
A Preview of MPI 3.0:
The Shape of Things to Come

Manjunath Gorentla Venkata
manjugv@ornl.gov

Joshua Hursey

hurseyjj@ornl.gov (or jhursey@uwlax.edu)

2

Overview of Seminar Series

• Monday, June 25 - 3-4 pm:
–  MPI Process (brief)
–  Timeline to 3.0
–  MPI 3.0 Fortran Bindings
–  MPI 2.2

•  Tuesday, June 26 - 3-4 pm
–  Collectives:

•  Neighborhood
•  Nonblocking

–  Communicator Creation:
•  Noncollective
•  Nonblocking duplication

•  Thursday, June 28 - 3-4 pm
–  MPI Matched Probe/Recv
–  RMA / One-sided

enhancements
–  Tool Interfaces
–  MPI <next>

•  Fault Tolerance
•  Hybrid, collectives, …

3

Feedback and Discussion

• We want lots of feedback from you!
•  What features are useful?
•  What features would you like to know more about?
•  What features are not useful?
•  What features are missing?

• Please interject with questions as we go
• Please send us comments and questions afterward

•  We can also help connect you with prototypes and researchers

•  This will help us better support you on OLCF machines
•  Determine areas to focus research and development efforts
•  Prototype è Production-quality, scalable algorithms

4

Overview of Seminar Series

• Monday, June 25 - 3-4 pm:
–  MPI Process (brief)
–  Timeline to 3.0
–  MPI 3.0 Fortran Bindings
–  MPI 2.2

5

The MPI Process

• MPI Standard: Open standard ratified by the MPI Forum
• MPI Forum Standardization Body

•  Started meeting again in 2007 after a 10 year hiatus
•  Meets 4-5 times a year (prior to this year, 6-7 times a year)

• Process
•  Each organization gets 1 vote (Must attend 2 out of last 3 meetings to vote)
•  Proposals must go through a long process before standardization

•  At least 3 meetings: First Reading è First Vote è Second Vote
•  Simple majority vote required to pass

• Anyone can attend: (it's a lot of fun … really … well somewhat)
•  Manju is the representative from ORNL

6

MPI Standard Timeline

• MPI Versions
•  1.0 – 1994
•  1.1 – 1995
•  1.2 – 1997
•  2.0 – 1997

•  1.3 – 2008
•  2.1 – 2008
•  2.2 – 2009 : Current - Combined 1.X and 2.X documents
•  3.0 – 2012 : In preparation

7

MPI Standard Timeline

• MPI Standard 3.0
•  July 2012 – Chicago, IL

•  Last of the Second Votes for 3.0 proposals
•  Final chapter edits (integrating proposals)
•  Prepare a 'Draft Standard' for circulation

•  September 2012 – Vienna, Austria
•  Formal Reading of the whole standard*

*We might do this over the phone and release 3.0 in September (to be decided in July)
•  December 2012 – San Jose, CA

•  Final Chapter vote
•  Release 3.0

8

MPI Standard Implementation Timeline

• Prototype implementations were required for most proposals
•  Some prototypes are not really for public consumption

•  Implementation availability is on a per-feature basis
•  We will discuss availability as we mention features

•  If the feature is something you want access to let us know
•  We will get you in contact with the appropriate people
•  We will also push to get these features into the various MPI

implementations on OLCF machines

• Generally, it may take another year or so before all of these
features are widely available

9

Overview of Seminar Series

• Monday, June 25 - 3-4 pm:
–  MPI Process (brief)
–  Timeline to 3.0
–  MPI 3.0 Fortran Bindings
–  MPI 2.2

10

MPI 3.0 Fortran Bindings

•  The way of the future: use mpi_f08
• Requirements Highlights:

•  Comply with Fortran standard (for the first time)
•  Fortran 2008 Compliance

•  MPI Forum worked together with the Fortran Standards Technical Committee
http://www.j3-fortran.org/

•  Compile-time subroutine parameter type checking
•  "ierr" is now an optional argument!
•  Convenient upgrade migration path for users
•  Send/Recv sub-arrays
•  Correct asynchronous support

Thanks to Craig Rasmussen (LANL), Rolf Rabenseifner (HLRS), Jeff Squyres (Cisco Systems)

11

MPI 3.0 Fortran Bindings:
Subroutine Parameter Type Safety

• All parameter types are checked
•  Pass the wrong type or skip a required parameter = Compiler error

• MPI handles are uniquely typed
•  MPI handles are derived types: TYPE(MPI_Comm)
•  Pass MPI_Datatype to an MPI_Comm = Compiler error

• Examples:
•  call MPI_Send(buf, count, datatype, dest, comm, tag, ierr)	
•  call MPI_Send(buf, count, datatype, dest, tag, comm, ierr)	
•  call MPI_Send(buf, count, datatype, dest, comm, ierr)	

Thanks to Craig Rasmussen (LANL), Rolf Rabenseifner (HLRS), Jeff Squyres (Cisco Systems)

12

MPI 3.0 Fortran Bindings:
ierr is now optional!

•  ierror argument to MPI subroutines is now optional!
•  It is the only optional argument (at the moment?)

