
Porting The Spectral Element
Community Atmosphere Model (CAM-SE)

To Hybrid GPU Platforms
ORNL

Cray
ORNL
ORNL
NREL

Nvidia
ORNL

Matthew Norman
Jeffrey Larkin

Richard Archibald
Valentine Anantharaj

Ilene Carpenter
Paulius Micikevicius

Katherine Evans http://www.scidacreview.org/0902/images/esg13.jpg

Titan Workshop

2

What is CAM-SE?
• Climate-scale atmospheric simulation for capability computing
• Comprised of (1) a dynamical core and (2) physics packages

3

What is CAM-SE?
• Climate-scale atmospheric simulation for capability computing
• Comprised of (1) a dynamical core and (2) physics packages

Dynamical Core
1.  “Dynamics”: wind, energy, & mass
2.  “Tracer” Transport: (H2O, CO2, O3, …)

Transport quantities not advanced by the dynamics

http://esse.engin.umich.edu/groups/admg/
dcmip/jablonowski_cubed_sphere_vorticity.png

4

What is CAM-SE?
• Climate-scale atmospheric simulation for capability computing
• Comprised of (1) a dynamical core and (2) physics packages

http://esse.engin.umich.edu/groups/admg/
dcmip/jablonowski_cubed_sphere_vorticity.png

http://web.me.com/macweather/blogger/maweather_files/physprc2.gif

Physics Packages
Resolve anything interesting not
included in dynamical core (moist
convection, radiation, chemistry, etc)

Dynamical Core
1.  “Dynamics”: wind, energy, & mass
2.  “Tracer” Transport: (H2O, CO2, O3, …)

Transport quantities not advanced by the dynamics

5

Gridding, Numerics, & Target Run

http://www-personal.umich.edu/~paullric/A_CubedSphere.png

•  Cubed-Sphere + Spectral Element
•  Each cube panel divided into elements

6

Gridding, Numerics, & Target Run

http://www-personal.umich.edu/~paullric/A_CubedSphere.png

•  Cubed-Sphere + Spectral Element
•  Each cube panel divided into elements
•  Elements spanned by basis functions

7

Gridding, Numerics, & Target Run

http://www-personal.umich.edu/~paullric/A_CubedSphere.png

•  Cubed-Sphere + Spectral Element
•  Each cube panel divided into elements
•  Elements spanned by basis functions
•  Basis coefficients describe the fluid

8

Gridding, Numerics, & Target Run

http://www-personal.umich.edu/~paullric/A_CubedSphere.png

•  Cubed-Sphere + Spectral Element
•  Each cube panel divided into elements
•  Elements spanned by basis functions
•  Basis coefficients describe the fluid

Used CUDA FORTRAN from PGI
OACC Directives: Better software engineering option moving forward

9

Target 14km Simulations
•  16 billion degrees of freedom

10

Target 14km Simulations
•  16 billion degrees of freedom

–  6 cube panels

11

Target 14km Simulations
•  16 billion degrees of freedom

–  6 cube panels
–  240 x 240 columns of elements per panel

12

Target 14km Simulations
•  16 billion degrees of freedom

–  6 cube panels
–  240 x 240 columns of elements per panel
–  4 x 4 basis functions per element

13

Target 14km Simulations
•  16 billion degrees of freedom

–  6 cube panels
–  240 x 240 columns of elements per panel
–  4 x 4 basis functions per element
–  26 vertical levels

14

Target 14km Simulations
•  16 billion degrees of freedom

–  6 cube panels
–  240 x 240 columns of elements per panel
–  4 x 4 basis functions per element
–  26 vertical levels
–  110 prognostic variables

!,!u,!v, p

H2O , CO2 , O3 , CH4 , ...

