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• Climate-scale atmospheric simulation for capability computing 
• Comprised of (1) a dynamical core and (2) physics packages 

Dynamical Core 
1.  “Dynamics”: wind, energy, & mass 
2.  “Tracer” Transport: (H2O, CO2, O3, …) 

Transport quantities not advanced by the dynamics 

http://esse.engin.umich.edu/groups/admg/
dcmip/jablonowski_cubed_sphere_vorticity.png 
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What is CAM-SE? 
• Climate-scale atmospheric simulation for capability computing 
• Comprised of (1) a dynamical core and (2) physics packages 

http://esse.engin.umich.edu/groups/admg/
dcmip/jablonowski_cubed_sphere_vorticity.png 

http://web.me.com/macweather/blogger/maweather_files/physprc2.gif 

Physics Packages 
Resolve anything interesting not 
included in dynamical core (moist 
convection, radiation, chemistry, etc) 

Dynamical Core 
1.  “Dynamics”: wind, energy, & mass 
2.  “Tracer” Transport: (H2O, CO2, O3, …) 

Transport quantities not advanced by the dynamics 
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Gridding, Numerics, & Target Run 

http://www-personal.umich.edu/~paullric/A_CubedSphere.png 

•  Cubed-Sphere   +   Spectral Element 
•  Each cube panel divided into elements 
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Gridding, Numerics, & Target Run 
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Gridding, Numerics, & Target Run 

http://www-personal.umich.edu/~paullric/A_CubedSphere.png 

•  Cubed-Sphere   +   Spectral Element 
•  Each cube panel divided into elements 
•  Elements spanned by basis functions 
•  Basis coefficients describe the fluid 

Used CUDA FORTRAN from PGI 
OACC Directives: Better software engineering option moving forward 
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Target 14km Simulations 
•  16 billion degrees of freedom 
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Target 14km Simulations 
•  16 billion degrees of freedom 

–  6 cube panels 
–  240 x 240 columns of elements per panel 
–  4 x 4 basis functions per element 
–  26 vertical levels 
–  110 prognostic variables 

!,!u,!v, p

H2O , CO2 , O3 , CH4 , ...
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•  Scaled to 14,400 XT5 nodes with 60% parallel efficiency 
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Target 14km Simulations 
•  16 billion degrees of freedom 

–  6 cube panels 
–  240 x 240 columns of elements per panel 
–  4 x 4 basis functions per element 
–  26 vertical levels 
–  110 prognostic variables 

•  Scaled to 14,400 XT5 nodes with 60% parallel efficiency 
•  Must simulate 1-2 thousand times faster than real time 
•  With 10 second CAM-SE time step, need ≤ 10 ms per time step 

–  32-64 columns of elements per node, 5-10 thousand nodes 
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CAM-SE Profile (XT5, 14km, 14K Nodes) 
•  Original CAM-SE used 3 tracers (20% difficult to port) 
•  Mozart chemistry provides 106 tracers (7% difficult to port) 

–  Centralizes port to tracers with mostly data-parallel routines 

Dynamics	  
73%	  

Tracers	  
7%	  

Physics	  
16%	  

Other	  
4%	  

3-‐Tracer	  CAM-‐SE	  

Dynamics	  
22%	  

Tracers	  
71%	  

Physics	  
6%	  

Other	  
1%	  

106-‐Tracer	  CAM-‐SE	  
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Dynamics	  
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Other	  
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106-‐Tracer	  CAM-‐SE	  

Not	  Portable	  
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CAM-SE Profile (XT5, 14km, 14K Nodes) 
•  Original CAM-SE used 3 tracers (20% difficult to port) 
•  Mozart chemistry provides 106 tracers (7% difficult to port) 

–  Centralizes port to tracers with mostly data-parallel routines 

Dynamics	  
73%	  

Tracers	  
7%	  

Physics	  
16%	  

Other	  
4%	  

3-‐Tracer	  CAM-‐SE	  

Dynamics	  
22%	  

Tracers	  
71%	  

Physics	  
6%	  

Other	  
1%	  

106-‐Tracer	  CAM-‐SE	  

Fairly	  Easy	  To	  Port	  
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Communication Between Elements 

Physically occupy the same 
location, Spectral Element 
requires them to be equal 

 

Edges are averaged, and the 
average replaces both edges 



23 

Process	  1	  Process	  0	  

Communication Between Elements 

Implementation 
 

Edge_pack: pack all element edges 
into process-wide buffer. Data sent 
over MPI are contiguous in buffer. 
 

