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 Status of WRF on GPUs using OpenACC 
 Advance_w dynamics kernel 
 Wsm6 physics kernel 

 Comments on CUDA versus OpenMP/OpenACC 

9/20/2012 Cray and HLRS Proprietary 
2 



• 1024 x 48 x 1024 Global Domain Size 
• Decomposed using 64 MPI ranks resulting in 128 x 48 x 128 subdomains per MPI rank 
 

Subdomain of 128x48x128, 
1 for each GPU 
 
Estimates based on XE6 
performance for this 
subdomain with active 
precipitation (microphysics 
work) 
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 WRF is a fully hybrid code. Native OpenMP directives before all 
important computational loop nests 
 MPI decomposition is in the horizontal directions (‘i’ for 

longitude, ‘j’ for latitude). The vertical dimension ‘k’ is local to 
each process. Most data in derived type ‘grid’, with allocatable 
members. Most arrays indexed as grid%x(i,k,j) 
 
 
 

 Each MPI domain decomposed into rectangular i-j tiles 
 

!$omp parallel do private( . . . ) 
   do tile = 1,numtiles 
      call work(tile,grid%x1,grid%x2,grid%x3. . .) 
   enddo ! itile 
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Stride-one vectors Serial or thread parallel Thread parallel 



 ‘Dynamics’ routines (~60% time) contain 3D loops with 
relatively low computational intensity (#flops / #references).  
 Parallelism usually in all three directions, finite differences in 

horizontal directions 
 Almost all flops are on global grid%xxx arrays – there is almost 

no use of local, temporary variables 
 ‘Physics’ routines (~25% time) have many nested conditional 

statements.  
 Parallelism mostly in the horizontal directions, often serial in the 

vertical direction 
 Many local, temp x(i,k) arrays are written and then read one or 

more times. Private copies exist for each thread-parallel iteration 
of outer do-j loop 

 

9/20/2012 Cray and HLRS Proprietary 
5 



 Experimentation has been done using GPUs for some 
computational kernels (next page) 

 OpenMP in WRF a good starting point for porting to OpenACC 
 Main work to be done is adding OpenACC directives outside time 

step loop that lists all variables and arrays needed by GPU 
kernels in the loop 
 

!$acc data copy(grid%x1,grid%x2,. . .) 
 
 Then, within each kernel subroutine identify as present each 

member of grid that is referenced 
 

!$acc present(grid%x3,grid%x10,…) 
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 This model allows for bulk 3D arrays to reside on GPU for 
entire time step loop, with the only exchange of data with the 
host being MPI buffers of 2D surface planes. Will re-examine 
WRF for possible use of asynchronous MPI 

 With low computational intensity, important to overlap 
communication with host over PCIe bus with independent 
compute kernels. This should be enabled by running multiple 
MPI ranks on kepler via use of PROXY, but this has not been 
implemented yet 
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 wsm5 microphysics in CUDA C, 3.1x speedup over Nehalem quad-core, 8 

threads 
 Michalakes, et al. 
 See http://www.mmm.ucar.edu/wrf/WG2/GPU/WSM5.htm 

 RRTM radiation physics routine in CUDA Fortran, 11x speedup over single 
XEON X5550 Nehalem core 
 Ruetsch, et al. 
 See http://data1.gfdl.noaa.gov/multi-

core/2011/presentations/Ruetsch_GPU%20Acceleration%20of%20the%20Longwave%20
Rapid%20Radiative%20Transfer%20Model%20in%20WRF%20Using%20CUDA%20Fortran.
pdf 

 wsm5 and wsm3 using OpenACC directives (NCAR distribution) 
 Tests underway with PGI and Cray CCE compilers on XK6 

 Additional kernels for wsm6 microphysics and small_step (acoustic) 
dynamics in test 
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 Advances vertical velocity and 
geopotential heights 

 Kernel extracted from WRF 
solver to speed tests 

 Measure performance of 
128x48x128 grid on one node 

 Compare 1 AMD Interlagos 
socket (16 cores) with 1 Fermi 
GPU 
 X86 version uses OpenMP 

threads and WRF tiling 
 GPU version uses OpenACC 

gangs (thread blocks) and 
vector loops (threads) 

 

!$OMP PARALLEL DO   & 
!$OMP PRIVATE ( tile ) 
    do tile=1,numtiles 
 
      call advance_w( w_2, rw_tend, ww, u_2, v_2,           & 
                          mu_2, mut, muave, muts,           & 
                          t_2save, t_2, t_save,             & 
                          ph_2, ph_save, phb, ph_tend,      & 
                          ht, c2a, cqw, alt, alb,           & 
                          a, alpha, gamma,                  & 
                          rdx, rdy, dts_rk, t0, epssm,      & 
                          dnw, fnm, fnp, rdnw, rdn,         & 
                          cf1, cf2, cf3, msft,              & 
                          ids,ide, jds,jde, kds,kde,        & 
                          ims,ime, jms,jme, kms,kme,        & 
                          i_start(tile), i_end(tile),       & 
                          j_start(tile), j_end(tile),       & 
                          kds    , kde               ) 
 
    enddo 
!$OMP END PARALLEL DO 

OpenMP Tile Loop (host) 

