

© 2011 Whamcloud, Inc.

Btrfs: Overview &
Requirements for a btrfs-osd
• Johann Lombardi

Principal Engineer

Whamcloud, Inc.

Lustre User Group

Orlando Fl

April 2011

© 2011 Whamcloud, Inc.

• Quick Dive into Btrfs Internals

• Some Cool Btrfs Features

• Btrfs as Backend Filesystem for Lustre

Agenda

3 Btrfs: Overview & Requirements for a btrfs-osd

© 2011 Whamcloud, Inc.

• Stores key/item pairs

• B+tree w/o linked leaves

• Modified in a Copy-On-Write (COW) manner

• Reference counting for filesystem trees

• Everything in the filesystem is an item of the COW btree
– inodes, directory entries, file data, checksums, …

• Collections of btrees
– extent tree, subvol trees, chunk tree, …

Btrfs Btree

4 Btrfs: Overview & Requirements for a btrfs-osd

© 2011 Whamcloud, Inc.

Btrfs Key

struct btrfs_disk_key {

 __le64 objectid;

 u8 type;

 __le64 offset;

}

• Objectid (8 bytes)
– Each logical object (inode) has

an unique id

– This id is reported as the inode
number

– Most significant bit of the key

– All items of a given objectid are
grouped together in the btree

5 Btrfs: Overview & Requirements for a btrfs-osd

• Offset (8 bytes)
– Offset for a particular item in the

object

– For file extent, byte offset of the
start of the extent inside the file

– But also used to store hash for
directory entry lookup

• Type (1 byte)
– Item type

– e.g. inode, directory entries, xattr,
extent, ….

© 2011 Whamcloud, Inc.

Btrfs Item

6 Btrfs: Overview & Requirements for a btrfs-osd

struct btrfs_item {

 struct btrfs_disk_key key;

 __le32 offset;

 __le32 size;

}

btrfs_inode_item,

btrfs_dir_item,

btrfs_root_item,

btrfs_file_extent_item,

…

U

Unused space

Item 1

Item 2

Item 3

 Data for item 1

Data for item 2

 Data for item 3

O
N

E
 L

E
A

F
 B

L
O

C
K

© 2011 Whamcloud, Inc.

• Double indexation: by name & by inode number

• 1st index for filename lookup

• 2nd index for readdir to return data in inode
number order

• Back reference from inode to parent directory

• Metadata overhead quite larger than for ext4
– 3 items required for a link and each one stores the filename

Directory Structures

7 Btrfs: Overview & Requirements for a btrfs-osd

directory objectid BTRFS_DIR_ITEM_KEY 64-bit filename hash

directory objectid BTRFS_DIR_INDEX_KEY inode sequence #

© 2011 Whamcloud, Inc.

• Create pool of storage out of all devices

• Allocate space for filesystem’s use in chunks
(1GB+)

• Put all those chunks together to create a
logical address space
– Different type of groups: system, metadata, data

– Different RAID configurations (RAID 0/1/10)

– Logical addressing allows efficient chunk relocation

• Logical to physical address mapping handled
by a dedicated btree, namely the chunk tree

Storage Pool Management

8 Btrfs: Overview & Requirements for a btrfs-osd

© 2011 Whamcloud, Inc.

Chunk Tree

9 Btrfs: Overview & Requirements for a btrfs-osd

Logical address space

Physical mapping

Chunk 1 / RAID1

Chunk 2 / RAID0

Chunk 3 / RAID0

Free

Device 1

Free

Free

Device 2 Device 3

© 2011 Whamcloud, Inc.

• List recently modified files very quickly
– No need to scan every single inode as with e2scan

– Parse btree and use generation pointers to identify parts of the
btree that have been modified since a given transid

 $ btrfs subvol find-new / 38276

 inode 188677 file offset 1662976 len 4096 disk start 18154328064

 offset 0 gen 38279 flags NONE var/log/kern.log

 inode 188678 file offset 307200 len 4096 disk start 18154680320

 offset 0 gen 38280 flags NONE var/log/auth.logtransid

 marker was 38277

Some Cool Btrfs Features (1/2)

10 Btrfs: Overview & Requirements for a btrfs-osd

© 2011 Whamcloud, Inc.

• Store small files (≤4k) in the btree leaves
– Max size configurable through max_inline mount option

• Checksum support
– Currently uses crc32c for data & metadata

– Data checksums stored in a dedicated btree

• In-place conversion from ext3/ext4
– Create a btrfs filesystem inside the free space of the ext4 fs

– The new btrfs filesystem duplicates the metadata and points to
the data blocks of the ext4 fs

– Preserve original ext4 fs (data & metadata) as a snapshot

– Can then choose to rollback to ext4 or delete the snapshot

Some Cool Btrfs Features (2/2)

11 Btrfs: Overview & Requirements for a btrfs-osd

© 2011 Whamcloud, Inc.

• Offline btrfsck still under development

• No background scrubbing yet
– Patches available but no landed yet

• No hybrid storage support yet (like L2ARC)
– Work underway to have allocation profiles (e.g. put metadata &

log tree on SSD)

• No quota support
– Not even space accounting

• RAID 5/6 support still under development
– Only support RAID 0/1/10

• Lack of proper error handling
– Still too many « ret = func(); BUG_ON(ret); » in the code

Shortcomings

12 Btrfs: Overview & Requirements for a btrfs-osd

© 2011 Whamcloud, Inc.

