The Game of Life is an example of cellular automaton that utilizes a 2 dimensional stencil. For each game iteration, the integer value of each cell in the 2D game grid is determined by summing it’s 8 closest neighbors and then applying the game rules, with the initial game state randomly generated. Each cell has two states, alive or dead, represented as an integer 1 or 0. Periodic boundary conditions are enforced through the use of ghost cells. Cell updates are not propagated through until the end of each iteration, leaving the board static during calculations.
If we wish to play GOL with a 3×3 grid to compensate for the periodic boundary conditions we will need to actually hold a 5×5 grid in memory. This would be the area inside of the blue dashed line in the image below. The cells that are not part of the ‘visible’ 3×3 grid but part of the 5×5 grid we will refer to as ghost cells.

The full source can be viewed or downloaded at the OLCF GitHub. Please direct any questions or comments to help@nccs.gov
GOL.c
#include <stdio.h> #include <stdlib.h> #define SRAND_VALUE 1985 // Add up all neighbors and return the number of live neighbors int getNeighbors(int** grid, int i, int j) { int numNeighbors; numNeighbors = grid[i+1][j] + grid[i-1][j] //lower upper + grid[i][j+1] + grid[i][j-1] //right left + grid[i+1][j+1] + grid[i-1][j-1] //diagonals + grid[i-1][j+1] + grid[i+1][j-1]; return numNeighbors; } int main(int argc, char* argv[]) { int i,j,iter; // Linear game grid dimension int dim = 1024; // Number of game iterations int maxIter = 1024; // Allocate square grid of (dim+2)^2 elements, 2 added for ghost cells int **grid = (int**) malloc( sizeof(int*) * (dim+2) ); for(i = 0; i<dim+2; i++) grid[i] = (int*) malloc( sizeof(int*) * (dim+2) ); // Allocate newGrid int **newGrid = (int**) malloc( sizeof(int*) * (dim+2) ); for(i = 0; i<dim+2; i++) newGrid[i] = (int*) malloc( sizeof(int*) * (dim+2) ); // Assign initial population randomly srand(SRAND_VALUE); for(i = 1; i<=dim; i++) { for(j = 1; j<=dim; j++) { grid[i][j] = rand() % 2; } } // Main game loop for (iter = 0; iter<maxIter; iter++) { // Left-Right columns for (i = 1; i<=dim; i++) { grid[i][0] = grid[i][dim]; // Copy first real column to right ghost column grid[i][dim+1] = grid[i][1]; // Copy last real column to left ghost column } // Top-Bottom rows for (j = 0; j<=dim+1; j++) { grid[0][j] = grid[dim][j]; // Copy first real row to bottom ghost row grid[dim+1][j] = grid[1][j]; // Copy last real row to top ghost row } // Now we loop over all cells and determine their fate for (i = 1; i<=dim; i++) { for (j = 1; j<=dim; j++) { // Get the number of neighbors for a given grid point int numNeighbors = getNeighbors(grid, i, j); // Here we have explicitly all of the game rules if (grid[i][j] == 1 && numNeighbors < 2) newGrid[i][j] = 0; else if (grid[i][j] == 1 && (numNeighbors == 2 || numNeighbors == 3)) newGrid[i][j] = 1; else if (grid[i][j] == 1 && numNeighbors > 3) newGrid[i][j] = 0; else if (grid[i][j] == 0 && numNeighbors == 3) newGrid[i][j] = 1; else newGrid[i][j] = grid[i][j]; } } // Done with one step so we swap our grids and iterate again int **tmpGrid = grid; grid = newGrid; newGrid = tmpGrid; }// End main game loop // Sum up alive cells and print results int total = 0; for (i = 1; i<=dim; i++) { for (j = 1; j<=dim; j++) { total += grid[i][j]; } } printf("Total Alive: %d\n", total); // Release memory free(grid); free(newGrid); return 0; }
Compiling GOL.c
$ cc GOL.c -o gol.out
Running GOL.c
$ aprun ./gol.out Total Alive: 45224
GOL.f90
! Add up all neighbors and return the number of live neighbors integer function neighbors(grid, i, j) implicit none integer,intent(in) :: grid(:,:), i, j neighbors = grid(i,j+1) + grid(i,j-1)& !right & left + grid(i+1,j) + grid(i-1,j)& !lower & upper + grid(i+1,j+1) + grid(i-1,j-1)& !diagonals + grid(i-1,j+1) + grid(i+1,j-1) return end function neighbors program main implicit none interface integer function neighbors(grid, i, j) integer,intent(in) :: grid(:,:), i, j end function neighbors endinterface integer :: i,j,iter,seed(8),numNeighbors,total real :: randm ! Linear game grid dimension integer :: dim = 1024 ! Number of game iterations integer :: maxIter = 2**10 ! Game grid pointers integer,dimension(:,:),pointer :: grid, newGrid, tmpGrid ! Allocate square grid of (dim+2)^2 elements, 2 added for ghost cells allocate(grid(dim+2,dim+2)) allocate(newGrid(dim+2,dim+2)) ! Assign initial population randomly seed = (/1985, 2011, 2012, 500, 24, 15, 99, 8/) call random_seed(PUT=seed) do j=1,dim do i=1,dim call random_number(randm) grid(i,j) = nint(randm) enddo enddo ! Main game loop do iter=1,maxITer ! Top-Bottom ghost rows do j=2,dim+1 grid(1,j) = grid(dim+1,j) !Copy first game grid row to bottom ghost row grid(dim+2,j) = grid(2,j) !Copy first game grid row to top ghost row enddo ! Left-Right ghost columns do i=1,dim+2 grid(i,1) = grid(i, dim+1) !Copy first game grid column to right ghost column grid(i,dim+2) = grid(i,2) !Copy last game grid column to left ghost column enddo ! Now we loop over all cells and determine their fate do j=2,dim+1 do i=2,dim+1 ! Get the number of neighbors for a given grid point numNeighbors = neighbors(grid, i ,j) ! Here we have explicitly all of the game rules if(grid(i,j) == 1 .AND. numNeighbors < 2) then newGrid(i,j) = 0 elseif(grid(i,j) == 1 .AND. (numNeighbors == 2 .OR. numNeighbors == 3)) then newGrid(i,j) = 1 elseif(grid(i,j) == 1 .AND. numNeighbors > 3) then newGrid(i,j) = 0 elseif(grid(i,j) == 0 .AND. numNeighbors == 3) then newGrid(i,j) = 1 else newGrid(i,j) = grid(i,j) endif enddo enddo ! Done with one step so we swap our grids and iterate again tmpGrid => grid grid => newGrid newGrid => tmpGrid enddo! End main game loop ! Sum up alive cells and print results total = 0 do j=2,dim+1 do i=2,dim+1 total = total + grid(i,j) enddo enddo print *, "Total Alive", total ! Release memory deallocate(grid) deallocate(newGrid) end program
Compiling GOL.f90
$ ftn GOL.f90 -o GOL.out
Running GOL.f90
$ aprun ./gol.out Total Alive 46464