ('n','n',m,n,k,&
 alpha,a,lda,&
 b,ldb,beta,c,ldc)

!$acc end host_data
!$acc end data

!$acc data copy(a,b,c)

!$acc parallel
!Do Something
!$acc end parallel

!$acc host_data use_device(a,b,c)

call dgemm_acc('n','n',m,n,k,&
 alpha,a,lda,&
 b,ldb,beta,c,ldc)

!$acc end host_data
!$acc end data

October 8, 2012 OLCF Fall User Training 2012
95

Libsci_acc Example

●  Libsci_acc is a bit
smarter that this.

● Since ‘a,’ ‘b’, and
‘c’ are device
arrays, the library
knows it should
run on the device.

● So just dgemm is
sufficient.

!$acc data copy(a,b,c)

!$acc parallel
!Do Something
!$acc end parallel

!$acc host_data use_device(a,b,c)

call dgemm_acc('n','n',m,n,k,&
 alpha,a,lda,&
 b,ldb,beta,c,ldc)

!$acc end host_data
!$acc end data

!$acc data copy(a,b,c)

!$acc parallel
!Do Something
!$acc end parallel

!$acc host_data use_device(a,b,c)

call dgemm ('n','n',m,n,k,&
 alpha,a,lda,&
 b,ldb,beta,c,ldc)

!$acc end host_data
!$acc end data

October 8, 2012 OLCF Fall User Training 2012
96

0

50

100

150

200

250

300

350

0 2000 4000 6000 8000 10000 12000

G
FL

O
PS

Matrix Dimensions M & N

Libsci_acc : Double : LU (DGETRF)
 Cray XK6 (and XE6)

July 2012

Libsci 16 cores
Libsci 32 cores
Libsci_acc
MAGMA
CULA/R13

October 8, 2012 OLCF Fall User Training 2012
97

0

50

100

150

200

250

300

350

400

0 2000 4000 6000 8000 10000 12000

G
FL

O
PS

Matrix dimensions M & N

Libsci_acc : Double Complex LU (ZGETRF)
 Cray XK6 (and XE6)

July 2012

Libsci 16 cores
Libsci 32 cores
Libsci_acc
MAGMA
CULA/R13

October 8, 2012 OLCF Fall User Training 2012
98

0

50

100

150

200

250

300

350

0 2000 4000 6000 8000 10000 12000

G
FL

O
PS

Matrix Dimension M & N

Libsci_acc : Double Complex Cholesky (DPOTRF)
 Cray XK6 (and XE6)

July 2012

Libsci 16 cores
Libsci 32 cores
Libsci_acc
Magma
CULA/R13

October 8, 2012 OLCF Fall User Training 2012
99

0

50

100

150

200

250

300

350

400

450

1024 2048 3072 4032 5184 6016 7040 8064

Se
co

nd
s

Matrix Size

libsci_acc : Double Complex LU (ZGETRF)
 Cray XK6 July 2012

DGESDD LIBSCI
DGESDD Libsci_ACC
CULA DGESDD

October 8, 2012 OLCF Fall User Training 2012
10
0

Tuning requests

●  CrayBLAS is an auto-tuned library

●  Generally, excellent performance is possible for all shapes and sizes

●  However, even the adaptive CrayBLAS can be improved by
tuning for exact sizes and shapes

●  Send your specific tuning requirements to

 crayblas@cray.com

●  Just send the routine name, and the list of calling sequences

October 8, 2012 OLCF Fall User Training 2012
10
1

October 8, 2012 OLCF Fall User Training 2012
10
2

●  Full MPI2 support (except process spawning) based
on ANL MPICH2
●  Cray used the MPICH2 Nemesis layer for Gemini
●  Cray-tuned collectives
●  Cray-tuned ROMIO for MPI-IO

●  If you need thread safety
●  Set MPICH_MAX_THREAD_SAFETY to the value you will pass to
MPI_Thread_init

