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Course Outline
● Motivation for parallel programming
● What is MPI?
● The MPI programming model
● MPI environmental functions
● Point to Point communications
● Collective communications
● Computing π and performance considerations



    

What is MPI?

● MPI stands for Message Passing Interface
● MPI is an implementation specification for 

parallel programming message passing 
libraries
– MPI is the “de facto” standard of message passing 

in the HPC community



    

History of MPI

● History
– Distributed computing develops between the 

1980s and the early 1990s – a number of 
incompatible message passing libraries exist

– One standard to rule them all
● Through efforts of numerous people and organizations 

between 1992 and 1994, the MPI standard is created 
and the final draft is released in May 1994 



    

Motivation For Parallel 
Programming

● The goal is to reduce the wall time to solution
– Frequency Scaling

● Limited by power consumption, P=CV2F
– P is power consumed
– C is the switch capacitance
– V is the supply voltage
– F is the switching frequency

● Intel's cancellation of Tejas and Jayhawk processors in May 20041

– Demarcates Intel's shift from single core to multi-core processors

– Multiple processing threads
● Divide the computational tasks between distinct processing “threads”
● Ideally the wall time should decrease linearly with the number of execution threads

   

1. Tejas and Jayhawk <http://en.wikipedia.org/wiki/Tejas_and_Jayhawk>



    

The MPI Programming Model
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Message Passing via MPI

The MPI Programming Model 
(cont.)



    

Structure of a MPI Program

MPI include file

Initialize MPI environment

Do work & make message passing calls 

Terminate MPI environment 

Program ends 

Program begins Serial code

Serial code

Parallel code



    

Computing Pi
● If we randomly throw a 

dart into the square 
region, what is the 
probability of the dart  
landing in the red 
circle?

● Probability = 
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Computing Pi Algorithm
● Random generate a set of points, 

(x,y),  in the blue square region

● Count the number of tries and the 
number of hits that land in the circle

● A hit if 

●
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MPI_COMM_WORLD

● The initial universe intra-communicator for all 
processes
– Defined when MPI_Init(...) is called

– Within each communicator each MPI task has its 
own unique id called the rank.

– The ranks are contiguous starting from 0.
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MPI Environmental Functions

● MPI_Init

– Initializes the MPI execution environment. This 
function must be called in every MPI program, must 
be called before any other MPI functions and must 
be called only once in an MPI program. For C 
programs, MPI_Init may be used to pass the 
command line arguments to all processes, although 
this is not required by the standard and is 
implementation dependent.

– C bindings: MPI_Init (&argc,&argv)
– Fortran bindings: MPI_INIT (ierr)



    

● MPI_Finalized

– Terminates the MPI execution environment. 
This function should be the last MPI routine 
called in every MPI program - no other MPI 
routines may be called after it.

– C bindings: MPI_Finalized( )
– Fortran bindings: MPI_Finalized(ierr)



    

● MPI_Comm_size
– Determines the number of processes in the group 

associated with a communicator. Generally used 
within the communicator MPI_COMM_WORLD to 
determine the number of processes being used by 
your application.

–  C bindings: MPI_Comm_size (comm,&size)

– Fortran bindings: MPI_COMM_SIZE (comm,size,ierr) 



    

● MPI_Comm_rank
– Determines the rank of the calling process within the 

communicator. Initially, each process will be assigned a 
unique integer rank between 0 and number of 
processors - 1 within the communicator 
MPI_COMM_WORLD. This rank is often referred to as a 
task ID. If a process becomes associated with other 
communicators, it will have a unique rank within each of 
these as well. 

–  C bindings: MPI_Comm_size (comm,&rank)

– Fortran bindings: MPI_COMM_SIZE (comm,rank,ierr) 



    

● MPI_Abort
– Terminates all MPI processes associated with the 

communicator. In most MPI implementations it 
terminates ALL processes regardless of the 
communicator specified. 

– C bindinds: MPI_Abort (comm,errorcode)

– Fortran bindings: MPI_ABORT (comm,errorcode,ierr) 



    

Point to Point Communications
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How do we send a message from process 0 to process 1?



    

● Sender
– Buffer

– Data count

– Data type

– Destination

– Tag

– Communicator

Point To Point Communcations

● Receiver
– Buffer

– Data count

– Data Type

– Source

– Tag

– Communicator

MPI_Send 
(&buf,count,datatype,dest,tag,comm)

MPI_Recv
(&buf,count,datatype,source,tag,comm,&status) 



    

Order and Fairness
● Order:

– MPI guarantees that messages will not 
overtake each other.

