
1 

The NVIDIA Kepler Accelerator and  
Long-term Futures 
 
 
Steve Scott 
Cray Technical Workshop on XK7 Programming 
October 9, 2012 



2 

Power-Constrained Computing 

Classic voltage scaling is over 

⇒ chips have become power (not area) constrained 
and it’s getting worse with each generation 



3 

HPC Goes Hybrid 

Can’t optimize for both single 
thread performance and power 
efficiency 
 
Must do most work with cores 
optimized for extreme energy 
efficiency 
Still need a few cores optimized 
for fast serial work 

PCIe 

x86 CPU 
Fast single threads 

(serial work) GPU 
Extreme power-efficiency 

(throughput work) 

Westmere 
32nm 
1.7 nJ/flop 

Fermi 
40nm 
225 pJ/flop 

Intel MIC 
Xeon 

PCIe 

(AMD Fusion too) 



NVIDIA Confidential 

Overarching Goals for Tesla 

Ease of 
Programming 
And Portability 

Application 
Space 

Coverage 

Power 
Efficiency 



NVIDIA Confidential 

 
 

KEPLER 
THE WORLD’S FASTEST, MOST 
EFFICIENT HPC ACCELERATOR 

SMX 
Hyper-Q 
Dynamic Parallelism 

(programmability and 
application coverage) 

(power efficiency) 



NVIDIA Confidential 

Dual GK104 GPUs 
 

3x Single Precision 
Video, Signal, Life Sciences, Seismic 

GK110 GPU 
 

3x Double Precision 
CFD, FEA, Finance, Physics, etc. 

Tesla K10 Tesla K20 

Available Q4 2012 Available Now 



NVIDIA Confidential 

Kepler GK110 Block Diagram 

7.1B Transistors 
15 SMX units 
> 1 TFLOP FP64 
1.5 MB L2 Cache 
384-bit GDDR5 
PCI Express Gen3 



NVIDIA Confidential 

Kepler GK110 SMX vs Fermi SM 

Ground up redesign for perf/W 
6x the SP FP units 
4x the DP FP units 

Significantly slower FU clocks 

3x sustained perf/W 

~4x the overall instruction throughput 
2x register file size 

2x threadblocks & 1.33x threads 



NVIDIA Confidential 

Selected Kepler ISA Enhancements 

Larger number of registers per thread 
63 in Fermi → 255 in Kepler 
Common performance limited in Fermi due to register spilling 
Significant performance improvement for some codes (e.g.: 5.3x on Quda QCD!) 

Atomic operations 
Added int64 to match int32 
Added functional units →  2-10x performance gains 

SHFL instruction for data exchange amongst threads of a warp 
Broadcast, shifts, butterflies 
Useful for sorts, reductions, etc. 

Loads through texture memory (48KB/SMX) 
Extra bandwidth for read-only data  (const__restrict) 
 



NVIDIA Confidential 

Hyper-Q  

FERMI 
1 Work Queue 

KEPLER 
32 Concurrent Work Queues 



NVIDIA Confidential 

Fermi: Time-Division Multiprocess 

CPU Processes 
Shared GPU 

E F D C B A 



NVIDIA Confidential 

Kepler Hyper-Q: Simultaneous Multiprocess 

E F D C B A 

CPU Processes 
Shared GPU 



NVIDIA Confidential 

Without Hyper-Q 

Time 

100 

50 

0 

G
PU

 U
ti

liz
at

io
n 

%
 

A B C D E F 



NVIDIA Confidential 

With Hyper-Q 

Time 

100 

50 

0 

G
PU

 U
ti

liz
at

io
n 

%
 A 

A 
A 

B 

B B 

C 

C 

C 

D 

D 

D 

E 

E 

E 

F 

F 

F 

Easier threaded parallelism 

Multi-rank MPI parallelism 

Better strong scaling 



NVIDIA Confidential 

CP2K: MPI strong scaling 
 

• Single-rank MPI fails to fully utilize GPU 
 

Strong Scaling: 864 water molecules 

Hyper-Q: Accelerating Legacy MPI Codes 

• With Hyper-Q: 
• Code maintains one rank per CPU 

core (no need to refactor) 
• Dynamically share GPU 
• 2.5x speed-up 



NVIDIA Confidential 

CPU Fermi GPU CPU Kepler GPU 

Dynamic Parallelism 



NVIDIA Confidential 

Dynamic Work Generation 

Higher Performance 
Lower Accuracy 

Coarse grid 

Higher Accuracy 
Lower Performance 

Fine grid Dynamic grid 

Target performance where 
accuracy is required 



NVIDIA Confidential 

GPU 

Familiar Syntax and Programming Model 

__global__ void B(float *data)  
{ 
    do_stuff(data); 
 
    X <<< ... >>> (data); 
    Y <<< ... >>> (data); 
    Z <<< ... >>> (data); 
    cudaDeviceSynchronize(); 
 
    do_more_stuff(data); 
} 

A 

B 

C 

X 

Y 

Z 

CPU int main() { 
    float *data;     
    setup(data); 
 
    A <<< ... >>> (data); 
    B <<< ... >>> (data); 
    C <<< ... >>> (data); 
 
    cudaDeviceSynchronize(); 
    return 0; 
} 

main 



NVIDIA Confidential 

Simpler Code: LU Example 

LU decomposition (Fermi) 

dgetrf(N, N) { 
  for j=1 to N 
    for i=1 to 64 
      idamax<<<>>> 
      memcpy 
      dswap<<<>>> 
      memcpy 
      dscal<<<>>> 
      dger<<<>>> 
    next i 
 
    memcpy 
    dlaswap<<<>>> 
    dtrsm<<<>>> 
    dgemm<<<>>> 
  next j 
} 

idamax(); 

dswap(); 

dscal(); 

dger(); 

dlaswap(); 

dtrsm(); 

dgemm(); 