●  Tuned SHMEM library
●  module load cray-shmem

Cray MPT Features

October 8, 2012 OLCF Fall User Training 2012
10
3

Improved MPI_Alltoall

0

5000000

10000000

15000000

20000000

25000000

M
ic

ro
se

co
nd

s

Message Size (in bytes)

MPI_Alltoall with 10,000 Processes
Comparing Original vs Optimized Algorithms

on Cray XE6 Systems

Original Algorithm
Optimized Algorithm

October 8, 2012 OLCF Fall User Training 2012
10
4

MPI_Allgather Improvements

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

1024p 2048p 4096p 8192p 16384p 32768p

M
ic

ro
se

co
nd

s

Number of Processes

 8-Byte MPI_Allgather and MPI_Allgatherv Scaling
Comparing Original vs Optimized Algorithms

on Cray XE6 Systems

Original Allgather

Optimized Allgather

Original Allgatherv

Optimized Allgatherv

MPI_Allgather and
MPI_Allgatherv algorithms
optimized for Cray XE6.
Improvements made for message

October 8, 2012 OLCF Fall User Training 2012
10
5

● Default is 8192 bytes
● Maximum size message that can go through the eager

protocol.
● May help for apps that are sending medium size

messages, and do better when loosely coupled. Does
application have a large amount of time in
MPI_Waitall? Setting this environment variable higher
may help.

● Max value is 131072 bytes.
● Remember for this path it helps to pre-post receives if

possible.
● Note that a 40-byte CH3 header is included when

accounting for the message size.

MPICH_GNI_MAX_EAGER_MSG_SIZE

October 8, 2012 OLCF Fall User Training 2012
10
6

MPICH_GNI_RDMA_THRESHOLD

October 8, 2012 OLCF Fall User Training 2012
10
7

● Controls the crossover point between FMA and BTE path
on the Gemini.

●  If your messages are slightly above or below this
threshold, it may benefit to tweak this value.
●  Higher value: More messages will transfer asynchronously, but at a

higher latency.
●  Lower value: More messages will take fast, low-latency path.

● Default: 1024 bytes
● Maximum value is 65536 and the step size is 128.

● Default is 64 32K buffers (2M total)
● Controls number of 32K DMA buffers available for

each rank to use in the Eager protocol described
earlier

● May help to modestly increase. But other resources
constrain the usability of a large number of buffers.

MPICH_GNI_NUM_BUFS

October 8, 2012 OLCF Fall User Training 2012
10
8

October 8, 2012 OLCF Fall User Training 2012
10
9

Design Goals

● Assist the user with application performance analysis and
optimization
●  Help user identify important and meaningful information from

potentially massive data sets
●  Help user identify problem areas instead of just reporting data
●  Bring optimization knowledge to a wider set of users

●  Focus on ease of use and intuitive user interfaces
●  Automatic program instrumentation
●  Automatic analysis

●  Target scalability issues in all areas of tool development
●  Data management

●  Storage, movement, presentation

October 8, 2012 OLCF Fall User Training 2012
110

Provide a complete solution from instrumentation to
measurement to analysis to visualization of data

● Performance measurement and analysis on large systems
●  Automatic Profiling Analysis
●  Load Imbalance
●  HW counter derived metrics
●  Predefined trace groups provide performance statistics for libraries

called by program (blas, lapack, pgas runtime, netcdf, hdf5, etc.)
●  Observations of inefficient performance
●  Data collection and presentation filtering
●  Data correlates to user source (line number info, etc.)
●  Support MPI, SHMEM, OpenMP, UPC, CAF
●  Access to network counters
●  Minimal program perturbation

Strengths

October 8, 2012 OLCF Fall User Training 2012
111

● Usability on large systems
●  Client / server
●  Scalable data format
●  Intuitive visualization of performance data

● Supports “recipe” for porting MPI programs to many-core
or hybrid systems

●  Integrates with other Cray PE software for more tightly
coupled development environment

Strengths (2)

