
Preparing WL-LSMS for First Principles
Thermodynamics Calculations on Accelerator and

Multicore Architectures

Don Nicholson
Oak Ridge National Laboratory

Markus Eisenbach
Oak Ridge National Laboratory

Motiva tion
• Density Functional Calculations have proven to be a useful tool to study the
ground state of many materials.

• For finite temperatures the situation is less ideal; one is often forced to rely on
model calculation with parameters either fitted to first principles calculations or
experimental results.

• Fitting to models is especially unsatisfactory in inhomogeneous systems,
nanoparticles or other systems where the model parameters could vary
significantly from one site to another.

Solution:
Combine First Principles calculations with statistical mechanics methods

3

Team
Oak Ridge National Laboratory
Markus Eis enbach, Don Nichols on , J unqi Yin ,
Khorgolkhuu Odbadrakh , Ying Wai Li)

University of Tennessee
Aure lian Rus anu

Florida State University
Gregory Brown

Pittsburgh Supercomputing Center
Yang Wang

University of Georgia
David Landau, Dilina Pere ra

Thermodynamic Obs ervables

• Thermodynamic observables are related to the
partition function Z and free energy F

• If we can calculate Z(β) thermodynamic
observables can be calculated as logarithmic
derivatives.

Wang-Landau Method

• Conventional Monte Carlo methods calculate
expectation values by sampling with a weight given by
the Bolzmann distribution

• In the Wang-Landau Method we rewrite the partition
function in terms of the density of states which is
calculated by this algorithm

• To derive an algorithm to estimate g(E) we note that if
randomly generated states are accepted with a
probability proportional to 1/g(E) each energy interval is
visited with the same frequency (flat histogram)

Metropolis Method Wang-Landau Method

Compute partition function and
other averages with configurations
that are weighted with a
Boltzmann factor

Sample configuration where Boltz-
mann factor is large.

If configurations are accepted with
probability 1/W all energies are visited
equally (flat histogram) if W(E)=g(E).

4. Iterate 2 & 3 until histogram is flat

1. Select configuration

2. Modify configuration (move)

3. Accept move with probability

2. Propose move, accepted with probability

1. Begin with prior estimate, eg

3. If move accepted increase DOS

5. Reduce and go back to 1

Metropolis et al, JCP 21, 1087 (1953) Wang and Landau, PRL 86, 2050 (2001)

global update of joint DOS at every MC step ...

Wang-Landau acceptance:

Not quite embarras s ingly para lle l

Metropolis MC acceptance:

random walker 1

random walker 2

local calculation of energy and observables ~ millisecond to minutes

limited by latency ~ microseconds

Organiza tion of the WL-LSMS code us ing a
mas te r-s lave approach

Master/driver node controlling WL
acceptance, DOS, and histogram Communicate moment

directions and energy
LSMS running
on N
processors to
compute
energy of
particular spin-
configurations

Nears ightednes s and the loca lly s e lf-cons is ten t
multip le s ca tte ring (LSMS) method

•Nearsightedness of electronic
matter - Prodan & Kohn,
PNAS 102, 11635 (2005)
- Local electronic properties such

as density depend on effective
potential only at nearby points.

• Locally self-consistent multiple
scattering method - Wang et
al., PRL 75, 2867 (1995)
- Solve Kohn-Sham equation on a

cluster of a few atomic shells
around atom for which density is
computed

- Solve Poisson equation for
entire system - long range of
bare coulomb interaction

 Managed by UT-Battelle
 for the U.S. Department of Energy

n

j

k

m

Input:
Compute:
Receive:

Send:
Result:

Atom i

Locally Self-consistent Multiple Scattering (LSMS) method

1 2 3

N-1 N

i i k

j

n

m

i k

j

n

m

i k

j

n

m

i k

j

n

m

i k

j

n

m

i k

j

n

m

i k

j

n

m

i k

j

n

m

 Massively Parallel O[N] approach
 Approximate total electron density by sum of

locally determined site densities
 At each at each site i approximate scattering

path matrix for infinite sytem by that of a finite
localiteraction zone (LIZ) comprising M-sites

A parallel implementation and scaling of the LSMS method:
perfectly scalable at high performance

j

l

m k •Need only block i of
•
•Calculation dominated
 by ZGEMM
•Sustained performance
 similar to Linpack

Refac toring LSMS_1 to LSMS_3

• LSMS_1 assumes one atom / MPI rank

• But: This might not be ideal with current and future multicore CPU

• Highly impractical for accelerators (GPUs)

• Increase code flexibility adapt to new architectures and new physics

• Reduce the amount of code that needs to be rewritten
 (this is essentially a one person effort)

• LSMS_1:

Fortran (mainly 77) for LSMS
C++ for Wang-Landau

LSMS_3

• Multiple atoms / MPI rank

• multithreading (OpenMP) in LSMS

• enable efficient use of accelerators

• New (less rigid) input file format

• Retain Wang-Landau part form LSMS_1

• LSMS_3:

Top level routines and data structures: C++
New communication routines: C++
Many compute routines from LSMS_1: Fortran

15

 LSMSSystemParameters lsms;
 LSMSCommunication comm;
 CrystalParameters crystal;
 LocalTypeInfo local;

// Initialize communication and accelerator
// Read the input file

 communicateParameters(comm,lsms,crystal);

 local.setNumLocal(distributeTypes(crystal,comm));

 local.setGlobalId(comm.rank,crystal);

 buildLIZandCommLists(comm,lsms,crystal,local);

 loadPotentials(comm,lsms,crystal,local);

 setupVorpol(lsms,crystal,local,sphericalHarmonicsCoeficients);

 calculateCoreStates(comm,lsms,local);

 energyContourIntegration(comm,lsms,local);

 calculateChemPot(comm,lsms,local,eband);

18

Multiple Atoms / MPI rank

An important step to enable efficient use of multicore and accelerator architectures: Allow
for more work / MPI rank!

In LSMS: multiple atoms / MPI rank

necessitates new communication pattern

 For all atoms i in crystal do
 Build the local interaction zone LIZi =
 {j|dist(xi,xj)<rLIZ} of atom i
 for all atoms j in LIZi do
 add atom j to liat Ri of data to receive for
 atom I {tmatFrom}
 add atom i to liat Sj of data to send from
 atom j {tmatTo}
 end for
end for
remove duplicate entries from Sj and Ri

19

Multiple Atoms / MPI rank

Matrix<Complex> tmatStore;

local remote t matrices needed for building the
local tau matrices

Building the tau matrices:

(1) Prepost receives for remote t matrices
(2) Loop over all local atom (OpenMP)

calculate local t matrices
(3) Send local t matrices
(4) wait for completion of communication

 expectTmatCommunication(comm,local); (e.g. MPI_Irecv)

 for(int i=0; i<local.atom.size(); i++)
 calculateSingleScattererSolution(lsms,local.atom[i],vr[i],energy,prel,pnrel, solution[i]);

 sendTmats(comm,local); (e.g. MPI_Isend)
 finalizeTmatCommunication(comm); (e.g. MPI_Wait)

20

Calculating the tau matrix

for(int i=0; i<local.num_local; i++)
calculateTauMatrix(lsms,local,local.atom[i],energy,prel,tau_ii);

(1) For all local atoms (possibility for multithreading)
(a) build m matrix (m=I-tG) (multithreading or accelerator)
(b) invert m matrix (multithreading or accelerator)
(c)

m has rank k * #LIZ and can be broken in k * k blocks mij

only the diagonal block of the inverse corresponding to site i=0 is needed

21

Calculating G0

blocks can be calculated independently: (L={l,m}), E complex

using Clebsch-Gordan coefficients CLL’L’’,
spherical Hankel functions hl,

and spherical harmonics YL

Note that all can be calculated independently - high parallelism

Rij describes the geometry of the system

22

Building m on the GPU

1) Allocate all the necessary memory (both for parameters that remain constant,
such as atom position, as well as all the work space) at the beginning of the program
- allocation of memory on GPUs as well as the allocation of pinned memory on the
CPU is very expensive.

2) Build G0 on the GPU:

 makeBGijs_kernel<<<num_blocks,num_threads,sm.total,s>>>(...);

num_blocks: one block/atom in LIZ
num_threads: thread over l,l’
sm.total: shared memory size (depends on lmax)
s: we use multiple streams to allow the concurrent calculations for multiple atoms
(one CUDA stream / OpenMP thread)

3) calculate 1-tG using zgemm_cublas

23

Block Inverse

The LSMS method requires only the first diagonal block of the inverse matrix

Recursively apply Schur complement

The block size is a performance tuning parameter:

• Smaller block size: less work
• Larger block size: higher performance of matrix-matrix multiply