15

Target 14km Simulations
•  16 billion degrees of freedom

–  6 cube panels
–  240 x 240 columns of elements per panel
–  4 x 4 basis functions per element
–  26 vertical levels
–  110 prognostic variables

•  Scaled to 14,400 XT5 nodes with 60% parallel efficiency

16

Target 14km Simulations
•  16 billion degrees of freedom

–  6 cube panels
–  240 x 240 columns of elements per panel
–  4 x 4 basis functions per element
–  26 vertical levels
–  110 prognostic variables

•  Scaled to 14,400 XT5 nodes with 60% parallel efficiency
•  Must simulate 1-2 thousand times faster than real time
•  With 10 second CAM-SE time step, need ≤ 10 ms per time step

–  32-64 columns of elements per node, 5-10 thousand nodes

17

CAM-SE Profile (XT5, 14km, 14K Nodes)
•  Original CAM-SE used 3 tracers (20% difficult to port)
•  Mozart chemistry provides 106 tracers (7% difficult to port)

–  Centralizes port to tracers with mostly data-parallel routines

Dynamics	
73%	

Tracers	
7%	

Physics	
16%	

Other	
4%	

3-‐Tracer	 CAM-‐SE	

Dynamics	
22%	

Tracers	
71%	

Physics	
6%	

Other	
1%	

106-‐Tracer	 CAM-‐SE	

18

CAM-SE Profile (XT5, 14km, 14K Nodes)
•  Original CAM-SE used 3 tracers (20% difficult to port)
•  Mozart chemistry provides 106 tracers (7% difficult to port)

–  Centralizes port to tracers with mostly data-parallel routines

Dynamics	
73%	

Tracers	
7%	

Physics	
16%	

Other	
4%	

3-‐Tracer	 CAM-‐SE	

Dynamics	
22%	

Tracers	
71%	

Physics	
6%	

Other	
1%	

106-‐Tracer	 CAM-‐SE	

Not	 Portable	

19

CAM-SE Profile (XT5, 14km, 14K Nodes)
•  Original CAM-SE used 3 tracers (20% difficult to port)
•  Mozart chemistry provides 106 tracers (7% difficult to port)

–  Centralizes port to tracers with mostly data-parallel routines

Dynamics	
73%	

Tracers	
7%	

Physics	
16%	

Other	
4%	

3-‐Tracer	 CAM-‐SE	

Dynamics	
22%	

Tracers	
71%	

Physics	
6%	

Other	
1%	

106-‐Tracer	 CAM-‐SE	

Very	 Easy	 To	 Port	

20

CAM-SE Profile (XT5, 14km, 14K Nodes)
•  Original CAM-SE used 3 tracers (20% difficult to port)
•  Mozart chemistry provides 106 tracers (7% difficult to port)

–  Centralizes port to tracers with mostly data-parallel routines

Dynamics	
73%	

Tracers	
7%	

Physics	
16%	

Other	
4%	

3-‐Tracer	 CAM-‐SE	

Dynamics	
22%	

Tracers	
71%	

Physics	
6%	

Other	
1%	

106-‐Tracer	 CAM-‐SE	

Fairly	 Easy	 To	 Port	

21

Process	 1	 Process	 0	

Communication Between Elements

22

Process	 1	 Process	 0	

Communication Between Elements

Physically occupy the same
location, Spectral Element
requires them to be equal

Edges are averaged, and the
average replaces both edges

23

Process	 1	 Process	 0	

Communication Between Elements

Implementation

Edge_pack: pack all element edges
into process-wide buffer. Data sent
over MPI are contiguous in buffer.

Bndry_exchange: Send & receive
data at domain decomposition
boundaries

Edge_unpack: Perform a weighted
sum for data at all element edges.

Physically occupy the same
location, Spectral Element
requires them to be equal

Edges are averaged, and the
average replaces both edges

24

Original Pack/Exchange/Unpack
•  Edge_pack ensures data for MPI is contiguous in buffer
•  MPI communication occurs in “cycles”

25

Original Pack/Exchange/Unpack
•  Edge_pack ensures data for MPI is contiguous in buffer
•  MPI communication occurs in “cycles”
•  A cycle contains a contiguous data region for MPI Cycle 1

Cycle 2

Cycle 3

Cycle 4

26

Original Pack/Exchange/Unpack
•  Edge_pack ensures data for MPI is contiguous in buffer
•  MPI communication occurs in “cycles”
•  A cycle contains a contiguous data region for MPI
•  Original pack/exchange/unpack

27

Original Pack/Exchange/Unpack
•  Edge_pack ensures data for MPI is contiguous in buffer
•  MPI communication occurs in “cycles”
•  A cycle contains a contiguous data region for MPI
•  Original pack/exchange/unpack