October 8, 2012 OLCF Fall User Training 2012
112

The Cray Performance Analysis Framework

● Supports traditional post-mortem performance analysis
●  Automatic identification of performance problems

●  Indication of causes of problems
●  Suggestions of modifications for performance improvement

●  pat_build: provides automatic instrumentation
●  CrayPat run-time library collects measurements (transparent to the

user)
●  pat_report performs analysis and generates text reports
●  pat_help: online help utility
●  Cray Apprentice2: graphical visualization tool

October 8, 2012 OLCF Fall User Training 2012
113

The Cray Performance Analysis Framework (2)

● CrayPat

●  Instrumentation of optimized code
●  No source code modification required
●  Data collection transparent to the user
●  Text-based performance reports
●  Derived metrics
●  Performance analysis

● Cray Apprentice2
●  Performance data visualization tool
●  Call tree view
●  Source code mappings

October 8, 2012 OLCF Fall User Training 2012
114

Steps to Using the Tools

OLCF Fall User Training 2012

Application Instrumentation with pat_build

  pat_build is a stand-alone utility that automatically
instruments the application for performance collection

● Requires no source code or makefile modification
●  Automatic instrumentation at group (function) level

●  Groups: mpi, io, heap, math SW, …

● Performs link-time instrumentation
●  Requires object files
●  Instruments optimized code
●  Generates stand-alone instrumented program
●  Preserves original binary

October 8, 2012 OLCF Fall User Training 2012
116

● Supports two categories of experiments
●  asynchronous experiments (sampling) which capture values from the

call stack or the program counter at specified intervals or when a
specified counter overflows

●  Event-based experiments (tracing) which count some events such as
the number of times a specific system call is executed

● While tracing provides most useful information, it can be
very heavy if the application runs on a large number of
cores for a long period of time

● Sampling can be useful as a starting point, to provide a
first overview of the work distribution

Application Instrumentation with pat_build (2)

October 8, 2012 OLCF Fall User Training 2012
117

●  Large programs
●  Scaling issues more dominant
●  Use automatic profiling analysis to quickly identify top time consuming

routines
●  Use loop statistics to quickly identify top time consuming loops

● Small (test) or short running programs
●  Scaling issues not significant
●  Can skip first sampling experiment and directly generate profile
●  For example: % pat_build –u –g mpi my_program

Program Instrumentation Tips

October 8, 2012 OLCF Fall User Training 2012
118

Where to Run Instrumented Application

● MUST run on Lustre (/mnt/snx3/… , /lus/…, /scratch/
…,etc.)

● Number of files used to store raw data

●  1 file created for program with 1 – 256 processes

●  √n files created for program with 257 – n processes

●  Ability to customize with PAT_RT_EXPFILE_MAX

October 8, 2012 OLCF Fall User Training 2012
119

● Runtime controlled through PAT_RT_XXX environment
variables

● See intro_craypat(1) man page

● Examples of control
●  Enable full trace
●  Change number of data files created
●  Enable collection of HW counters
●  Enable collection of network counters
●  Enable tracing filters to control trace file size (max threads, max call

stack depth, etc.)

CrayPat Runtime Options

October 8, 2012 OLCF Fall User Training 2012
12
0

Example Runtime Environment Variables

● Optional timeline view of program available
●  export PAT_RT_SUMMARY=0
●  View trace file with Cray Apprentice2

● Number of files used to store raw data:
●  1 file created for program with 1 – 256 processes
●  √n files created for program with 257 – n processes
●  Ability to customize with PAT_RT_EXPFILE_MAX

● Request hardware performance counter information:
●  export PAT_RT_HWPC=<HWPC Group>
●  Can specify events or predefined groups

October 8, 2012 OLCF Fall User Training 2012
12
1

●  Performs data conversion
●  Combines information from binary with raw performance data

●  Performs analysis on data

●  Generates text report of performance results

●  Formats data for input into Cray Apprentice2

pat_report

October 8, 2012 OLCF Fall User Training 2012
12
2

Why Should I generate an “.ap2” file?

