
9/20/2012 Cray and HLRS Proprietary 1

 Status of WRF on GPUs using OpenACC
 Advance_w dynamics kernel
 Wsm6 physics kernel

 Comments on CUDA versus OpenMP/OpenACC

9/20/2012 Cray and HLRS Proprietary
2

• 1024 x 48 x 1024 Global Domain Size
• Decomposed using 64 MPI ranks resulting in 128 x 48 x 128 subdomains per MPI rank

Subdomain of 128x48x128,
1 for each GPU

Estimates based on XE6
performance for this
subdomain with active
precipitation (microphysics
work)

9/20/2012 Cray and HLRS Proprietary
3

 WRF is a fully hybrid code. Native OpenMP directives before all
important computational loop nests
 MPI decomposition is in the horizontal directions (‘i’ for

longitude, ‘j’ for latitude). The vertical dimension ‘k’ is local to
each process. Most data in derived type ‘grid’, with allocatable
members. Most arrays indexed as grid%x(i,k,j)

 Each MPI domain decomposed into rectangular i-j tiles

!$omp parallel do private(. . .)
 do tile = 1,numtiles
 call work(tile,grid%x1,grid%x2,grid%x3. . .)
 enddo ! itile

9/20/2012 Cray and HLRS Proprietary

4

Stride-one vectors Serial or thread parallel Thread parallel

 ‘Dynamics’ routines (~60% time) contain 3D loops with
relatively low computational intensity (#flops / #references).
 Parallelism usually in all three directions, finite differences in

horizontal directions
 Almost all flops are on global grid%xxx arrays – there is almost

no use of local, temporary variables
 ‘Physics’ routines (~25% time) have many nested conditional

statements.
 Parallelism mostly in the horizontal directions, often serial in the

vertical direction
 Many local, temp x(i,k) arrays are written and then read one or

more times. Private copies exist for each thread-parallel iteration
of outer do-j loop

9/20/2012 Cray and HLRS Proprietary
5

 Experimentation has been done using GPUs for some
computational kernels (next page)

 OpenMP in WRF a good starting point for porting to OpenACC
 Main work to be done is adding OpenACC directives outside time

step loop that lists all variables and arrays needed by GPU
kernels in the loop

!$acc data copy(grid%x1,grid%x2,. . .)

 Then, within each kernel subroutine identify as present each

member of grid that is referenced

!$acc present(grid%x3,grid%x10,…)

9/20/2012 Cray and HLRS Proprietary
6

 This model allows for bulk 3D arrays to reside on GPU for
entire time step loop, with the only exchange of data with the
host being MPI buffers of 2D surface planes. Will re-examine
WRF for possible use of asynchronous MPI

 With low computational intensity, important to overlap
communication with host over PCIe bus with independent
compute kernels. This should be enabled by running multiple
MPI ranks on kepler via use of PROXY, but this has not been
implemented yet

9/20/2012 Cray and HLRS Proprietary
7

 wsm5 microphysics in CUDA C, 3.1x speedup over Nehalem quad-core, 8

threads
 Michalakes, et al.
 See http://www.mmm.ucar.edu/wrf/WG2/GPU/WSM5.htm

 RRTM radiation physics routine in CUDA Fortran, 11x speedup over single
XEON X5550 Nehalem core
 Ruetsch, et al.
 See http://data1.gfdl.noaa.gov/multi-

core/2011/presentations/Ruetsch_GPU%20Acceleration%20of%20the%20Longwave%20
Rapid%20Radiative%20Transfer%20Model%20in%20WRF%20Using%20CUDA%20Fortran.
pdf

 wsm5 and wsm3 using OpenACC directives (NCAR distribution)
 Tests underway with PGI and Cray CCE compilers on XK6

 Additional kernels for wsm6 microphysics and small_step (acoustic)
dynamics in test

