
OLCF and NICS/RDAV Tutorial: Introduction and Basics of R∗

George Ostrouchov†‡, Pragnesh Patel‡, and Drew Schmidt‡

June 28, 2012

Contents

1 Introduction 1
1.1 How to Run R . 1

2 R Packages 1

3 Basics of R 2
3.1 Basic Objects and Data Types . 2
3.2 A Super Calculator . 3
3.3 Probability Distributions . 3
3.4 Matrices, Arrays, Data Frames, and Factors . 4

4 Functions, Logic, Loops, and the *ply Family 5
4.1 Functions . 5
4.2 Logic . 5
4.3 Loops . 6
4.4 *ply . 6
4.5 Exercises . 7

5 Formula Methods 7

6 Input and Output of Data 8

7 Where to Learn More? 8

8 Suggested Solutions to Exercises 9
8.1 Section 4 Solutions . 9

1 Introduction

R is a language and environment for data analysis and graphics. It is by far the most popular dialect of the S
language, a domain specific language for interactive Statistical analysis of data. The development of S started at
Bell Labs in the 1970s. R has grown wildly beyond its origins both in scope and popularity.

R syntax has a superficial similarity to C but it is a mix of functional and object oriented programming lan-
guages with roots in Scheme (a dialect of Lisp). The R language is interpreted so it is much slower than compiled
languages but many of its functions are compiled components that run at full speed. Although R has flow control,
it prefers vector operations and its simplest data type is a vector.

∗Copyright c© 2012 George Ostrouchov, Pragnesh Patel, and Drew Schmidt. All Rights Reserved.
†Oak Ridge National Laboratory, Computer Science and Mathematics Division, Scientific Data Group
‡National Institute for Computational Sciences, Remote Analysis and Visualization Center

1

1.1 How to Run R

There are several GUIs available for R but most people use R with interactive commands and with scripts. This
can be done in several ways using your favorite text editor (emacs, aquamacs, vi, etc.) and some will even do
R-specific color coding and run specified sections of code.

Recently, an integrated development environment, RStudio, became popular. Its advantage is that it has the
same look on all platforms. It has both a console for interactive use of R and a script editor for a scripting
capability. This can be downloaded from rstudio.org and installed on any platform. We will use RStudio for
this tutorial.

If you have not downloaded and installed RStudio before this session, you can do it now from rstudio.org.
It will only take a minute. Start RStudio once it is installed.

2 R Packages

One of R’s greatest strengths is its package repository system. R has the Comprehensive R Archive Network
(CRAN), which is analogous to CPAN for Perl and CTAN for LATEX. Briefly, it is a central repository of R
packages. The address of the CRAN is http://cran.r-project.org/. However, there are other repositories such as
R-Forge http://www.rforge.net/ and Bioconductor http://bioconductor.org/.

There are currently just under 4000 packages on the CRAN (most of them good), and the number of pack-
ages available on the CRAN is growing near exponentially1.

Thankfully, interacting with the CRAN requires very minimal effort on the part of the R user. Generally
one never needs to actually visit the CRAN website, but the CRAN taskview page, located at http://cran.r-
project.org/web/views/, is an excellent resource for finding packages.

Now it is time to start RStudio and follow along with some commands in the console pane. The code in each gray
box that follows is available in the rscripts/file.r named below the box. If you edit that file in RStudio, CÊnter
in the editor will evaluate a single line in your console window. Changing your working directory to the tutorial
directory rscripts on your system can be done from the Tools menu.

1 library ()

2 library(lib.loc=. Library)

3 search ()

4 searchpaths ()

5

6 mirror <- "http://mirrors.nics.utk.edu/cran/"

7 options(repos = structure(c(CRAN = mirror)))

8 install.packages("ggplot2")

9

10 library("ggplot2")

11 library(help="ggplot2")

12 detach("ggplot2")

13 install.packages("rpart")

rscripts/packages.r

3 Basics of R

In an interactive R session, you create objects, which are kept in your workspace until you delete them. Most R
commands are functions, including quitting R with q(). Upon quitting, your workspace is lost unless you saved

1See K Hornik, Are there Too Many R Packages?, AUSTRIAN JOURNAL OF STATISTICS, Volume 41 (2012), Number 1, 59–66,
http://www.stat.tugraz.at/AJS/ausg121/121Hornik.pdf

2

http://cran.r-project.org/
http://www.rforge.net/
http://bioconductor.org/
http://cran.r-project.org/web/views/
http://cran.r-project.org/web/views/
http://www.stat.tugraz.at/AJS/ausg121/121Hornik.pdf

it. The function q() will ask you if you want to save it.

Workspace is your R session memory image.

Working Directory is the default directory to read and write any files. All path specifications are relative to
this directory (forward slashes are used even on Windows).

3.1 Basic Objects and Data Types

Next we describe a subset of objects and data types in R in a somewhat simplified way. The full details are in the
The R language definition manual2.

Vector objects are logical, integer, double, complex, character, and raw, where all elements are of the same
type. Matrices and higher dimensional arrays are vectors with dimension attributes. Factors are vectors
with elements from a (small) finite set of values. In addition, there are a few special values that vector
elements can have

Inf and -Inf are the result of, for example, 1/0 and -1/0

NaN is the result of, for example, 0/0

NA is a symbol to indicate that the value is missing

List objects are “generic vectors” that can contain a mix of any kinds of objects. Data frames are “matrix-like”
list objects, where each element has the same number of elements or rows.