●  The “.ap2” file is a self contained compressed

performance file

● Normally it is about 5 times smaller than the “.xf” file

● Contains the information needed from the application
binary
●  Can be reused, even if the application binary is no longer available or

if it was rebuilt

●  It is the only input format accepted by Cray Apprentice2

October 8, 2012 OLCF Fall User Training 2012
12
3

Files Generated and the Naming Convention

File Suffix Description

a.out+pat Program instrumented for data collection

a.out…s.xf

Raw data for sampling experiment, available after
application execution

a.out…t.xf Raw data for trace (summarized or full) experiment,
available after application execution

a.out…st.ap2 Processed data, generated by pat_report, contains
application symbol information

a.out…s.apa Automatic profiling pnalysis template, generated by
pat_report (based on pat_build –O apa experiment)

a.out+apa Program instrumented using .apa file

MPICH_RANK_ORDER.Custom Rank reorder file generated by pat_report from
automatic grid detection an reorder suggestions

October 8, 2012 OLCF Fall User Training 2012
12
4

● Automatic profiling analysis (APA)

●  Provides simple procedure to instrument and collect performance data
for novice users

●  Identifies top time consuming routines

●  Automatically creates instrumentation template customized to
application for future in-depth measurement and analysis

Program Instrumentation - Automatic Profiling
Analysis

October 8, 2012 OLCF Fall User Training 2012
12
5

●  Access performance tools software
 % module load perftools

●  Build application keeping .o files (CCE: -h keepfiles)

 % make clean
 % make

●  Instrument application for automatic profiling analysis
●  You should get an instrumented program a.out+pat

 % pat_build –O apa a.out

●  Run application to get top time consuming routines
●  You should get a performance file (“<sdatafile>.xf”) or

multiple files in a directory <sdatadir>

 % aprun … a.out+pat (or qsub <pat script>)

Steps to Collecting Performance Data

October 8, 2012 OLCF Fall User Training 2012
12
6

Steps to Collecting Performance Data (2)

● Generate report and .apa instrumentation file

●  % pat_report –o my_sampling_report [<sdatafile>.xf | <sdatadir>]

●  Inspect .apa file and sampling report

● Verify if additional instrumentation is needed

October 8, 2012 OLCF Fall User Training 2012
12
7

APA File Example
You can edit this file, if desired, and use it
to reinstrument the program for tracing like this:

pat_build -O standard.cray-xt.PE-2.1.56HD.pgi-8.0.amd64.pat-5.0.0.2-Oapa.

512.quad.cores.seal.090405.1154.mpi.pat_rt_exp=default.pat_rt_hwpc=none.
14999.xf.xf.apa

These suggested trace options are based on data from:

/home/users/malice/pat/Runs/Runs.seal.pat5001.2009Apr04/./pat.quad/homme/

standard.cray-xt.PE-2.1.56HD.pgi-8.0.amd64.pat-5.0.0.2-Oapa.
512.quad.cores.seal.090405.1154.mpi.pat_rt_exp=default.pat_rt_hwpc=none.
14999.xf.xf.cdb

--

HWPC group to collect by default.

 -Drtenv=PAT_RT_HWPC=1 # Summary with TLB metrics.

--

Libraries to trace.

 -g mpi

--

User-defined functions to trace, sorted by % of samples.

The way these functions are filtered can be controlled with
pat_report options (values used for this file are shown):

-s apa_max_count=200 No more than 200 functions are listed.
-s apa_min_size=800 Commented out if text size < 800 bytes.
-s apa_min_pct=1 Commented out if it had < 1% of samples.
-s apa_max_cum_pct=90 Commented out after cumulative 90%.

Local functions are listed for completeness, but cannot be traced.

 -w # Enable tracing of user-defined functions.
 # Note: -u should NOT be specified as an additional option.

31.29% 38517 bytes
 -T prim_advance_mod_preq_advance_exp_

15.07% 14158 bytes
 -T prim_si_mod_prim_diffusion_

9.76% 5474 bytes
 -T derivative_mod_gradient_str_nonstag_

. . .