9/20/2012 Cray and HLRS Proprietary 
9 



  138.   G -----------< !$ACC PARALLEL LOOP PRIVATE(mut_inv, msft_inv, wdwn)  FIRSTPRIVATE(rhs) 
  139.   G  g---------<   j_loop_w:  DO j = j_start, j_end 
  140.   G  g g-------<     DO i=i_start, i_end 
  141.   G  g g                mut_inv(i) = 1./mut(i,j) 
  142.   G  g g                msft_inv(i) = 1./msft(i,j) 
  143.   G  g g------->     ENDDO 
  144.   G  g 
  145.   G  g i-------<     DO k=1, k_end 
  146.   G  g i ig----<     DO i=i_start, i_end 
  147.   G  g i ig            t_2ave(i,k,j)=.5*((1.+epssm)*t_2(i,k,j)       & 
  148.   G  g i ig                          +(1.-epssm)*t_2ave(i,k,j)) 
  149.   G  g i ig            t_2ave(i,k,j)=(t_2ave(i,k,j)-mu1(i,j)*t_1(i,k,j)) & 
  150.   G  g i ig                          /(muts(i,j)*(t0+t_1(i,k,j))) 
  151.   G  g i ig---->     ENDDO 
  152.   G  g i------->     ENDDO 
  153.   G  g 
  154.   G  g b-------<     DO k=2,k_end+1 
  155.   G  g b gb----<     DO i=i_start, i_end 
  156.   G  g b gb            wdwn(i,k)=.5*(ww(i,k,j)+ww(i,k-1,j))*rdnw(k-1)    & 
  157.   G  g b gb                 *(ph_1(i,k,j)-ph_1(i,k-1,j)+phb(i,k,j)-phb(i,k-1,j)) 
  158.   G  g b gb            rhs(i,k) = dts*(ph_tend(i,k,j) + .5*g*(1.-epssm)*w(i,k,j)) 
  159.   G  g b gb---->     ENDDO 
  160.   G  g b------->     ENDDO 

Best performance uses OpenACC parallelism defined inside advance_w subroutine 
– use one big tile for each MPI process 

Define GPU kernel and 
partition into thread blocks on J 
dimension  
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  138.   G -----------< !$ACC PARALLEL LOOP PRIVATE(mut_inv, msft_inv, wdwn)  FIRSTPRIVATE(rhs) 
  139.   G  g---------<   j_loop_w:  DO j = j_start, j_end 
  140.   G  g g-------<     DO i=i_start, i_end 
  141.   G  g g                mut_inv(i) = 1./mut(i,j) 
  142.   G  g g                msft_inv(i) = 1./msft(i,j) 
  143.   G  g g------->     ENDDO 
  144.   G  g 
  145.   G  g i-------<     DO k=1, k_end 
  146.   G  g i ig----<     DO i=i_start, i_end 
  147.   G  g i ig            t_2ave(i,k,j)=.5*((1.+epssm)*t_2(i,k,j)       & 
  148.   G  g i ig                          +(1.-epssm)*t_2ave(i,k,j)) 
  149.   G  g i ig            t_2ave(i,k,j)=(t_2ave(i,k,j)-mu1(i,j)*t_1(i,k,j)) & 
  150.   G  g i ig                          /(muts(i,j)*(t0+t_1(i,k,j))) 
  151.   G  g i ig---->     ENDDO 
  152.   G  g i------->     ENDDO 
  153.   G  g 
  154.   G  g b-------<     DO k=2,k_end+1 
  155.   G  g b gb----<     DO i=i_start, i_end 
  156.   G  g b gb            wdwn(i,k)=.5*(ww(i,k,j)+ww(i,k-1,j))*rdnw(k-1)    & 
  157.   G  g b gb                 *(ph_1(i,k,j)-ph_1(i,k-1,j)+phb(i,k,j)-phb(i,k-1,j)) 
  158.   G  g b gb            rhs(i,k) = dts*(ph_tend(i,k,j) + .5*g*(1.-epssm)*w(i,k,j)) 
  159.   G  g b gb---->     ENDDO 
  160.   G  g b------->     ENDDO 