– If a sender sends two messages (Message 1 
and Message 2) in succession to the same 
destination, and both match the same 
receive, the receive operation will receive 
Message 1 before Message 2.

–  If a receiver posts two receives (Receive 1 
and Receive 2), in succession, and both are 
looking for the same message, Receive 1 
will receive the message before Receive 2.

– Order rules do not apply if there are multiple 
threads participating in the communication 
operations.

● Fairness:
– MPI does not guarantee 

fairness - it's up to the 
programmer to prevent 
"operation starvation".

–

– Example: task 0 sends a 
message to task 2. However, 
task 1 sends a competing 
message that matches task 2's 
receive. Only one of the sends 
will complete.



    

● MPI_Send
– Basic blocking send operation. Routine returns only after 

the application buffer in the sending task is free for reuse. 
Note that this routine may be implemented differently on 
different systems. The MPI standard permits the use of a 
system buffer but does not require it. Some implementations 
may actually use a synchronous send (discussed below) to 
implement the basic blocking send.

–

– C bindings: MPI_Send 
(&buf,count,datatype,dest,tag,comm)

– Fortran bindings: 
MPI_SEND(buf,count,datatype,dest,tag,comm,ierr) 



    

● MPI_Recv
– Receive a message and block until the requested 

data is available in the application buffer in the 
receiving task.

– C bindings: MPI_Recv 
(&buf,count,datatype,source,tag,comm,&status)

– Fortran bindings: MPI_RECV 
(buf,count,datatype,source,tag,comm,status,ierr) 



    

● MPI_Sendrecv
– Send a message and post a receive before blocking. 

Will block until the sending application buffer is free 
for reuse and until the receiving application buffer 
contains the received message.

– MPI_Sendrecv(&sendbuf,sendcount,sendtype,dest, 
sendtag,&recvbuf,recvcount,recvtype,source, 
recvtag,comm,&status)

– MPI_SENDRECV(sendbuf,sendcount,sendtype, 
dest,sendtag,recvbuf, 
recvcount,recvtype,source,recvtag,comm,status,ierr)

–

–



    

Collective Communications

● MPI_Barrier
– Creates a barrier synchronization in a group. Each 

task, when reaching the MPI_Barrier call, blocks 
until all tasks in the group reach the same 
MPI_Barrier call. 

– C: MPI_Barrier (comm)

– Fortran: MPI_BARRIER (comm,ierr)



    

● MPI_Bcast
– Broadcasts (sends) a message from the process 

with rank "root" to all other processes in the group.

– C: MPI_Bcast (&buffer,count,datatype,root,comm)

– Fortran: MPI_BCAST(buffer, 
count,datatype,root,comm,ierr) 



    

MPI_Bcast
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● MPI_Scatter
– Distributes distinct messages from a single source 

task to each task in the group.

– MPI_Scatter (&sendbuf,sendcnt,sendtype,&recvbuf, 
recvcnt,recvtype,root,comm)

– MPI_SCATTER (sendbuf,sendcnt,sendtype,recvbuf, 
recvcnt,recvtype,root,comm,ierr) 



    

MPI_Scatter
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● MPI_Gather
– Gathers distinct messages from each task in the group to a 

single destination task. This routine is the reverse 
operation of MPI_Scatter.

– MPI_Gather (&sendbuf,sendcnt,sendtype,&recvbuf, 
recvcnt,recvtype,root,comm)

– MPI_GATHER (sendbuf,sendcnt,sendtype,recvbuf, 
recvcnt,recvtype,root,comm,ierr) 



    

MPI_Gather
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● MPI_Reduce
– Applies a reduction operation on all tasks in the 

group and places the result in one task

– C: MPI_Reduce(&sendbuf,&recvbuf,count, 
datatype, op, root,comm)

– MPI_REDUCE(sendbuf,recvbuf,count,datatype, 
op, root,comm,ierr)

MPI Reduction Operation C Data Type Fortran Data Type

MPI_MAX maximum integer, float integer, real, complex 

MPI_MIN minimum integer, float integer, real, complex 

MPI_SUM sum integer, float integer, real, complex 

MPI_PROD product integer, float integer, real, complex 



    

MPI_Reduce
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