2.95% 3067 bytes
 -T forcing_mod_apply_forcing_

2.93% 118585 bytes
 -T column_model_mod_applycolumnmodel_

Functions below this point account for less than 10% of samples.

0.66% 4575 bytes
-T bndry_mod_bndry_exchangev_thsave_time_

0.10% 46797 bytes
-T baroclinic_inst_mod_binst_init_state_

0.04% 62214 bytes
-T prim_state_mod_prim_printstate_

. . .
0.00% 118 bytes
-T time_mod_timelevel_update_

--

 -o preqx.cray-xt.PE-2.1.56HD.pgi-8.0.amd64.pat-5.0.0.2.x+apa

New instrumented program.

 /.AUTO/cray/css.pe_tools/malice/craypat/build/pat/2009Apr03/2.1.56HD/amd64/

homme/pgi/pat-5.0.0.2/homme/2005Dec08/build.Linux/preqx.cray-
xt.PE-2.1.56HD.pgi-8.0.amd64.pat-5.0.0.2.x # Original program.

●  Instrument application for further analysis (a.out+apa)

% pat_build –O <apafile>.apa

●  Run application

% aprun … a.out+apa (or qsub <apa script>)

●  Generate text report and visualization file (.ap2)

% pat_report –o my_text_report.txt [<datafile>.xf |
<datadir>]

●  View report in text and/or with Cray Apprentice2

% app2 <datafile>.ap2

Generating Profile from APA

October 8, 2012 OLCF Fall User Training 2012
12
9

●  blas Basic Linear Algebra subprograms
●  CAF Co-Array Fortran (Cray CCE compiler only)
●  HDF5 manages extremely large and complex data collections
●  heap dynamic heap
●  io includes stdio and sysio groups
●  lapack Linear Algebra Package
●  math ANSI math
●  mpi MPI
●  omp OpenMP API
●  omp-rtl OpenMP runtime library (not supported on Catamount)
●  pthreads POSIX threads (not supported on Catamount)
●  shmem SHMEM
●  sysio I/O system calls
●  system system calls
●  upc Unified Parallel C (Cray CCE compiler only)

For a full list, please see man pat_build

-g tracegroup (subset)

October 8, 2012 OLCF Fall User Training 2012
13
0

Specific Tables in pat_report

heidi@kaibab:/lus/scratch/heidi> pat_report -O –h

pat_report: Help for -O option:
Available option values are in left column, a prefix can be
specified:
 ct -O calltree
 defaults <Tables that would appear by default.>
 heap -O heap_program,heap_hiwater,heap_leaks
 io -O read_stats,write_stats
 lb -O load_balance
 load_balance -O lb_program,lb_group,lb_function
 mpi -O mpi_callers

 D1_D2_observation Observation about Functions with low D1+D2
cache hit ratio
 D1_D2_util Functions with low D1+D2 cache hit ratio
 D1_observation Observation about Functions with low D1
cache hit ratio
 D1_util Functions with low D1 cache hit ratio
 TLB_observation Observation about Functions with low TLB
refs/miss
 TLB_util Functions with low TLB refs/miss

October 8, 2012 OLCF Fall User Training 2012
13
1

October 8, 2012 OLCF Fall User Training 2012
13
2

● Analyze runtime performance data to identify grids in a
program to maximize on-node communication
●  Example: nearest neighbor exchange in 2 dimensions

●  Sweep3d uses a 2-D grid for communication

● Determine whether or not a custom MPI rank order will
produce a significant performance benefit

● Grid detection is helpful for programs with significant
point-to-point communication

● Doesn’t interfere with MPI collective communication
optimizations

Automatic Communication Grid Detection

October 8, 2012 OLCF Fall User Training 2012
13
3

●  Tools produce a custom rank order if it’s beneficial based
on grid size, grid order and cost metric

● Summarized findings in report

● Available if MPI functions traced (-g mpi)

● Describe how to re-run with custom rank order

Automatic Grid Detection (cont’d)

October 8, 2012 OLCF Fall User Training 2012
13
4

MPI Grid Detection: There appears to be point-to-point MPI
 communication in a 22 X 18 grid pattern. The 48.6% of the total
 execution time spent in MPI functions might be reduced with a rank
 order that maximizes communication between ranks on the same node.
 The effect of several rank orders is estimated below.