–  Pack all edges in a GPU Kernel

28

Original Pack/Exchange/Unpack
•  Edge_pack ensures data for MPI is contiguous in buffer
•  MPI communication occurs in “cycles”
•  A cycle contains a contiguous data region for MPI
•  Original pack/exchange/unpack

–  Pack all edges in a GPU Kernel
–  For each “send cycle”

•  Send cycle over PCI-e (D2H)
•  MPI_Isend the cycle

29

Original Pack/Exchange/Unpack
•  Edge_pack ensures data for MPI is contiguous in buffer
•  MPI communication occurs in “cycles”
•  A cycle contains a contiguous data region for MPI
•  Original pack/exchange/unpack

–  Pack all edges in a GPU Kernel
–  For each “send cycle”

•  Send cycle over PCI-e (D2H)
•  MPI_Isend the cycle

30

Original Pack/Exchange/Unpack
•  Edge_pack ensures data for MPI is contiguous in buffer
•  MPI communication occurs in “cycles”
•  A cycle contains a contiguous data region for MPI
•  Original pack/exchange/unpack

–  Pack all edges in a GPU Kernel
–  For each “send cycle”

•  Send cycle over PCI-e (D2H)
•  MPI_Isend the cycle

31

Original Pack/Exchange/Unpack
•  Edge_pack ensures data for MPI is contiguous in buffer
•  MPI communication occurs in “cycles”
•  A cycle contains a contiguous data region for MPI
•  Original pack/exchange/unpack

–  Pack all edges in a GPU Kernel
–  For each “send cycle”

•  Send cycle over PCI-e (D2H)
•  MPI_Isend the cycle

32

Original Pack/Exchange/Unpack
•  Edge_pack ensures data for MPI is contiguous in buffer
•  MPI communication occurs in “cycles”
•  A cycle contains a contiguous data region for MPI
•  Original pack/exchange/unpack

–  Pack all edges in a GPU Kernel
–  For each “send cycle”

•  Send cycle over PCI-e (D2H)
•  MPI_Isend the cycle

–  For each “receive cycle”
•  MPI_Wait for the data
•  Send cycle over PCI-e (H2D)

33

Original Pack/Exchange/Unpack
•  Edge_pack ensures data for MPI is contiguous in buffer
•  MPI communication occurs in “cycles”
•  A cycle contains a contiguous data region for MPI
•  Original pack/exchange/unpack

–  Pack all edges in a GPU Kernel
–  For each “send cycle”

•  Send cycle over PCI-e (D2H)
•  MPI_Isend the cycle

–  For each “receive cycle”
•  MPI_Wait for the data
•  Send cycle over PCI-e (H2D)

34

Original Pack/Exchange/Unpack
•  Edge_pack ensures data for MPI is contiguous in buffer
•  MPI communication occurs in “cycles”
•  A cycle contains a contiguous data region for MPI
•  Original pack/exchange/unpack

–  Pack all edges in a GPU Kernel
–  For each “send cycle”

•  Send cycle over PCI-e (D2H)
•  MPI_Isend the cycle

–  For each “receive cycle”
•  MPI_Wait for the data
•  Send cycle over PCI-e (H2D)

35

Original Pack/Exchange/Unpack
•  Edge_pack ensures data for MPI is contiguous in buffer
•  MPI communication occurs in “cycles”
•  A cycle contains a contiguous data region for MPI
•  Original pack/exchange/unpack

–  Pack all edges in a GPU Kernel
–  For each “send cycle”

•  Send cycle over PCI-e (D2H)
•  MPI_Isend the cycle

–  For each “receive cycle”
•  MPI_Wait for the data
•  Send cycle over PCI-e (H2D)

36

Original Pack/Exchange/Unpack
•  Edge_pack ensures data for MPI is contiguous in buffer
•  MPI communication occurs in “cycles”
•  A cycle contains a contiguous data region for MPI
•  Original pack/exchange/unpack

–  Pack all edges in a GPU Kernel
–  For each “send cycle”

•  Send cycle over PCI-e (D2H)
•  MPI_Isend the cycle

–  For each “receive cycle”
•  MPI_Wait for the data
•  Send cycle over PCI-e (H2D)

–  Unpack all edges in a GPU Kernel

37

•  For a cycle, PCI-e D2H depends only on packing that cycle
– Divide edge_pack into equal-sized cycles

1.  Find only the elements directly involved in each separate cycle
2.  Evenly divide remaining elements among the cycles