9/20/2012 Cray and HLRS Proprietary
8

http://data1.gfdl.noaa.gov/multi-core/2011/presentations/Ruetsch_GPU Acceleration of the Longwave Rapid Radiative Transfer Model in WRF Using CUDA Fortran.pdf�
http://data1.gfdl.noaa.gov/multi-core/2011/presentations/Ruetsch_GPU Acceleration of the Longwave Rapid Radiative Transfer Model in WRF Using CUDA Fortran.pdf�
http://data1.gfdl.noaa.gov/multi-core/2011/presentations/Ruetsch_GPU Acceleration of the Longwave Rapid Radiative Transfer Model in WRF Using CUDA Fortran.pdf�
http://data1.gfdl.noaa.gov/multi-core/2011/presentations/Ruetsch_GPU Acceleration of the Longwave Rapid Radiative Transfer Model in WRF Using CUDA Fortran.pdf�
http://data1.gfdl.noaa.gov/multi-core/2011/presentations/Ruetsch_GPU Acceleration of the Longwave Rapid Radiative Transfer Model in WRF Using CUDA Fortran.pdf�

 Advances vertical velocity and
geopotential heights

 Kernel extracted from WRF
solver to speed tests

 Measure performance of
128x48x128 grid on one node

 Compare 1 AMD Interlagos
socket (16 cores) with 1 Fermi
GPU
 X86 version uses OpenMP

threads and WRF tiling
 GPU version uses OpenACC

gangs (thread blocks) and
vector loops (threads)

!$OMP PARALLEL DO &
!$OMP PRIVATE (tile)
 do tile=1,numtiles

 call advance_w(w_2, rw_tend, ww, u_2, v_2, &
 mu_2, mut, muave, muts, &
 t_2save, t_2, t_save, &
 ph_2, ph_save, phb, ph_tend, &
 ht, c2a, cqw, alt, alb, &
 a, alpha, gamma, &
 rdx, rdy, dts_rk, t0, epssm, &
 dnw, fnm, fnp, rdnw, rdn, &
 cf1, cf2, cf3, msft, &
 ids,ide, jds,jde, kds,kde, &
 ims,ime, jms,jme, kms,kme, &
 i_start(tile), i_end(tile), &
 j_start(tile), j_end(tile), &
 kds , kde)

 enddo
!$OMP END PARALLEL DO

OpenMP Tile Loop (host)

9/20/2012 Cray and HLRS Proprietary
9

 138. G -----------< !$ACC PARALLEL LOOP PRIVATE(mut_inv, msft_inv, wdwn) FIRSTPRIVATE(rhs)
 139. G g---------< j_loop_w: DO j = j_start, j_end
 140. G g g-------< DO i=i_start, i_end
 141. G g g mut_inv(i) = 1./mut(i,j)
 142. G g g msft_inv(i) = 1./msft(i,j)
 143. G g g-------> ENDDO
 144. G g
 145. G g i-------< DO k=1, k_end
 146. G g i ig----< DO i=i_start, i_end
 147. G g i ig t_2ave(i,k,j)=.5*((1.+epssm)*t_2(i,k,j) &
 148. G g i ig +(1.-epssm)*t_2ave(i,k,j))
 149. G g i ig t_2ave(i,k,j)=(t_2ave(i,k,j)-mu1(i,j)*t_1(i,k,j)) &
 150. G g i ig /(muts(i,j)*(t0+t_1(i,k,j)))
 151. G g i ig----> ENDDO
 152. G g i-------> ENDDO
 153. G g
 154. G g b-------< DO k=2,k_end+1
 155. G g b gb----< DO i=i_start, i_end
 156. G g b gb wdwn(i,k)=.5*(ww(i,k,j)+ww(i,k-1,j))*rdnw(k-1) &
 157. G g b gb *(ph_1(i,k,j)-ph_1(i,k-1,j)+phb(i,k,j)-phb(i,k-1,j))
 158. G g b gb rhs(i,k) = dts*(ph_tend(i,k,j) + .5*g*(1.-epssm)*w(i,k,j))
 159. G g b gb----> ENDDO
 160. G g b-------> ENDDO

Best performance uses OpenACC parallelism defined inside advance_w subroutine
– use one big tile for each MPI process