 A file named MPICH_RANK_ORDER.Custom was generated along with this
 report and contains the Custom rank order from the following table.
 This file also contains usage instructions and a table of
 alternative rank orders.

 Rank On-Node On-Node MPICH_RANK_REORDER_METHOD
 Order Bytes/PE Bytes/PE%
 of Total
 Bytes/PE

 Custom 7.80e+06 78.37% 3
 SMP 5.59e+06 56.21% 1
 Fold 2.59e+05 2.60% 2
 RoundRobin 0.00e+00 0.00% 0

Example: Observations and Suggestions

October 8, 2012 OLCF Fall User Training 2012
13
5

The 'Custom' rank order in this file targets nodes with multi-
core
processors, based on Sent Msg Total Bytes collected for:

Program: /lus/nid00030/heidi/sweep3d/mod/sweep3d.mpi
Ap2 File: sweep3d.mpi+pat+27054-89t.ap2
Number PEs: 48
Max PEs/Node: 4

To use this file, make a copy named MPICH_RANK_ORDER, and set
the
environment variable MPICH_RANK_REORDER_METHOD to 3 prior to
executing the program.

The following table lists rank order alternatives and the
grid_order
command-line options that can be used to generate a new order.
…

MPICH_RANK_ORDER File Example

October 8, 2012 OLCF Fall User Training 2012
13
6

================ Observations and suggestions ========================
MPI grid detection:
 There appears to be point-to-point MPI communication in a 33 X 41
 grid pattern. The 26.1% of the total execution time spent in MPI
 functions might be reduced with a rank order that maximizes
 communication between ranks on the same node. The effect of several
 rank orders is estimated below.

 A file named MPICH_RANK_ORDER.Custom was generated along with this
 report and contains the Custom rank order from the following table.
 This file also contains usage instructions and a table of
 alternative rank orders.

 Rank On-Node On-Node MPICH_RANK_REORDER_METHOD
 Order Bytes/PE Bytes/PE%
 of Total
 Bytes/PE

 Custom 1.20e+09 32.21% 3
 SMP 8.70e+08 23.27% 1
 Fold 3.55e+07 0.95% 2
 RoundRobin 1.99e+05 0.01% 0
================ End Observations ====================================

Example 2 - Hycom

October 8, 2012 OLCF Fall User Training 2012
13
7

● Run on 1353 MPI ranks, 24 ranks per node

● Overall program wallclock:
●  Default MPI rank order: 1450s
●  Custom MPI rank order: 1315s
●  ~10% improvement in execution time!

●  Time spent in MPI routines:
●  Default rank order: 377s
●  Custom rank order: 303s

Example 2 - Hycom

October 8, 2012 OLCF Fall User Training 2012
13
8

October 8, 2012 OLCF Fall User Training 2012
13
9

● Helps identify loops to optimize (parallelize serial loops):
●  Loop timings approximate how much work exists within a loop
●  Trip counts can be used to help carve up loop on GPU

● Enabled with CCE –h profile_generate option

●  Should be done as separate experiment – compiler optimizations are
restricted with this feature

●  Loop statistics reported by default in pat_report table

● Next enhancement: integrate loop information in profile
●  Get exclusive times and loops attributed to functions

Loop Work Estimates

October 8, 2012 OLCF Fall User Training 2012
14
0

●  Load PrgEnv-cray software
●  Load perftools software

● Compile AND link with –h profile_generate

●  Instrument binary for tracing
●  pat_build –u my_program or
●  pat_build –w my_program