Bndry_exchange: Send & receive 
data at domain decomposition 
boundaries 
 

Edge_unpack: Perform a weighted 
sum for data at all element edges. 

Physically occupy the same 
location, Spectral Element 
requires them to be equal 

 

Edges are averaged, and the 
average replaces both edges 
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Original Pack/Exchange/Unpack 
•  Edge_pack ensures data for MPI is contiguous in buffer 
•  MPI communication occurs in “cycles” 
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Original Pack/Exchange/Unpack 
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•  MPI communication occurs in “cycles” 
•  A cycle contains a contiguous data region for MPI Cycle 1 

Cycle 2 

Cycle 3 

Cycle 4 
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Original Pack/Exchange/Unpack 
•  Edge_pack ensures data for MPI is contiguous in buffer 
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•  For a cycle, PCI-e D2H depends only on packing that cycle 
– Divide edge_pack into equal-sized cycles 

1.  Find only the elements directly involved in each separate cycle 
2.  Evenly divide remaining elements among the cycles 

–  Associate each cycle with a unique CUDA stream 
–  Launch each pack in its stream 
–  After a cycle is packed, call async. PCI-e D2H in its Stream 

•  Edge_unpack at MPI boundaries requires all MPI to be finished 
•  However, internal unpacks can be done directly after packing 

Optimizing Pack/Exchange/Unpack 
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•  For each cycle 
–  Launch edge_pack kernel for the cycle in a unique stream 
–  Call a cudaEventRecord for the stream’s packing event 

Porting Strategy: Pack/Exchange/Unpack 
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•  For each cycle 
–  Launch edge_pack kernel for the cycle in a unique stream 
–  Call a cudaEventRecord for the stream’s packing event 

Porting Strategy: Pack/Exchange/Unpack 
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•  Prepost each cycle’s MPI_irecv 
•  While an MPI message remains pending 

–  If all cycles finished packing (cudaEventQuery for all cycles’ pack) 
•  Launch edge_unpack kernel over elements not dealing with MPI 

–  For each cycle 
•  If cycle finished packing (cudaEventQuery for the cycle’s pack) 

– Call async. PCI-e D2H copy for the cycle’s MPI data 
– Call cudaEventRecord for a PCI-e D2H event 

•  If cycle finished D2H PCI-e (cudaEventQuery for the cycle’s D2H) 
– Call MPI_Isend for the cycle’s MPI data 

•  If MPI data has been received (MPI_Test for the cycle’s transfer) 
– Call PCI-e H2D copy for the cycle’s MPI data 

•  Call a device-wide barrier to ensure PCI-e H2D copies are done 
•  Unpack elements dealing with MPI 

Porting Strategy: Pack/Exchange/Unpack 
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Resulting Concurrency 

http://regmedia.co.uk/2011/05/22/cray-xk6_super-blade.jpg 

http://www.thinkdigit.com/FCKeditor/uploads/26mar10470oin342t.jpg 
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Resulting Concurrency 

http://regmedia.co.uk/2011/05/22/cray-xk6_super-blade.jpg 

http://www.thinkdigit.com/FCKeditor/uploads/26mar10470oin342t.jpg 

GPU Kernels 
PCI-e D2H 

PCI-e H2D 

MPI 
Host Computation 
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•  Memory coalescing in kernels 
–  Know how threads are accessing GPU DRAM, rethread if necessary 

•  Use of shared memory 
–  Load data from DRAM to shared memory (coallesced) 
–  Reuse as often as possible before re-accessing DRAM 
–  Watch out for banking conflicts 

•  Overlapping kernels, CPU, PCI-e, & MPI 
–  Perform independent CPU code during GPU kernels, PCI-e, & MPI 
–  Break up & stage computations to overlap PCI-e, MPI, & GPU kernels 