Define GPU kernel and
partition into thread blocks on J
dimension

9/20/2012 Cray and HLRS Proprietary
10

 138. G -----------< !$ACC PARALLEL LOOP PRIVATE(mut_inv, msft_inv, wdwn) FIRSTPRIVATE(rhs)
 139. G g---------< j_loop_w: DO j = j_start, j_end
 140. G g g-------< DO i=i_start, i_end
 141. G g g mut_inv(i) = 1./mut(i,j)
 142. G g g msft_inv(i) = 1./msft(i,j)
 143. G g g-------> ENDDO
 144. G g
 145. G g i-------< DO k=1, k_end
 146. G g i ig----< DO i=i_start, i_end
 147. G g i ig t_2ave(i,k,j)=.5*((1.+epssm)*t_2(i,k,j) &
 148. G g i ig +(1.-epssm)*t_2ave(i,k,j))
 149. G g i ig t_2ave(i,k,j)=(t_2ave(i,k,j)-mu1(i,j)*t_1(i,k,j)) &
 150. G g i ig /(muts(i,j)*(t0+t_1(i,k,j)))
 151. G g i ig----> ENDDO
 152. G g i-------> ENDDO
 153. G g
 154. G g b-------< DO k=2,k_end+1
 155. G g b gb----< DO i=i_start, i_end
 156. G g b gb wdwn(i,k)=.5*(ww(i,k,j)+ww(i,k-1,j))*rdnw(k-1) &
 157. G g b gb *(ph_1(i,k,j)-ph_1(i,k-1,j)+phb(i,k,j)-phb(i,k-1,j))
 158. G g b gb rhs(i,k) = dts*(ph_tend(i,k,j) + .5*g*(1.-epssm)*w(i,k,j))
 159. G g b gb----> ENDDO
 160. G g b-------> ENDDO

OpenACC Parallelism defined inside advance_w subroutine

Inner loops (I) distributed
across threads within block

9/20/2012 Cray and HLRS Proprietary
11

 138. G -----------< !$ACC PARALLEL LOOP PRIVATE(mut_inv, msft_inv, wdwn) FIRSTPRIVATE(rhs)
 139. G g---------< j_loop_w: DO j = j_start, j_end
 140. G g g-------< DO i=i_start, i_end
 141. G g g mut_inv(i) = 1./mut(i,j)
 142. G g g msft_inv(i) = 1./msft(i,j)
 143. G g g-------> ENDDO
 144. G g
 145. G g i-------< DO k=1, k_end
 146. G g i ig----< DO i=i_start, i_end
 147. G g i ig t_2ave(i,k,j)=.5*((1.+epssm)*t_2(i,k,j) &
 148. G g i ig +(1.-epssm)*t_2ave(i,k,j))
 149. G g i ig t_2ave(i,k,j)=(t_2ave(i,k,j)-mu1(i,j)*t_1(i,k,j)) &
 150. G g i ig /(muts(i,j)*(t0+t_1(i,k,j)))
 151. G g i ig----> ENDDO
 152. G g i-------> ENDDO
 153. G g
 154. G g b-------< DO k=2,k_end+1
 155. G g b gb----< DO i=i_start, i_end
 156. G g b gb wdwn(i,k)=.5*(ww(i,k,j)+ww(i,k-1,j))*rdnw(k-1) &
 157. G g b gb *(ph_1(i,k,j)-ph_1(i,k-1,j)+phb(i,k,j)-phb(i,k-1,j))
 158. G g b gb rhs(i,k) = dts*(ph_tend(i,k,j) + .5*g*(1.-epssm)*w(i,k,j))
 159. G g b gb----> ENDDO
 160. G g b-------> ENDDO

OpenACC Parallelism defined inside advance_w subroutine
Cray compiler interchanges these
loops – uses fewer registers and (54 vs.
63) and fewer spills for 4% speedup.
Also, interchange creates larger TBs

9/20/2012 Cray and HLRS Proprietary
12

Cray compiler blocks do-k to achieve
better cache locality (references with
‘k’ and ‘k-1’ can hit in L1 or texture
cache). No interchange necessary

3.4
4.6

6.1
7.1

9.0

14.7

18.9

39.5

0

5

10

15

20

25

30

35

40

45

1 AMD core 2 AMD cores 3 AMD cores 4 AMD cores 8 AMD cores 12 AMD cores 16 AMD cores GPU

G
FL

O
PS

/s
ec

on
d

WRF advance_w Kernel Performance

2.1x speedup over 16
Interlagos cores.