● Run application
● Create report with loop statistics

●  pat_report my_program.xf > loops_report

Collecting Loop Statistics

October 8, 2012 OLCF Fall User Training 2012
14
1

Table 1: Profile by Function Group and Function
 Time% | Time | Imb. | Imb. | Calls |Group
 | | Time | Time% | | Function
 | | | | | PE=HIDE
 | | | | | Thread=HIDE

 100.0% | 176.687480 | -- | -- | 17108.0 |Total
|--
| 85.3% | 150.789559 | -- | -- | 8.0 |USER
||---
| 85.0% | 150.215785 | 24.876709 | 14.4% | 2.0 | jacobi_.LOOPS
||===
| 12.2% | 21.600616 | -- | -- | 16071.0 |MPI
||---
| 11.9% | 21.104488 | 41.016738 | 67.1% | 3009.0 | mpi_waitall
||===
| 2.4% | 4.297301 | -- | -- | 1007.0 |MPI_SYNC
||---
| 2.4% | 4.166092 | 4.135016 | 99.3% | 1004.0 | mpi_allreduce_(sync)
|==

Example Report – Loop Work Estimates

October 8, 2012 OLCF Fall User Training 2012
14
2

Table 3: Inclusive Loop Time from -hprofile_generate

 Loop Incl | Loop | Loop | Loop |Function=/.LOOP[.]
 Time | Hit | Trips | Trips | PE=HIDE
 Total | | Min | Max |
|---
…
| 175.676881 | 2 | 0 | 1003 |jacobi_.LOOP.07.li.267
| 0.917107 | 1003 | 0 | 260 |jacobi_.LOOP.08.li.276
| 0.907515 | 129888 | 0 | 260 |jacobi_.LOOP.09.li.277
| 0.446784 | 1003 | 0 | 260 |jacobi_.LOOP.10.li.288
| 0.425763 | 129888 | 0 | 516 |jacobi_.LOOP.11.li.289
| 0.395003 | 1003 | 0 | 260 |jacobi_.LOOP.12.li.300
| 0.374206 | 129888 | 0 | 516 |jacobi_.LOOP.13.li.301
| 126.250610 | 1003 | 0 | 256 |jacobi_.LOOP.14.li.312
| 126.223035 | 127882 | 0 | 256 |jacobi_.LOOP.15.li.313
| 124.298650 | 16305019 | 0 | 512 |jacobi_.LOOP.16.li.314
| 20.875086 | 1003 | 0 | 256 |jacobi_.LOOP.17.li.336
| 20.862715 | 127882 | 0 | 256 |jacobi_.LOOP.18.li.337
| 19.428085 | 16305019 | 0 | 512 |jacobi_.LOOP.19.li.338
|===

Example Report – Loop Work Estimates (2)

October 8, 2012 OLCF Fall User Training 2012
14
3

Cray Performance Tools

●  There’s a lot more to cover about CrayPAT and
Apprentice2 than we have time for today.

● See OLCF website for help and talks from previous
workshops.

● Contact your liaison or me for help if you need it.

October 8, 2012 OLCF Fall User Training 2012
14
4

STAT
ATP

October 8, 2012 OLCF Fall User Training 2012
14
5

My application hangs!

October 8, 2012 OLCF Fall User Training 2012
14
6

● Stack trace sampling and analysis for large scale
applications from Lawrence Livermore Labs and the
University of Wisconsin
●  Creates a merged stack trace tree
●  Groups ranks with common behaviors
●  Fast: Collects traces for 100s of 1000s of cores in under a second
●  Compact: Stack trace tree only a few mega bytes

● Extreme scale
Jaguar: 200K cores
Hopper: 125K cores

What is STAT?

