

A Crash Introduction to Parallel
Programming with MPI

Arnold Tharrington
National Center for Computational Sciences

 Scientific Computing Group

October 6, 2012

Course Outline
● Motivation for parallel programming
● What is MPI?
● The MPI programming model
● MPI environmental functions
● Point to Point communications
● Collective communications
● Computing π and performance considerations

What is MPI?

● MPI stands for Message Passing Interface
● MPI is an implementation specification for

parallel programming message passing
libraries
– MPI is the “de facto” standard of message passing

in the HPC community

History of MPI

● History
– Distributed computing develops between the

1980s and the early 1990s – a number of
incompatible message passing libraries exist

– One standard to rule them all
● Through efforts of numerous people and organizations

between 1992 and 1994, the MPI standard is created
and the final draft is released in May 1994

Motivation For Parallel
Programming

● The goal is to reduce the wall time to solution
– Frequency Scaling

● Limited by power consumption, P=CV2F
– P is power consumed
– C is the switch capacitance
– V is the supply voltage
– F is the switching frequency

● Intel's cancellation of Tejas and Jayhawk processors in May 20041

– Demarcates Intel's shift from single core to multi-core processors

– Multiple processing threads
● Divide the computational tasks between distinct processing “threads”
● Ideally the wall time should decrease linearly with the number of execution threads

1. Tejas and Jayhawk <http://en.wikipedia.org/wiki/Tejas_and_Jayhawk>

The MPI Programming Model

Subtask 1
Subtask 2
Subtask 3

.

.
Subtask N

Computational Task

MPI task 0 MPI task 1 MPI task 2 MPI task 3

MPI task 0
memory space

MPI task 1
memory space

MPI task 2
memory space

MPI task 3
memory space

Subtasks 0
Subtasks 1
.
.
.
Subtasks N

0

Subtasks 0
Subtasks 1
.
.
.
Subtasks N

1

Subtasks 0
Subtasks 1
.
.
.
Subtasks N

2

Subtasks 0
Subtasks 1
.
.
.
Subtasks N

3

Message Passing via MPI

The MPI Programming Model
(cont.)

Structure of a MPI Program

MPI include file

Initialize MPI environment

Do work & make message passing calls

Terminate MPI environment

Program ends

Program begins Serial code

Serial code

Parallel code

Computing Pi
● If we randomly throw a

dart into the square
region, what is the
probability of the dart
landing in the red
circle?

● Probability =

RR

acircle

asquare

=π
4

Computing Pi Algorithm
● Random generate a set of points,

(x,y), in the blue square region

● Count the number of tries and the
number of hits that land in the circle

● A hit if

●

π=4
N hits

N tries

x2
+ y2

≤R2

−R≤x≤R

−R≤ y≤R

RR

O
x

y

MPI_COMM_WORLD

● The initial universe intra-communicator for all
processes
– Defined when MPI_Init(...) is called

– Within each communicator each MPI task has its
own unique id called the rank.

– The ranks are contiguous starting from 0.

0
1

2
3

4

5

MPI Environmental Functions

● MPI_Init

– Initializes the MPI execution environment. This
function must be called in every MPI program, must
be called before any other MPI functions and must
be called only once in an MPI program. For C
programs, MPI_Init may be used to pass the
command line arguments to all processes, although
this is not required by the standard and is
implementation dependent.

– C bindings: MPI_Init (&argc,&argv)
– Fortran bindings: MPI_INIT (ierr)

● MPI_Finalized

– Terminates the MPI execution environment.
This function should be the last MPI routine
called in every MPI program - no other MPI
routines may be called after it.

– C bindings: MPI_Finalized()
– Fortran bindings: MPI_Finalized(ierr)

● MPI_Comm_size
– Determines the number of processes in the group

associated with a communicator. Generally used
within the communicator MPI_COMM_WORLD to
determine the number of processes being used by
your application.

– C bindings: MPI_Comm_size (comm,&size)

– Fortran bindings: MPI_COMM_SIZE (comm,size,ierr)

● MPI_Comm_rank
– Determines the rank of the calling process within the

communicator. Initially, each process will be assigned a
unique integer rank between 0 and number of
processors - 1 within the communicator
MPI_COMM_WORLD. This rank is often referred to as a
task ID. If a process becomes associated with other
communicators, it will have a unique rank within each of
these as well.

– C bindings: MPI_Comm_size (comm,&rank)

– Fortran bindings: MPI_COMM_SIZE (comm,rank,ierr)

● MPI_Abort
– Terminates all MPI processes associated with the

communicator. In most MPI implementations it
terminates ALL processes regardless of the
communicator specified.

– C bindinds: MPI_Abort (comm,errorcode)

– Fortran bindings: MPI_ABORT (comm,errorcode,ierr)

Point to Point Communications

0
1

2
3

4

5

How do we send a message from process 0 to process 1?

● Sender
– Buffer

– Data count

– Data type

– Destination

– Tag

– Communicator

Point To Point Communcations

● Receiver
– Buffer

– Data count

– Data Type

– Source

– Tag

– Communicator

MPI_Send
(&buf,count,datatype,dest,tag,comm)

MPI_Recv
(&buf,count,datatype,source,tag,comm,&status)

Order and Fairness
● Order:

– MPI guarantees that messages will not
overtake each other.