–  Associate each cycle with a unique CUDA stream
–  Launch each pack in its stream
–  After a cycle is packed, call async. PCI-e D2H in its Stream

•  Edge_unpack at MPI boundaries requires all MPI to be finished
•  However, internal unpacks can be done directly after packing

Optimizing Pack/Exchange/Unpack

38

•  For each cycle
–  Launch edge_pack kernel for the cycle in a unique stream
–  Call a cudaEventRecord for the stream’s packing event

Porting Strategy: Pack/Exchange/Unpack

39

•  For each cycle
–  Launch edge_pack kernel for the cycle in a unique stream
–  Call a cudaEventRecord for the stream’s packing event

Porting Strategy: Pack/Exchange/Unpack

40

•  For each cycle
–  Launch edge_pack kernel for the cycle in a unique stream
–  Call a cudaEventRecord for the stream’s packing event

Porting Strategy: Pack/Exchange/Unpack

41

•  For each cycle
–  Launch edge_pack kernel for the cycle in a unique stream
–  Call a cudaEventRecord for the stream’s packing event

Porting Strategy: Pack/Exchange/Unpack

42

•  For each cycle
–  Launch edge_pack kernel for the cycle in a unique stream
–  Call a cudaEventRecord for the stream’s packing event

Porting Strategy: Pack/Exchange/Unpack

43

•  For each cycle
–  Launch edge_pack kernel for the cycle in a unique stream
–  Call a cudaEventRecord for the stream’s packing event

Porting Strategy: Pack/Exchange/Unpack

44

•  Prepost each cycle’s MPI_irecv
•  While an MPI message remains pending

–  If all cycles finished packing (cudaEventQuery for all cycles’ pack)
•  Launch edge_unpack kernel over elements not dealing with MPI

–  For each cycle
•  If cycle finished packing (cudaEventQuery for the cycle’s pack)

– Call async. PCI-e D2H copy for the cycle’s MPI data
– Call cudaEventRecord for a PCI-e D2H event

•  If cycle finished D2H PCI-e (cudaEventQuery for the cycle’s D2H)
– Call MPI_Isend for the cycle’s MPI data

•  If MPI data has been received (MPI_Test for the cycle’s transfer)
– Call PCI-e H2D copy for the cycle’s MPI data

•  Call a device-wide barrier to ensure PCI-e H2D copies are done
•  Unpack elements dealing with MPI

Porting Strategy: Pack/Exchange/Unpack

45

Resulting Concurrency

http://regmedia.co.uk/2011/05/22/cray-xk6_super-blade.jpg

http://www.thinkdigit.com/FCKeditor/uploads/26mar10470oin342t.jpg

46

Resulting Concurrency

http://regmedia.co.uk/2011/05/22/cray-xk6_super-blade.jpg

http://www.thinkdigit.com/FCKeditor/uploads/26mar10470oin342t.jpg

GPU Kernels

	
	

47

Resulting Concurrency

http://regmedia.co.uk/2011/05/22/cray-xk6_super-blade.jpg

http://www.thinkdigit.com/FCKeditor/uploads/26mar10470oin342t.jpg

GPU Kernels
PCI-e D2H

48

Resulting Concurrency

http://regmedia.co.uk/2011/05/22/cray-xk6_super-blade.jpg

http://www.thinkdigit.com/FCKeditor/uploads/26mar10470oin342t.jpg

GPU Kernels
PCI-e D2H

PCI-e H2D

49

Resulting Concurrency

http://regmedia.co.uk/2011/05/22/cray-xk6_super-blade.jpg

http://www.thinkdigit.com/FCKeditor/uploads/26mar10470oin342t.jpg

GPU Kernels
PCI-e D2H

PCI-e H2D

MPI

50

Resulting Concurrency

http://regmedia.co.uk/2011/05/22/cray-xk6_super-blade.jpg

http://www.thinkdigit.com/FCKeditor/uploads/26mar10470oin342t.jpg

GPU Kernels
PCI-e D2H

PCI-e H2D

MPI
Host Computation

	
	

51

•  Memory coalescing in kernels
–  Know how threads are accessing GPU DRAM, rethread if necessary

•  Use of shared memory
–  Load data from DRAM to shared memory (coallesced)
–  Reuse as often as possible before re-accessing DRAM
–  Watch out for banking conflicts