October 8, 2012 OLCF Fall User Training 2012
14
7

● Sampling across ranks
● Sampling across time
● Scalable visualization

●  Shows the big picture
●  Pin points subset for heavy weight debuggers

Merged stack trace trees

October 8, 2012 OLCF Fall User Training 2012
14
8

Stack Trace Merge Example

October 8, 2012 OLCF Fall User Training 2012
14
9

2D-Trace/Space Analysis

Appl

Appl

Appl

Appl

Appl …

October 8, 2012 OLCF Fall User Training 2012
15
0

● Production, plasma physics PIC (Particle in Cell)
code, run with 120K cores on hopper, and using HDF5
for parallel I/O

● Mixed MPI/OpenMP
● STAT helped them to see the big picture, as well as

eliminate code possibilities since they were not in the
tree

NERSC Plasma Physics Application

October 8, 2012 OLCF Fall User Training 2012
15
1

October 8, 2012 OLCF Fall User Training 2012
15
2

October 8, 2012 OLCF Fall User Training 2012
15
3

October 8, 2012 OLCF Fall User Training 2012
15
4

●  module load stat
●  man STAT
●  STAT <pid_of_aprun>

●  Creates STAT_results/<app_name>/<merged_st_file>
●  statview <merged_st_file>
●  STATGUI
●  Scaling no longer limited by number file
descriptors

STAT 1.2.1.1

October 8, 2012 OLCF Fall User Training 2012
15
5

My application crashes!

October 8, 2012 OLCF Fall User Training 2012
15
6

● Applications on Cray systems use hundreds of
thousands of processes

● On a crash one, many, or all of them might trap
● No one wants that many core files
● No one wants that many stack backtraces
●  They are too slow and too big.
●  They are too much to comprehend

The Problem Being Solved

October 8, 2012 OLCF Fall User Training 2012
15
7

● System of light weight back-end monitor processes on

compute nodes
● Coupled together as a tree with MRNet
● Automatically launched by aprun
●  Leap into action on any application process trapping
● Stderr backtrace of first process to trap
● STAT like analysis provides merged stack backtrace

tree
●  Leaf nodes of tree define a modest set of processes to

core dump
● Or, a set of processes to attach to with a debugger

ATP Description

October 8, 2012 OLCF Fall User Training 2012
15
8

ATP – Abnormal Termination Processing
Write
Modify

Port

App runs
(verification)

Compile
& Link

App runs
(production)

Optimize

Debug

Normal
Termination

ATP

Stacktrace
(atpMergedB

T.dot)

STATview

Exit
Abnormal

Termination

ATP

STATview

Exit
Abnormal

Termination

Stacktrace
(atpMergedB

T.dot)

October 8, 2012 OLCF Fall User Training 2012
15
9

● Application process signal handler
(atpAppSigHandler)
o  triggers analysis

● Back-end monitor (atpBackend)
o  collects backtraces via StackwalkerAPI
o  forces core dumps as directed using core_pattern

●  Front-end controller (atpFrontend)
o  coordinates analysis via MRNet
o  selects process set that is to dump core

● Once initial set up complete, all components comatose

ATP Components

October 8, 2012 OLCF Fall User Training 2012
16
0

ATP Communications Tree

FE

Front-end

Back-
end

App

BE

App

BE

CP

App

BE

App

BE

App

BE

CP

App

BE

…

…

…

October 8, 2012 OLCF Fall User Training 2012
16
1

● Added support for:
●  Dynamic Applications
●  Threaded Applications
●  Medium memory model compiles
●  Analysis on queuing system wall clock time out

● Eliminated use of LD_LIBRARY_PATH
● Numerous bug fixes.

ATP Since We Were Here Last Year

October 8, 2012 OLCF Fall User Training 2012
16
2

● Automatic
●  ATP module loaded by default

●  Signal handler added to application and registered
●  Aprun launches ATP in parallel with application launch
●  Run time enabled/disabled via ATP_ENABLED environment

variable (can be set by site)
● Provides:

●  backtrace of first crash to stderr
●  merged backtrace trees
●  dumps core file set (if limit/ulimit allows)

●  Tested at 15K PEs

Current Release: ATP 1.4.3

October 8, 2012 OLCF Fall User Training 2012
16
3