OpenACC Parallelism defined inside advance_w subroutine 

Inner loops (I) distributed 
across threads within block 
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  138.   G -----------< !$ACC PARALLEL LOOP PRIVATE(mut_inv, msft_inv, wdwn)  FIRSTPRIVATE(rhs) 
  139.   G  g---------<   j_loop_w:  DO j = j_start, j_end 
  140.   G  g g-------<     DO i=i_start, i_end 
  141.   G  g g                mut_inv(i) = 1./mut(i,j) 
  142.   G  g g                msft_inv(i) = 1./msft(i,j) 
  143.   G  g g------->     ENDDO 
  144.   G  g 
  145.   G  g i-------<     DO k=1, k_end 
  146.   G  g i ig----<     DO i=i_start, i_end 
  147.   G  g i ig            t_2ave(i,k,j)=.5*((1.+epssm)*t_2(i,k,j)       & 
  148.   G  g i ig                          +(1.-epssm)*t_2ave(i,k,j)) 
  149.   G  g i ig            t_2ave(i,k,j)=(t_2ave(i,k,j)-mu1(i,j)*t_1(i,k,j)) & 
  150.   G  g i ig                          /(muts(i,j)*(t0+t_1(i,k,j))) 
  151.   G  g i ig---->     ENDDO 
  152.   G  g i------->     ENDDO 
  153.   G  g 
  154.   G  g b-------<     DO k=2,k_end+1 
  155.   G  g b gb----<     DO i=i_start, i_end 
  156.   G  g b gb            wdwn(i,k)=.5*(ww(i,k,j)+ww(i,k-1,j))*rdnw(k-1)    & 
  157.   G  g b gb                 *(ph_1(i,k,j)-ph_1(i,k-1,j)+phb(i,k,j)-phb(i,k-1,j)) 
  158.   G  g b gb            rhs(i,k) = dts*(ph_tend(i,k,j) + .5*g*(1.-epssm)*w(i,k,j)) 
  159.   G  g b gb---->     ENDDO 
  160.   G  g b------->     ENDDO 

OpenACC Parallelism defined inside advance_w subroutine 
Cray compiler  interchanges these 
loops – uses fewer registers and (54 vs. 
63) and fewer spills for 4% speedup. 
Also, interchange creates larger TBs 
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Cray compiler blocks do-k to achieve 
better cache locality (references with 
‘k’ and ‘k-1’ can hit in L1 or texture 
cache). No interchange necessary 
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2.1x speedup over 16 
Interlagos cores. 
 
11.6x speedup over single 
core. 
 
Data transfer not included. 
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!$ACC PARALLEL DO PRIVATE ( tile,its,ite,jts,jte ) 

    do tile=1,numtiles   Best results for wsm6 are numtiles = 1 

       its = max(i_start(tile),ids+sz) 

       ite = min(i_end(tile),ide-1-sz) 

       jts = max(j_start(tile),jds+sz) 

       jte = min(j_end(tile),jde-1-sz) 

       call wsm6(th, q, qc, qr, qi, qs, qg                         & 

                 ,den, pii, p, delz,delt,g, cpd, cpv, rd, rv, t0c  & 

                 ,ep1, ep2, qmin,XLS, XLV0, XLF0, den0, denr       & 

                 ,cliq,cice,psat,rain, rainncv,snow, snowncv       & 

                 ,graupel, graupelncv,sr,ids,ide, jds,jde, kds,kde & 

                 ,ims,ime, jms,jme, kms,kme,its,ite, jts,jte, kts,kte )                                                          

    enddo 

!$ACC END PARALLEL DO 

• NOTE: in kernel approach, arguments of wsm6 (members of grid%) are 
statically dimensioned as separate arrays during initialization. Wsm6 
studied for single node grid 100x48x62 

• In this test harness CCE does COPYIN/COPYOUT of arrays to GPU, but we 
time kernel only with CUDA profiler 

9/20/2012 Cray and HLRS Proprietary 
14 



 Wsm6 models cloud physics with  >1000 lines of mostly conditional loops. 
Uses grid 100 x 48 x 62. 

  102.  + G------------< !$ACC PARALLEL LOOP gang private(t, qci, qrs) 

  103.  + G g----------<       DO j=jts,jte 

  104.    G g            !$ACC loop vector collapse(2) 

  105.    G g C--------<          DO k=kts,kte 

  106.  + G g C g------<          DO i=its,ite 

  107.    G g C g                    t(i,k)=th(i,k,j)*pii(i,k,j) 

  108.    G g C g                    qci(i,k,1) = qc(i,k,j) 

           . . . 