•  PCI-e copies: consolidate if small, break up & pipeline if large 
•  GPU’s user-managed cache made memory optimizations that 

are more difficult on a non-managed cache 

Other Important Porting Considerations 
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•  Data structures: derived types of derived types of derived types 
–  Very difficult for directives 

•  Interaction with the community 
–  Reproducibility: bit for bit same answer across any MPI decomp 
–  Likely useful to validate GPU-based results before science 
–  Double precision is currently a requirement 

•  Dynamical core is still rapidly evolving 
–  About to be accepted as the default core 
–  This means lots of testing and changes 

•  CUDA Fortran: Still evolving 
–  Many layers for something to go wrong. Hard to pinpoint. 
–  New versions of compiler, CUDA, GPU, driver usually mean new bugs 

Porting Challenges 
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Speed-Up: Fermi GPU vs 1 Interlagos / Node 

0	  

1	  

2	  

3	  

4	  

5	  

6	  

Total	  
Tracer

s	  

Euler	  
step	  

Ver@c
al	  rem

ap	  

Hyper
viscos

ity	  

2.6	  
3.6	  

2.9	  

5.4	  

4.2	  

•  Benchmarks performed on XK6 using end-to-end wall timers 
•  All PCI-e and MPI communication included 
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Why Was Vertical Remap So Fast? 
•  Originally used splines for reconstruction 

–  Splines require a linear solve à vertical dependence within loops 
–  Vertical index could not be threaded, only horizontal 

•  We replaced reconstruction with Piecewise Parabolic Method 
–  Vertically independent à vertical index was threaded à 30x more threads 

•  Original remapping used a summation to reduce flops 
–  Summations are vertically dependent and harder to thread 

•  We changed it to do two integrations instead 
–  This double the work for remapping 
–  But it also reduced data requirements and dependence 

•  As a result, all data in the reconstruction and remap fit into cache 
–  Only accesses to DRAM were at the very beginning and end of kernel with a lot of 

work in between, all done in-cache 
–  Thus, >5x speed-up over PPM remap on CPU 
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Why Was Vertical Remap So Fast? 
•  Originally used splines for reconstruction 

–  Splines require a linear solve à vertical dependence within loops 
–  Vertical index could not be threaded, only horizontal 

•  We replaced reconstruction with Piecewise Parabolic Method 
–  Vertically independent à vertical index was threaded à 30x more threads 

•  Original remapping used a summation to reduce flops 
–  Summations are vertically dependent and harder to thread 

•  We changed it to do two integrations instead 
–  This double the work for remapping 
–  But it also reduced data requirements and dependence 

•  As a result, all data in the reconstruction and remap fit into cache 
–  Only accesses to DRAM were at the very beginning and end of kernel with a lot of 

work in between 
–  Thus, >5x speed-up over PPM remap on CPU 

•  If Increasing The Workload 
•  Allows More Threading 
•  Decreases Data Dependence 
•  Decreases Local Data Requirements 

•  Then It’s Worth Investigating 
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Questions? 
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•  You understand your code’s challenges for many threads 
•  You will often refactor the algorithms themselves 

–  Vertical remap: splines + summation à PPM + two integrations 
–  More flops, but more independence and less data movement 

•  You will change the way you thread 
– Higher-level hoisting of OpenMP to allow more parallelism 
– More data-independent work, more flops 
–  Better staging through cache, less data in cache (less thrashing) 

•  Incorporating changes into CPU code almost always 
speeds up the CPU code 
–  This changes perspective on code refactoring cost-benefit 

Usefulness Of Porting To Accelerators 
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Think Differently About Threading 
CPU Code 

 

do ie=1,nelemd 
 do q=1,qsize 
  do k=1,nlev 
   do j=1,np 
    do i=1,np 
     coefs(1,i,j,k,q,ie) = ... 
     coefs(2,i,j,k,q,ie) = ... 
     coefs(3,i,j,k,q,ie) = ... 
 