•  Overlapping kernels, CPU, PCI-e, & MPI
–  Perform independent CPU code during GPU kernels, PCI-e, & MPI
–  Break up & stage computations to overlap PCI-e, MPI, & GPU kernels

•  PCI-e copies: consolidate if small, break up & pipeline if large
•  GPU’s user-managed cache made memory optimizations that

are more difficult on a non-managed cache

Other Important Porting Considerations

52

•  Data structures: derived types of derived types of derived types
–  Very difficult for directives

•  Interaction with the community
–  Reproducibility: bit for bit same answer across any MPI decomp
–  Likely useful to validate GPU-based results before science
–  Double precision is currently a requirement

•  Dynamical core is still rapidly evolving
–  About to be accepted as the default core
–  This means lots of testing and changes

•  CUDA Fortran: Still evolving
–  Many layers for something to go wrong. Hard to pinpoint.
–  New versions of compiler, CUDA, GPU, driver usually mean new bugs

Porting Challenges

53

Speed-Up: Fermi GPU vs 1 Interlagos / Node

0	

1	

2	

3	

4	

5	

6	

Total	
Tracer

s	

Euler	
step	

Ver@c
al	 rem

ap	

Hyper
viscos

ity	

2.6	
3.6	

2.9	

5.4	

4.2	

•  Benchmarks performed on XK6 using end-to-end wall timers
•  All PCI-e and MPI communication included

54

Why Was Vertical Remap So Fast?
•  Originally used splines for reconstruction

–  Splines require a linear solve à vertical dependence within loops
–  Vertical index could not be threaded, only horizontal

•  We replaced reconstruction with Piecewise Parabolic Method
–  Vertically independent à vertical index was threaded à 30x more threads

•  Original remapping used a summation to reduce flops
–  Summations are vertically dependent and harder to thread

•  We changed it to do two integrations instead
–  This double the work for remapping
–  But it also reduced data requirements and dependence

•  As a result, all data in the reconstruction and remap fit into cache
–  Only accesses to DRAM were at the very beginning and end of kernel with a lot of

work in between, all done in-cache
–  Thus, >5x speed-up over PPM remap on CPU

55

Why Was Vertical Remap So Fast?
•  Originally used splines for reconstruction

–  Splines require a linear solve à vertical dependence within loops
–  Vertical index could not be threaded, only horizontal

•  We replaced reconstruction with Piecewise Parabolic Method
–  Vertically independent à vertical index was threaded à 30x more threads

•  Original remapping used a summation to reduce flops
–  Summations are vertically dependent and harder to thread

•  We changed it to do two integrations instead
–  This double the work for remapping
–  But it also reduced data requirements and dependence

•  As a result, all data in the reconstruction and remap fit into cache
–  Only accesses to DRAM were at the very beginning and end of kernel with a lot of

work in between
–  Thus, >5x speed-up over PPM remap on CPU

•  If Increasing The Workload
•  Allows More Threading
•  Decreases Data Dependence
•  Decreases Local Data Requirements

•  Then It’s Worth Investigating

56

Questions?

57

•  You understand your code’s challenges for many threads
•  You will often refactor the algorithms themselves

–  Vertical remap: splines + summation à PPM + two integrations
–  More flops, but more independence and less data movement

•  You will change the way you thread
– Higher-level hoisting of OpenMP to allow more parallelism
– More data-independent work, more flops
–  Better staging through cache, less data in cache (less thrashing)

•  Incorporating changes into CPU code almost always
speeds up the CPU code
–  This changes perspective on code refactoring cost-benefit

Usefulness Of Porting To Accelerators

58

Think Differently About Threading
CPU Code

do ie=1,nelemd
 do q=1,qsize
 do k=1,nlev
 do j=1,np
 do i=1,np
 coefs(1,i,j,k,q,ie) = ...
 coefs(2,i,j,k,q,ie) = ...
 coefs(3,i,j,k,q,ie) = ...

GPU Code

ie = blockidx%y
q = blockidx%x
k = threadidx%z
j = threadidx%y
i = threadidx%x
coefs(1,i,j,k,q,ie) = ...
coefs(2,i,j,k,q,ie) = ...
coefs(3,i,j,k,q,ie) = ...