GPU Code CPU Code 

LU decomposition (Kepler) 

dgetrf(N, N) { 
  dgetrf<<<>>> 
 
 
 
 
 
 
 
 
 
 
 
 
 
  synchronize(); 
} 

dgetrf(N, N) { 
  for j=1 to N 
    for i=1 to 64 
      idamax<<<>>> 
      dswap<<<>>> 
      dscal<<<>>> 
      dger<<<>>> 
    next i 
    dlaswap<<<>>> 
    dtrsm<<<>>> 
    dgemm<<<>>> 
  next j 
} 

GPU Code CPU Code 

C
P

U
 is

 F
re

e 



NVIDIA Confidential 

Dynamic Parallelism: Simpler Code, Higher Perf 

Quicksort: Parallel Recursion 
 

• Code is easier & more natural, in 
half the size 
 

• No complex overheads like stack 
exchange for recursion 
 

• No complex CPU & GPU interaction 
 

• Code looks like CPU code 
 

 

Without Dynamic 
Parallelism 

With Dynamic 
Parallelism 



NVIDIA Confidential 

Dynamic Parallelism: Simpler Code, Higher Perf 

Code Size Cut by 2x 
 

2x Performance  
 



NVIDIA Confidential 

Beyond Kepler… 



NVIDIA Confidential 

NVIDIA GPU Roadmap:  
Increasing Performance/Watt 

16 

2 

4 

6 

8 

10 

12 

14 

2008 2010 2012 2014 

Tesla 
Fermi 

Kepler 

Maxwell 

Su
st

ai
ne

d 
D

P 
G

FL
O

PS
 p

er
 W

at
t 



NVIDIA Confidential 

Echelon 
NVIDIA’s Extreme-Scale Computing Project 
DARPA UHPC Program 
Targeting 2018 



25 

Echelon Compute Node & System 

System Interconnect 

NoC (2D FBFLY) 

LO
C

 0
 

LO
C

 7
 

C0 C7 

SM0 

L20 
256KB 

L21023 
256KB 

MC NIC 

Processor Chip 

DRAM 
Stacks 

DRAM 
DIMMs 

NV 
RAM 

Node 0:  16 TF,  2 TB/s, 512+ GB Node 255 

Cabinet 0:  4 PF, 128 TB Cabinet N-1 

Echelon System (up to 1 EF) 

Key architectural features: 
 

Vision for Exascale-Capable Processor in 2018 

 

• Malleable memory hierarchy 
• Hierarchical register files 
• Hierarchical thread scheduling 
• Place coherency/consistency 
• Temporal SIMT & scalarization 

 

• PGAS memory 
• HW accelerated queues 
• Active messages 
• AMOs everywhere 
• Collective engines 
• Streamlined LOC/TOC 

interaction 
 
 

SM255 



NVIDIA Confidential 

Future of HPC Programming 

Computers are not getting faster…   just wider 
 ⇒ Need to cast all HPC apps as throughput problems, 

    and expose massive parallelism 

Locality across nodes is not the problem… vertical locality is 
 ⇒ Need to expose locality & explicitly manage memory hierarchy 

(programming model) (compiler, runtime, auto-tuner) 

Will need to restructure codes for the future, 
 but want to maintain (spatial and temporal) portability 



Thank You. 
 



NVIDIA Confidential 

    1 GF 

   100 PF 

   10 PF 

    1 PF 

 100 TF 

   10 TF 

    1 TF 

  100 GF 

   10 GF 

100 MF 

    1 EF 

   10 EF 

Sum 

N=1 

N=500 

Exaflop Expectations 

CM5 
~200 KW 

Sequoia 
~7.9 MW 

First Exaflop 
Computer 

Not constant size, 
cost or power 



NVIDIA Confidential 

Power: This Time It’s Different 

In the Good Old Days 
Leakage was not important, and 
voltage scaled with feature size 

 
L’ = L/2 
V’ = V/2 
E’ = CV2 = E/8 
f’ = 2f 
D’ = 1/L2 = 4D 
P’ = P 

 
Halve L and get 4x the 
transistors and 8x the 

capability for the same power! 

MF to GF to TF and almost to PF 

Technology was giving us 68% per year in perf/W! 

The New Reality 
Leakage has limited threshold voltage, 

largely ending voltage scaling 
 

Halve L and get 2x the capability for 
the same power. 

Processors realized ~50% per year in perf/W… 

At constant voltage, technology gives us  
only 19% per year in perf/W 

(spent it on single thread performance) 


	Slide Number 1
	Power-Constrained Computing
	Slide Number 3
	Overarching Goals for Tesla
	�
	Slide Number 6
	Kepler GK110 Block Diagram
	Kepler GK110 SMX vs Fermi SM
	Selected Kepler ISA Enhancements
	Hyper-Q 
	Fermi: Time-Division Multiprocess
	Kepler Hyper-Q: Simultaneous Multiprocess
	Without Hyper-Q
	With Hyper-Q
	Slide Number 15
	Dynamic Parallelism
	Dynamic Work Generation
	Familiar Syntax and Programming Model
	Simpler Code: LU Example
	Slide Number 20
	Slide Number 21
	Beyond Kepler…
	NVIDIA GPU Roadmap: �Increasing Performance/Watt
	Slide Number 24
	Echelon Compute Node & System
	Future of HPC Programming
	Slide Number 27
	Exaflop Expectations
	Power: This Time It’s Different