• Examples:
•  call MPI_Send(buf, count, datatype, dest, tag, comm, ierr)	
•  call MPI_Send(buf, count, datatype, dest, tag, comm)	

Thanks to Craig Rasmussen (LANL), Rolf Rabenseifner (HLRS), Jeff Squyres (Cisco Systems)

13

MPI 3.0 Fortran Bindings:
Interpretability & Backwards Compatibility

•  The way of the future: use mpi_f08	
•  "include mpif.h" and "use mpi" will not go away
•  No backwards-incompatible changes added to the standard

•  Interpretability of all three in a single application
•  1 per subroutine
•  Easy conversion between new and old Fortran handles

• Applications (libraries) can gradually adopt "use mpi_f08"
•  Requirement of a convenient migration path for users

Thanks to Craig Rasmussen (LANL), Rolf Rabenseifner (HLRS), Jeff Squyres (Cisco Systems)

14

MPI 3.0 Fortran Bindings:
Interpretability & Backwards Compatibility

Thanks to Craig Rasmussen (LANL), Rolf Rabenseifner (HLRS), Jeff Squyres (Cisco Systems)

 subroutine legacy_subroutine(oldcomm, newcomm)	
 include 'mpif.h'	
 integer oldcomm, newcomm	
	
 call new_subroutine(oldcomm, newcomm)	
 call MPI_Comm_send(..., newcomm)	
 end subroutine	
	
	
 subroutine new_subroutine(oldcomm, newcomm)	
 use mpi_f08	
 integer oldcomm, newcomm	
 type(MPI_Comm) oldcomm_f08, newcomm_f08	
	
 oldcomm_f08%MPI_VAL = oldcomm	
 call MPI_Comm_dup(oldcomm_f08, newcomm_f08)	
 newcomm = newcomm_f08%MPI_VAL	
 end subroutine	

15

MPI 3.0 Fortran Bindings:
Send/Recv Sub-Arrays

• Send and receive sub-arrays

• Currently you would need to build a new datatype for this

• Requires compiler support
•  Estimated 1-2 years

Thanks to Craig Rasmussen (LANL), Rolf Rabenseifner (HLRS), Jeff Squyres (Cisco Systems)

call MPI_Irecv(Array(1,:), ..., request, ...)	

call MPI_Type_create_subarray(..., dt, ierr)	
call MPI_Irecv(Array(:,:), 1, dt, ..., request, ...)	

16

MPI 3.0 Fortran Bindings:
Correct MPI Asynchronous Support

• Guarantee of correct asynchronous operations

• Problem stems from: Fortran has no pointer aliasing
•  Compilers tend to aggressively re-order code
•  Compiler can move the code a=buffer(1) above the MPI_Wait()	

•  Fixed with some new Fortran language constructs
•  DIMENSION(..) and ASYNCHRONOUS attribute for choice buffers

• Requires compiler support
•  Estimated 1-3 years

Thanks to Craig Rasmussen (LANL), Rolf Rabenseifner (HLRS), Jeff Squyres (Cisco Systems)

call MPI_Irecv(buffer, ..., request, ...)	
...	
call MPI_Wait(request, status)	
a = buffer(1)	

17

MPI 3.0 Fortran Bindings:
Availability

• Open MPI Prototype
•  Available today in the trunk (scheduled part of the 1.7 release series)
•  mpifort wrapper compiler replaces mpif77 and mpif90	

•  mpif77	
 and	
 mpif90	
 s&ll	
 exist	
 for	
 backwards	
 compa&bility…	
 for	
 a	
 while	

•  ompi_info will indicate the f08 features (not) supported by the compiler

Thanks to Craig Rasmussen (LANL), Rolf Rabenseifner (HLRS), Jeff Squyres (Cisco Systems)

18

MPI 3.0 Fortran Bindings:
Availability

• Open MPI Prototype
•  Currently supports:

•  Enhanced Type Safety
•  Optional ierr parameter
•  Interoperability of mpif.h, use mpi, and use mpi_f08 together in a single application

•  Eventually will fully support: (write to your favorite compiler vendor!)
•  Send/Recv Fortran array subsection (1-2 years)
•  Correct MPI asynchronous support (1-3 years)

•  Latest testing shows:
•  gfortran: Does not support any of the mpi_f08 stuff
•  Intel: Supports everything except the "Eventually" clauses
•  PGI/Absoft: Supports mpi_f08, but not quite everything (see ompi_info for details)

Thanks to Craig Rasmussen (LANL), Rolf Rabenseifner (HLRS), Jeff Squyres (Cisco Systems)

19

MPI 3.0 Fortran Bindings:
Highlights

•  The way of the future: use mpi_f08	
•  Comply with Fortran standard (for the first time)

•  Fortran 2008 Compliance
•  MPI Forum worked together with the Fortran Standards Technical Committee

http://www.j3-fortran.org/

•  Compile-time subroutine parameter type checking
•  "ierr" is now an optional argument!
•  Convenient upgrade migration path for users
•  Send/Recv sub-arrays
•  Correct asynchronous support

Thanks to Craig Rasmussen (LANL), Rolf Rabenseifner (HLRS), Jeff Squyres (Cisco Systems)

20

Overview of Seminar Series

• Monday, June 25 - 3-4 pm:
–  MPI Process (brief)
–  Timeline to 3.0
–  MPI 3.0 Fortran Bindings
–  MPI 2.2