• Btrfs looks like the ideal backend filesystem
for Lustre:
– All the features of a modern filesystem

– Already included into the kernel mainline

– Expected to be the de facto filesystem of all Linux distributions
soon

• Btrfs less mature than ZFS

• But btrfs is catching up very quickly
– Many companies (Fujitsu, Red Hat, Intel, Novell, …) dedicate

developers

Btrfs as Backend Filesystem for Lustre

13 Btrfs: Overview & Requirements for a btrfs-osd

© 2011 Whamcloud, Inc.

• Lustre FID to btrfs objectid mapping

• dmu-osd uses a dedicated ZAP

• ldiskfs-osd uses an IAM directory (namely oi.16)

• btrfs-osd could use a regular directory, but:
– Metadata overhead (3 items) bigger than with other filesystems

• 2 dir item = 2 * (25 + 30) = 110 bytes

• 1 inode backref = 25 + 10 = 35 bytes

• = 145 bytes = 145MB for 1M files. Maybe not such a big concern

– Would need to increase nlink not to confuse btrfsck

• Problem on the MDT since we return nlink to clients

• Add a new item type
– Less overhead, but require changes to btrfsck to support the new

item

Object Index

14 Btrfs: Overview & Requirements for a btrfs-osd

© 2011 Whamcloud, Inc.

• Metadata overhead must be accounted to prevent
ENOSPC error

• Btrfs books 96KB per item

• Chunk allocation might also be needed

• Working on estimating the worst case scenario (max #splits)

• Lustre grant must be changed accordingly

Space Reservation & Lustre Grant

15 Btrfs: Overview & Requirements for a btrfs-osd

Operation #items Space

creat/mknod/mkdir/link 5 480KB

unlink 10 ~1MB

rename 20 ~1.9MB

1MB write (no split) 1 + csum 224KB

1MB write (with splits) (#splits + 1) + csum (#splits + 1) * 96KB + 128KB

© 2011 Whamcloud, Inc.

• Extended Attributes
– Striping info (LOV EA), metadata attributes (LMA), filter fid EA

– Btrfs stores EA in a separate item

• One EA is currently limited to the size of a leaf (i.e. 4KB)

• Problem for large striping support

• Inode versioning
– Needed for VBR

– Can use the « sequence » field of btrfs_inode_item

• Write ahead log breaks transaction ordering
– Out-of-order transactions not supported by Lustre

• No commit callback mechanism

• No btrfs functions are exported

Other Problems to Consider

16 Btrfs: Overview & Requirements for a btrfs-osd

© 2010 Whamcloud, Inc. © 2010 Whamcloud, Inc.

• Johann Lombardi
Principle Engineer

Whamcloud, Inc.

Thank You

© 2011 Whamcloud, Inc.

• Each btree block has a btrfs_header

• This header includes:
– The block number where the block is supposed to live

– A generation number

• Everything that points to a btree block also
stores the generation field it expects that
block to have

• This allows to handle phantom & misplaced
writes

btrfs_header

18 Btrfs: Overview & Requirements for a btrfs-osd

© 2011 Whamcloud, Inc.

• Not only from inode to parent directory

• Also file extent backrefs, btree extent
backrefs, …

• Purposes:
– Integrity check: check that a reference is valid

– Quickly find holder of an extent, useful when

• A given block is corrupted

• The filesystem has to be resized (shrunk)

Back Reference

19 Btrfs: Overview & Requirements for a btrfs-osd

© 2011 Whamcloud, Inc.

• Delayed allocation support

• Store btree of free extents on disk

• Build red-black tree to track free space in
memory

• Different allocation policy for rotating media &
SSD

• Different allocation policy for data & metadata

Allocation Algorithms

20 Btrfs: Overview & Requirements for a btrfs-osd

© 2011 Whamcloud, Inc.

• COW btree efficient for long running
transactions
– Commit every 30s by default (vs 5s with jbd2/ext4)

• Slow for frequent commits

• Specialized log for synchronous operations
– e.g. fsync & O_SYNC writes

– File or directory items copied to a dedicated btree

– Synchronous operation on a given file only writes metadata for
that one file

• Very similar to ZFS’ approach with ZIL

Write Ahead Logging Tree

21 Btrfs: Overview & Requirements for a btrfs-osd

© 2011 Whamcloud, Inc.

• Currently use crc32c for data & metadata

• Data checksums stored in a dedicated btree

• Disk format has room for
– 256-bit checksum for metadata (= btree checksum)

– Up to a full leaf block (i.e. 4KB) for data blocks

– Inline data covered by checksum of the btree block

Checksums

22 Btrfs: Overview & Requirements for a btrfs-osd

© 2011 Whamcloud, Inc.

• Writeable snapshots / subvolume support

• File cloning (cp --reflink)

• Transparent compression using zlib or lzo

• Online resize & defragmentation
– Online device addition/removal

– Online space rebalancing

• SSD optimizations
– Trim support (-o discard)

– Allocation optimizations

Some Other Cool Btrfs Features

23 Btrfs: Overview & Requirements for a btrfs-osd