Performance of LSMS dominated by double complex matrix matrix multiplication

ZGEMM

24

Main zblock_lu loop
BLAS: CPU, LAPACK: CPU

 n=blk_sz(nblk)
 joff=na-n
 do iblk=nblk,2,-1
 m=n
 ioff=joff
 n=blk_sz(iblk-1)
 joff=joff-n
c invert the diagonal blk_sz(iblk) x blk_sz(iblk) block
 call zgetrf(m,m,a(ioff+1,ioff+1),lda,ipvt,info)
c calculate the inverse of above multiplying the row block
c blk_sz(iblk) x ioff
 call zgetrs('n',m,ioff,a(ioff+1,ioff+1),lda,ipvt,
 & a(ioff+1,1),lda,info)
 if(iblk.gt.2) then
 call zgemm('n','n',n,ioff-k+1,na-ioff,cmone,a(joff+1,ioff+1),lda,
 & a(ioff+1,k),lda,cone,a(joff+1,k),lda)
 call zgemm('n','n',joff,n,na-ioff,cmone,a(1,ioff+1),lda,
 & a(ioff+1,joff+1),lda,cone,a(1,joff+1),lda)
 endif
 enddo
 call zgemm('n','n',blk_sz(1),blk_sz(1)-k+1,na-blk_sz(1),cmone,
 & a(1,blk_sz(1)+1),lda,a(blk_sz(1)+1,k),lda,cone,a,lda)

25

Main zblock_lu loop
BLAS: CPU
LAPACK: CPU

 do iblk=nblk,2,-1
 ...

 call zgetrf(…)
 call zgetrs(…)

 call zgemm(…)
 call zgemm(…)

 enddo

 call zgemm(…)

26

Main zblock_lu loop – GGD
BLAS: GPU (CUDA)
LAPACK: GPU (CULA device API)
 (or libsci_acc)

 call cublas_set_matrix(…) (t only. m calculated on GPU)

 do iblk=nblk,2,-1
 ...

 call cula_device_zgetrf(…)
 call cula_device_zgetrs(…)

 call cublas_zgemm(…)
 call cublas_zgemm(…)

 enddo

 call cublas_zgemm(…)

 call cublas_get_matrix(…) (tau_00 only)

30

WL-LSMS3
• First Principles Statistical Mechanics of Magnetic Materials

• Identified kernel for initial GPU work
– zblock_lu (95% of wall time on CPU)
– kernel performance: determined by BLAS and LAPACK: ZGEMM,

ZGETRS, ZGETRF

• Preliminary performance of zblock_lu for 12 atoms/node of
Jaguarpf or 12 atoms/GPU
– For Fermi C2050, times include host-GPU PCIe transfers
– Currently GPU node does not utilize AMD Magny Cours host for

compute
Jaguarpf node
(12 cores AMD
Istanbul)

Fermi C2050
using CUBLAS

Fermi C2050
using Cray
Libsci

Time (sec) 13.5 11.6 6.4

Slide provided by Cray

31

Performance and scaling
�One node on Jaguar/Titan has a CPU theoretical peak of 140.8

GFlop/s

�LSMS achieves 95.3 GFlop/s per node with CPU only

�With Fermi GPUs it achieves 344 GFlop/s (3.61x speedup)

�Kepler sees further improved performance
–Preliminary scaling results are near ideal: (fixed # of WL steps)

32

Conclusions
�Multithreading and Accelerators enable significantly reduced

runtimes for first principles calculations
– this leads to better statistics/faster convergence for Monte-Carlo

�Multiple acceleration strategies:
–zblock_lu (most important kernel @ 95% runtime in CPU version of the

code)
�accelerated by using vendor optimized libraries for matrix inversion and multiplication

–m Matrix construction (~30% of the remaining CPU runtime)
�accelerated using hand-coded CUDA and library provided matrix multiplication

�Future work:
–hybrid calculation (use both CPU and GPU simultaneously for

calculations)
–move more work to GPUs

�e.g. Green’s function calculation or single site solvers

33

34

35

36

	Preparing WL-LSMS for First Principles Thermodynamics Calculations on Accelerator and Multicore Architectures
	Motivation
	Team
	Thermodynamic Observables
	Wang-Landau Method
	Metropolis Method Wang-Landau Method
	Not quite embarrassingly parallel
	Organization of the WL-LSMS code using a master-slave approach
	Nearsightedness and the locally self-consistent multiple scattering (LSMS) method
	Locally Self-consistent Multiple Scattering (LSMS) method
	A parallel implementation and scaling of the LSMS method: perfectly scalable at high performance
	Refactoring LSMS_1 to LSMS_3
	LSMS_3
	Slide Number 15
	Multiple Atoms / MPI rank
	Multiple Atoms / MPI rank
	Calculating the tau matrix
	Calculating G0
	Building m on the GPU
	Block Inverse
	Main zblock_lu loop�BLAS: CPU, LAPACK: CPU
	Main zblock_lu loop�BLAS: CPU�LAPACK: CPU
	Main zblock_lu loop – GGD�BLAS: GPU (CUDA)�LAPACK: GPU (CULA device API)� (or libsci_acc)
	WL-LSMS3
	Performance and scaling
	Conclusions
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36