GPU Code 
 

  
 

ie = blockidx%y 
q  = blockidx%x 
k  = threadidx%z 
j  = threadidx%y 
i  = threadidx%x 
coefs(1,i,j,k,q,ie) = ... 
coefs(2,i,j,k,q,ie) = ... 
coefs(3,i,j,k,q,ie) = ... 
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Think Differently About Threading 
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Think Differently About Threading 
CPU Code 

 

do ie=1,nelemd 
 do q=1,qsize 
  do k=1,nlev 
   do j=1,np 
    do i=1,np 
     coefs(1,i,j,k,q,ie) = ... 
     coefs(2,i,j,k,q,ie) = ... 
     coefs(3,i,j,k,q,ie) = ... 
 

GPU Code 
 

  
 

ie = blockidx%y 
q  = blockidx%x 
k  = threadidx%z 
j  = threadidx%y 
i  = threadidx%x 
coefs(1,i,j,k,q,ie) = ... 
coefs(2,i,j,k,q,ie) = ... 
coefs(3,i,j,k,q,ie) = ... 

Coded to respect 
cache locality 

However, these will 
not be sequential 

accesses on GPUs 
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Think Differently About Threading 
CPU Code 

 

do ie=1,nelemd 
 do q=1,qsize 
  do k=1,nlev 
   do j=1,np 
    do i=1,np 
     coefs(1,i,j,k,q,ie) = ... 
     coefs(2,i,j,k,q,ie) = ... 
     coefs(3,i,j,k,q,ie) = ... 
 

GPU Code 
 

  
 

ie = blockidx%y 
q  = blockidx%x 
k  = threadidx%z 
j  = threadidx%y 
i  = threadidx%x 
coefs(1,i,j,k,q,ie) = ... 
coefs(2,i,j,k,q,ie) = ... 
coefs(3,i,j,k,q,ie) = ... 

•  Memory accessed in 
the order of instructions 
•  coefs(1,1,1,1,…)!
•  coefs(2,1,1,1,…)!
•  coefs(3,1,1,1,…)!
•  coefs(1,2,1,1,…)!
•  coefs(2,2,1,1,…)!
•  …!

•  Memory accessed in 
the order of threads 
•  coefs(1,1,1,1,…)!
•  coefs(1,2,1,1,…)!
•          |!
•  coefs(1,N,1,1,…)!
•  coefs(1,1,2,1,…)!
•  coefs(1,2,2,1,…)!
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Think Differently About Threading 
CPU Code 

 

do ie=1,nelemd 
 do q=1,qsize 
  do k=1,nlev 
   do j=1,np 
    do i=1,np 
     coefs(1,i,j,k,q,ie) = ... 
     coefs(2,i,j,k,q,ie) = ... 
     coefs(3,i,j,k,q,ie) = ... 
 

GPU Code 
 

  
 

ie = blockidx%y 
q  = blockidx%x 
k  = threadidx%z 
j  = threadidx%y 
i  = threadidx%x 
coefs(1,i,j,k,q,ie) = ... 
coefs(2,i,j,k,q,ie) = ... 
coefs(3,i,j,k,q,ie) = ... 

  
 

ie = blockidx%y 
q  = blockidx%x 
k  = threadidx%z 
j  = threadidx%y 
i  = threadidx%x 
coefs(i,j,k,q,ie,1) = ... 
coefs(i,j,k,q,ie,2) = ... 
coefs(i,j,k,q,ie,3) = ... 
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Think Differently About Threading 
CPU Code 

 

do ie=1,nelemd 
 do q=1,qsize 
  do k=1,nlev 
   do j=1,np 
    do i=1,np 
     coefs(1,i,j,k,q,ie) = ... 
     coefs(2,i,j,k,q,ie) = ... 
     coefs(3,i,j,k,q,ie) = ... 
 

GPU Code 
 

  
 

ie = blockidx%y 
q  = blockidx%x 
k  = threadidx%z 
j  = threadidx%y 
i  = threadidx%x 
coefs(i,j,k,q,ie,1) = ... 
coefs(i,j,k,q,ie,2) = ... 
coefs(i,j,k,q,ie,3) = ... 

•  Memory accessed in 
the order of threads 
•  coefs(1,1,1,…)!
•  coefs(2,1,1,…)!
•          |!
•  coefs(N,1,1,…)!
•  coefs(1,2,1,…)!
•  coefs(2,2,1,…)!