– If a sender sends two messages (Message 1
and Message 2) in succession to the same
destination, and both match the same
receive, the receive operation will receive
Message 1 before Message 2.

– If a receiver posts two receives (Receive 1
and Receive 2), in succession, and both are
looking for the same message, Receive 1
will receive the message before Receive 2.

– Order rules do not apply if there are multiple
threads participating in the communication
operations.

● Fairness:
– MPI does not guarantee

fairness - it's up to the
programmer to prevent
"operation starvation".

–

– Example: task 0 sends a
message to task 2. However,
task 1 sends a competing
message that matches task 2's
receive. Only one of the sends
will complete.

● MPI_Send
– Basic blocking send operation. Routine returns only after

the application buffer in the sending task is free for reuse.
Note that this routine may be implemented differently on
different systems. The MPI standard permits the use of a
system buffer but does not require it. Some implementations
may actually use a synchronous send (discussed below) to
implement the basic blocking send.

–

– C bindings: MPI_Send
(&buf,count,datatype,dest,tag,comm)

– Fortran bindings:
MPI_SEND(buf,count,datatype,dest,tag,comm,ierr)

● MPI_Recv
– Receive a message and block until the requested

data is available in the application buffer in the
receiving task.

– C bindings: MPI_Recv
(&buf,count,datatype,source,tag,comm,&status)

– Fortran bindings: MPI_RECV
(buf,count,datatype,source,tag,comm,status,ierr)

● MPI_Sendrecv
– Send a message and post a receive before blocking.

Will block until the sending application buffer is free
for reuse and until the receiving application buffer
contains the received message.

– MPI_Sendrecv(&sendbuf,sendcount,sendtype,dest,
sendtag,&recvbuf,recvcount,recvtype,source,
recvtag,comm,&status)

– MPI_SENDRECV(sendbuf,sendcount,sendtype,
dest,sendtag,recvbuf,
recvcount,recvtype,source,recvtag,comm,status,ierr)

–

–

Collective Communications

● MPI_Barrier
– Creates a barrier synchronization in a group. Each

task, when reaching the MPI_Barrier call, blocks
until all tasks in the group reach the same
MPI_Barrier call.

– C: MPI_Barrier (comm)

– Fortran: MPI_BARRIER (comm,ierr)

● MPI_Bcast
– Broadcasts (sends) a message from the process

with rank "root" to all other processes in the group.

– C: MPI_Bcast (&buffer,count,datatype,root,comm)

– Fortran: MPI_BCAST(buffer,
count,datatype,root,comm,ierr)

MPI_Bcast

0
1

2
3

4

5

0
1

2
3

4

5

Before broadcast

After broadcast

● MPI_Scatter
– Distributes distinct messages from a single source

task to each task in the group.

– MPI_Scatter (&sendbuf,sendcnt,sendtype,&recvbuf,
recvcnt,recvtype,root,comm)

– MPI_SCATTER (sendbuf,sendcnt,sendtype,recvbuf,
recvcnt,recvtype,root,comm,ierr)

MPI_Scatter

root

0

1

2

3

4

A

B
C

D

E
F

G

H
I

J

A

B

C

D

E

F

G

H

I

H

J
Send count=2
Recv count=2

● MPI_Gather
– Gathers distinct messages from each task in the group to a

single destination task. This routine is the reverse
operation of MPI_Scatter.

– MPI_Gather (&sendbuf,sendcnt,sendtype,&recvbuf,
recvcnt,recvtype,root,comm)

– MPI_GATHER (sendbuf,sendcnt,sendtype,recvbuf,
recvcnt,recvtype,root,comm,ierr)

MPI_Gather

root

0

1

2

3

4

A

B
C

D

E
F

G

H
I

J

A

B

C

D

E

F

G

H

I

H

J
Send count=2
Recv count=2

● MPI_Reduce
– Applies a reduction operation on all tasks in the

group and places the result in one task

– C: MPI_Reduce(&sendbuf,&recvbuf,count,
datatype, op, root,comm)

– MPI_REDUCE(sendbuf,recvbuf,count,datatype,
op, root,comm,ierr)

MPI Reduction Operation C Data Type Fortran Data Type

MPI_MAX maximum integer, float integer, real, complex

MPI_MIN minimum integer, float integer, real, complex

MPI_SUM sum integer, float integer, real, complex

MPI_PROD product integer, float integer, real, complex

MPI_Reduce

root 7

0

1

2

3

4

1.2

1.3

1.4

1.6count=1

1.5

MPI_SUM

References

● Blaise Barney, Message Passing Interface (MPI)
<https://computing.llnl.gov/tutorials/mpi>, February 14, 2012

● Gropp, W., Lusk E., and Skjellum, A. (1999) Using MPI. Cambridge,
Massachusetts: The MIT Press

● The Message Passing Interface (MPI) Standard
<http://www.mcs.anl.gov/research/projects/mpi>

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