11.6x speedup over single
core.

Data transfer not included.

9/20/2012 Cray and HLRS Proprietary
13

!$ACC PARALLEL DO PRIVATE (tile,its,ite,jts,jte)

 do tile=1,numtiles  Best results for wsm6 are numtiles = 1

 its = max(i_start(tile),ids+sz)

 ite = min(i_end(tile),ide-1-sz)

 jts = max(j_start(tile),jds+sz)

 jte = min(j_end(tile),jde-1-sz)

 call wsm6(th, q, qc, qr, qi, qs, qg &

 ,den, pii, p, delz,delt,g, cpd, cpv, rd, rv, t0c &

 ,ep1, ep2, qmin,XLS, XLV0, XLF0, den0, denr &

 ,cliq,cice,psat,rain, rainncv,snow, snowncv &

 ,graupel, graupelncv,sr,ids,ide, jds,jde, kds,kde &

 ,ims,ime, jms,jme, kms,kme,its,ite, jts,jte, kts,kte)

 enddo

!$ACC END PARALLEL DO

• NOTE: in kernel approach, arguments of wsm6 (members of grid%) are
statically dimensioned as separate arrays during initialization. Wsm6
studied for single node grid 100x48x62

• In this test harness CCE does COPYIN/COPYOUT of arrays to GPU, but we
time kernel only with CUDA profiler

9/20/2012 Cray and HLRS Proprietary
14

 Wsm6 models cloud physics with >1000 lines of mostly conditional loops.
Uses grid 100 x 48 x 62.

 102. + G------------< !$ACC PARALLEL LOOP gang private(t, qci, qrs)

 103. + G g----------< DO j=jts,jte

 104. G g !$ACC loop vector collapse(2)

 105. G g C--------< DO k=kts,kte

 106. + G g C g------< DO i=its,ite

 107. G g C g t(i,k)=th(i,k,j)*pii(i,k,j)

 108. G g C g qci(i,k,1) = qc(i,k,j)

 . . .

 113. G g C g------> ENDDO

 115. + G g gr2 I----> CALL wsm62D(t, q(ims,kms,j), qci, qrs , . . .)

ftn-6430 ftn: ACCEL File = wsm6.F90, Line = 103

 A loop starting at line 103 was partitioned across the thread blocks.

ftn-6029 ftn: SCALAR File = wsm6.F90, Line = 106

 A loop nest starting at line 106 was collapsed with rediscovery of loop control variables.

ftn-6430 ftn: ACCEL File = wsm6.F90, Line = 106

 A loop starting at line 106 was partitioned across the 128 threads within a threadblock.

ftn-6430 ftn: ACCEL File = wsm6.F90, Line = 115

 A loop starting at line 115 was partitioned across the 128 threads within a threadblock.

 9/20/2012 Cray and HLRS Proprietary
15

NOTE: For tuning on Nvidia
GPUs, we added OpenACC
directives to original OpenMP
code -- trivial to do

Compiler inlines wsm62D and
finds vector parallelism in the
routine. Inlining simplifies
port

 Original version of wsm62D with OpenACC vectorizing inner do-i loops
Subroutine wsm62D (. . .)

. . .

! Vice [ms-1] : fallout of ice crystal [HDC 5a]

!---

 do k = kte, kts, -1

 do i = its, ite

 if(qci(i,k,2).le.0.) then

 work2c(i,k) = 0.

 else

 xmi = den(i,k)*qci(i,k,2)/xni(i,k)

 diameter = max(min(dicon * sqrt(xmi),dimax), 1.e-25)

 work1c(i,k) = 1.49e4*diameter**1.31

 work2c(i,k) = work1c(i,k)/delz(i,k)

 endif

 numdt(i) = max(nint(work2c(i,k)*dtcld+.5),1)

 if(numdt(i).ge.mstep(i)) mstep(i) = numdt(i)

 enddo ! i

 enddo ! k

. . .

