Project Description

High Energy Physics studies the properties of matter, energy, space and time at the smallest
possible distances. Scientists do this by building particle detectors of great size and
complexity – in some cases weighing thousands of tons and having millions of readouts.
Scientists then use these detectors by comparing computer simulations of what we would
expect to see if different theories hold true with the actual data, and seeing which, if any,
match. Progress can be made by improving either end ofthis comparison, and this effort aims
to improve the quality of the computer simulation. Using supercomputers, we can produce
more simulated events, and simulation events of better accuracy or greater complexity than
we could otherwise.
This project supports a team of experimental and theoretical physicists working together to
answer fundamental questions for High Energy Physics. We will create an end-station to
advance computation on High Performance Computing resources in support of High Energy
Physics experiments. The end-station environment will enable other particle physicists to
use supercomputers more easily and quickly than they would on their own, to the benefit of
the broader particle physics community. The project extends scientific research by
producing simulated collision events for the ATLAS experiment at the Large Hadron Collider
that are too complex for simulation on the Grid, by improving calculation of theoretical
matrix elements used in comparing simulation with data, and by simulating and analyzing
data of muon and neutrino experiments based as Fermilab and elsewhere.

Allocation History

Source Hours Start Date End Date