59

CPU Code

do ie=1,nelemd
 do q=1,qsize
 do k=1,nlev
 do j=1,np
 do i=1,np
 coefs(1,i,j,k,q,ie) = ...
 coefs(2,i,j,k,q,ie) = ...
 coefs(3,i,j,k,q,ie) = ...

GPU Code

ie = blockidx%y
q = blockidx%x
k = threadidx%z
j = threadidx%y
i = threadidx%x
coefs(1,i,j,k,q,ie) = ...
coefs(2,i,j,k,q,ie) = ...
coefs(3,i,j,k,q,ie) = ...

Coded to respect
cache locality

Think Differently About Threading

60

Think Differently About Threading
CPU Code

do ie=1,nelemd
 do q=1,qsize
 do k=1,nlev
 do j=1,np
 do i=1,np
 coefs(1,i,j,k,q,ie) = ...
 coefs(2,i,j,k,q,ie) = ...
 coefs(3,i,j,k,q,ie) = ...

GPU Code

ie = blockidx%y
q = blockidx%x
k = threadidx%z
j = threadidx%y
i = threadidx%x
coefs(1,i,j,k,q,ie) = ...
coefs(2,i,j,k,q,ie) = ...
coefs(3,i,j,k,q,ie) = ...

Coded to respect
cache locality

However, these will
not be sequential

accesses on GPUs

61

Think Differently About Threading
CPU Code

do ie=1,nelemd
 do q=1,qsize
 do k=1,nlev
 do j=1,np
 do i=1,np
 coefs(1,i,j,k,q,ie) = ...
 coefs(2,i,j,k,q,ie) = ...
 coefs(3,i,j,k,q,ie) = ...

GPU Code

ie = blockidx%y
q = blockidx%x
k = threadidx%z
j = threadidx%y
i = threadidx%x
coefs(1,i,j,k,q,ie) = ...
coefs(2,i,j,k,q,ie) = ...
coefs(3,i,j,k,q,ie) = ...

•  Memory accessed in
the order of instructions
•  coefs(1,1,1,1,…)!
•  coefs(2,1,1,1,…)!
•  coefs(3,1,1,1,…)!
•  coefs(1,2,1,1,…)!
•  coefs(2,2,1,1,…)!
•  …!

•  Memory accessed in
the order of threads
•  coefs(1,1,1,1,…)!
•  coefs(1,2,1,1,…)!
•  |!
•  coefs(1,N,1,1,…)!
•  coefs(1,1,2,1,…)!
•  coefs(1,2,2,1,…)!

62

Think Differently About Threading
CPU Code

do ie=1,nelemd
 do q=1,qsize
 do k=1,nlev
 do j=1,np
 do i=1,np
 coefs(1,i,j,k,q,ie) = ...
 coefs(2,i,j,k,q,ie) = ...
 coefs(3,i,j,k,q,ie) = ...

GPU Code

ie = blockidx%y
q = blockidx%x
k = threadidx%z
j = threadidx%y
i = threadidx%x
coefs(1,i,j,k,q,ie) = ...
coefs(2,i,j,k,q,ie) = ...
coefs(3,i,j,k,q,ie) = ...

ie = blockidx%y
q = blockidx%x
k = threadidx%z
j = threadidx%y
i = threadidx%x
coefs(i,j,k,q,ie,1) = ...
coefs(i,j,k,q,ie,2) = ...
coefs(i,j,k,q,ie,3) = ...

63

Think Differently About Threading
CPU Code

do ie=1,nelemd
 do q=1,qsize
 do k=1,nlev
 do j=1,np
 do i=1,np
 coefs(1,i,j,k,q,ie) = ...
 coefs(2,i,j,k,q,ie) = ...
 coefs(3,i,j,k,q,ie) = ...

GPU Code

ie = blockidx%y
q = blockidx%x
k = threadidx%z
j = threadidx%y
i = threadidx%x
coefs(i,j,k,q,ie,1) = ...
coefs(i,j,k,q,ie,2) = ...
coefs(i,j,k,q,ie,3) = ...

•  Memory accessed in
the order of threads
•  coefs(1,1,1,…)!
•  coefs(2,1,1,…)!
•  |!
•  coefs(N,1,1,…)!
•  coefs(1,2,1,…)!
•  coefs(2,2,1,…)!