9/20/2012 Cray and HLRS Proprietary
16

Each do-i loop is a separate threadblock
(TB). Problem may be this version misses
re-use of temp arrays (placed in vector
registers) in subsequent do-i loops,

 Optimized version of wsm62D with OpenACC
Subroutine wsm62D (. . .)

 do i = its, ite  create single, outer do-i loop for whole subroutine
. . .

 do k = kte, kts, -1

! do i = its, ite

 if(qci(i,k,2).le.0.) then

 work2c(i,k) = 0.

 else

 xmi = den(i,k)*qci(i,k,2)/xni(i,k)

 diameter = max(min(dicon * sqrt(xmi),dimax), 1.e-25)

 work1c(i,k) = 1.49e4*diameter**1.31

 work2c(i,k) = work1c(i,k)/delz(i,k)

 endif

 numdt(i) = max(nint(work2c(i,k)*dtcld+.5),1)

 if(numdt(i).ge.mstep(i)) mstep(i) = numdt(i)

! enddo ! i

 enddo ! k
. . .

 enddo ! i

end

Cray OpenACC compiler
vectorizes over one big do-i
loop of code. This maximizes
re-use of vector registers
compared to original version.
On Fermi, optimized version
10x faster than original, and on
kepler 8.5x faster.

9/20/2012 Cray and HLRS Proprietary
17

!$ACC PARALLEL LOOP gang private(t, qci, qrs)

 do j=jts,jte  This is the CUDA ‘grid’ dimension

 do i = its, ite  this is a CUDA ‘Threadblock’

 do k = kts,kte

 . . .

 enddo ! K

! Do I = its,ite

 do k = kts,kte

 . . .

 enddo ! K

! Enddo ! I

! Do I = its,ite

 do k = kts,kte

 . . .

 enddo ! K

! Enddo ! I

 . . .

enddo ! i

9/20/2012 Cray and HLRS Proprietary

18

 What is this? This is essentially CUDA
Fortran for a ThreadBlock, but done
 by the compiler.

 These timings are for the compute part of wsm6. If bulk 3D
arrays are on GPU outside time step loop, communication with
host for MPI is handled elsewhere.

9/20/2012 Cray and HLRS Proprietary
19

Code  Fermi original Kepler original Speedup Fermi optimized Kepler optimized Speedup

Kernel time  149 ms 85.4 ms 1.74x 14.9 ms 11.1 ms 1.34x

9/20/2012 Cray and HLRS Proprietary 20

 WRF
 Great interest in weather/climate community in accelerators. Little

interest in CUDA, but OpenACC and OpenCL under active
investigation

 Individual kernels on Kepler (OpenACC) run ~ 1.5 * two IL16
(OpenMP). These times are not for the full WRF app – they do not
include serial, I/O, MPI or exposed PCIe times, as the full port of
WRF to OpenACC is not complete.

 OpenACC optimization is actively being pursued at Cray.
 OpenMP/OpenACC with compiler support capable of emulating

basic CUDA thread programming

9/20/2012 Cray and HLRS Proprietary
21

	�Porting WRF to OpenACC ��Pete Johnsen�Jim Schwarzmeier��Cray, Inc.������
	Topics
	WRF Test Domain
	Overview of WRF code
	WRF overview (cont)
	WRF status on GPUs
	WRF on GPUs (cont)
	Other WRF Experiments with GPUs
	Using OpenACC – advance_w dynamics routine
	advance_w and OpenACC
	advance_w and OpenACC
	advance_w and OpenACC
	advance_w Results: IL16 versus Fermi
	WSM6 physics kernel
	Inside routine wsm6
	Inside original wsm62D
	Inside optimized wsm62D
	‘Creating CUDA with OpenACC’
	Early performance results on wsm6
	GPUs compared to Interlagos
	Conclusions