  113.    G g C g------>          ENDDO 

  115.  + G g gr2 I---->          CALL wsm62D(t, q(ims,kms,j), qci, qrs , . . .) 

ftn-6430 ftn: ACCEL File = wsm6.F90, Line = 103 

  A loop starting at line 103 was partitioned across the thread blocks. 

ftn-6029 ftn: SCALAR File = wsm6.F90, Line = 106 

  A loop nest starting at line 106 was collapsed with rediscovery of loop control variables. 

ftn-6430 ftn: ACCEL File = wsm6.F90, Line = 106 

  A loop starting at line 106 was partitioned across the 128 threads within a threadblock. 

ftn-6430 ftn: ACCEL File = wsm6.F90, Line = 115 

  A loop starting at line 115 was partitioned across the 128 threads within a threadblock. 
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NOTE: For tuning on Nvidia 
GPUs, we added OpenACC 
directives to original OpenMP 
code -- trivial to do 

Compiler inlines wsm62D and 
finds vector parallelism in the 
routine. Inlining simplifies 
port 



 Original version of wsm62D with OpenACC vectorizing inner do-i loops 
Subroutine wsm62D (. . . ) 

. . . 

! Vice [ms-1] : fallout of ice crystal [HDC 5a] 

!--------------------------------------------------------------- 

     do k = kte, kts, -1 

        do i = its, ite 

          if(qci(i,k,2).le.0.) then 

            work2c(i,k) = 0. 

          else 

            xmi = den(i,k)*qci(i,k,2)/xni(i,k) 

            diameter  = max(min(dicon * sqrt(xmi),dimax), 1.e-25) 

            work1c(i,k) = 1.49e4*diameter**1.31 

            work2c(i,k) = work1c(i,k)/delz(i,k) 

          endif 

          numdt(i) = max(nint(work2c(i,k)*dtcld+.5),1) 

          if(numdt(i).ge.mstep(i)) mstep(i) = numdt(i) 

        enddo  ! i 

      enddo    ! k 

. . . 
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Each do-i loop is a separate threadblock 
(TB). Problem may be this version misses 
re-use of temp arrays (placed in vector 
registers) in subsequent do-i loops,  



 Optimized version of wsm62D with OpenACC 
Subroutine wsm62D (. . . ) 

 do i = its, ite  create single, outer do-i loop for whole subroutine 
. . . 

    do k = kte, kts, -1 

!       do i = its, ite 

          if(qci(i,k,2).le.0.) then 

            work2c(i,k) = 0. 

          else 

            xmi = den(i,k)*qci(i,k,2)/xni(i,k) 

            diameter  = max(min(dicon * sqrt(xmi),dimax), 1.e-25) 

            work1c(i,k) = 1.49e4*diameter**1.31 

            work2c(i,k) = work1c(i,k)/delz(i,k) 

          endif 

          numdt(i) = max(nint(work2c(i,k)*dtcld+.5),1) 

          if(numdt(i).ge.mstep(i)) mstep(i) = numdt(i) 

!       enddo  ! i 

    enddo   ! k 
. . . 

  enddo    ! i 

end 

Cray OpenACC compiler 
vectorizes over one big do-i 
loop of code. This maximizes 
re-use of vector registers 
compared to original version. 
On Fermi, optimized version 
10x faster than original, and on 
kepler 8.5x faster. 
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!$ACC PARALLEL LOOP gang private(t, qci, qrs) 

 do j=jts,jte   This is the CUDA ‘grid’ dimension 

   do i = its, ite   this is a CUDA ‘Threadblock’ 

 

      do k = kts,kte 

       . . . 

      enddo ! K 

!   Do I = its,ite 

     do k = kts,kte 

       . . .   

     enddo ! K 

!   Enddo  ! I 

!   Do I = its,ite 

     do k = kts,kte 

       . . .   

     enddo ! K 

!   Enddo  ! I 

 .  .   . 

enddo  ! i 
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 What is this? This is essentially CUDA  
Fortran for a ThreadBlock, but done 
 by the compiler. 



 These timings are for the compute part of wsm6. If bulk 3D 
arrays are on GPU outside time step loop, communication with 
host for MPI is handled elsewhere.  
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Code  Fermi original Kepler original Speedup Fermi optimized Kepler optimized Speedup 

Kernel time  149 ms 85.4 ms 1.74x  14.9 ms 11.1 ms 1.34x 
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 WRF 
 Great interest in weather/climate community in accelerators. Little 

interest in CUDA, but OpenACC and OpenCL under active 
investigation 

 Individual kernels on Kepler (OpenACC) run ~ 1.5 * two IL16 
(OpenMP). These times are not for the full WRF app – they do not 
include serial, I/O, MPI or exposed PCIe times, as the full port of 
WRF to OpenACC is not complete. 

 OpenACC optimization is actively being pursued at Cray.  
 OpenMP/OpenACC with compiler support capable of emulating  

basic CUDA thread programming 
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