Expression objects are R statements and they can be manipulated as any other objects

Function objects can also be manipulated as any other object in R. The have a formal argument list, a body,
and an environment.

NULL is a special object used to indicate that an object is missing.

3.2 A Super Calculator

1 2 + 2

2 a <- 2 + 3

3 a

4 A

5 b <- c(1, 2, 3, 4, 5)

6 b

7 b <- 1:10

8 b

9 b - 5

10 1:100

11 sum(b)

12 mean(b)

13 sd(b)

14 summary(b)

15 b[5] <- 50

16 b

17 b[11] <- 15

18 b

19 mean(b)

20 b[15] <- 20

21 b

2R Development Core Team, The R language definition, http://cran.r-project.org/doc/manuals/R-lang.html

3

http://cran.r-project.org/doc/manuals/R-lang.html

22 mean(b)

23

24 # how do we deal with NAs? Let ’s get some help!

25 ?mean

26 mean(b, na.rm=TRUE)

27 example(mean)

28 mean

29 methods(mean)

30 mean.default

31

32 # more general help

33 ?cluster

34 ?? cluster

rscripts/calc.r

You can get help from the Help tab in RStudio but you can also get it from the Console whether you are
using RStudio or not.

3.3 Probability Distributions

Having a statistical heritage, there are tools for hundreds of distributions available for modeling and testing.

1 ?distributions # click Task View at bottom

2 ?rlnorm

3

4 x<-rlnorm (1000) # skewed to the right

5 hist(x)

6 rug(x)

7 mean(x)

8 median(x)

9

10 ## Let ’s study how the trimmed mean behaves

11 trim <- seq(0, 0.5, 0.005)

12 trim

13 trimmed_mean <- sapply(trim , function(z) mean(x, trim=z))

14 plot(trim , trimmed_mean)

rscripts/dist.r

R and its packages are full of functions that make sense in estimaton both mathematically and intuitively.

3.4 Matrices, Arrays, Data Frames, and Factors

A matrix or array is a vector with a dimension attribute. Its first index moves the fastest, like in FORTRAN. We
can think of data frames as heterogeneous matrices although they are lists. They can be used with some matrix
operations that make sense. We get a first look at factors here. These are extremely useful in analysis when
non-numeric (categorical) data are present and have special methods throughout R and its packages.

1 x <- matrix(rpois(6, 3), ncol =2)

2 x

3 class(x)

4 typeof(x)

5 attributes(x)

6 attr(x, "dim")

7 dim(x)

8 t(x)

9 x %*% t(x)

4

10 z <- array (1:24 , dim=c(2,3,4))

11 z

12 z[, , 3]

13 x

14 y <- data.frame(x)

15 y

16 class(y)

17 typeof(y)

18 attributes(y)

19 attr(y, "dim")

20 dim(y)

21 t(y)

22 y %*% t(y)

23 library(rpart) # Recursive partitioning and regression trees

24 data(car.test.frame) # CU car test data

25 class(car.test.frame)

26 typeof(car.test.frame)

27 attributes(car.test.frame)

28 names(car.test.frame)

29 car.test.frame$Price

30 class(car.test.frame$Price)

31 class(car.test.frame$Country)

32 class(car.test.frame$Type)

33 car.test.frame$Type

34 attributes(car.test.frame$Type)

35 str(car.test.frame$Type)

36 as.numeric(car.test.frame$Type)

37 plot(car.test.frame$Price)

38 plot(car.test.frame$Type)

rscripts/matrix.r

4 Functions, Logic, Loops, and the *ply Family

4.1 Functions

In general, functions can take arbitrary numbers of arguments and can output arbitrarily complex output struc-
tures.

1 f <- function(a, b){

2 return(a - b)

3 }

4

5 f(a=1, b=2)

6 f(1, 2)

7 f(b=1, a=2)

8 f(b=1, 2)

9 f(1)

10 f(matrix (1:4, ncol =2), matrix (4:1, nrow =2))

11

12 g <- function(a, b){

13 return(list(a+b, a-b, a*b, a/b))

14 }

15

16 g(5,2)

5

17 g(1,0)

18 g(f(2,6), 2)

rscripts/functions.r

4.2 Logic

Technically R does not have boolean logic, since it has TRUE, FALSE, and NA. Beyond this, logic and conditionals
are fairly straightforward.

1 x <- 1

2 y <- -1

3 z <- NA

4 X <- c(x, y)

5 Y <- c(X, z)

6

7 x && y == 1

8 x || y == 1

9 x > 0

10 y <= -1

11 X > 0

12

13 all(X > 0)

14 any(X > 0)

15 is.na(Y)

16 any(is.na(Y))

17 which(is.na(Y))

18 Y[3]

19

20 if (x == 1) print("success") else print("failure")

21 if (y >= 0) print("success") else print("failure")

rscripts/logic.r

4.3 Loops

1 # Example 1: for loop

2 for (i in 1:5) print("Hello")

3

4 # Example 2: for loop

5 fib <- function(n){

6 phi <- (1 + sqrt (5))/2

7 return ((phi^n - (-1/phi)^n)/sqrt (5))

8 }

9

10 fibonacci <- numeric (10)

11 for (i in 1:10) fibonacci[i] <- fib(i)

12 }

13

14 # Example 3: while loop

15 i <- 0

16 while (i < 5){

17 print("Hello")

18 i <- i+1

19 }

20

6

21 # Example 4: while loop

22 while(TRUE) print("Press ctrl+c to end this madness")

23

24 # Example 5: while loop to get all Fibonacci numbers below 100

25 flag <- 0

26 i <- 1

27 fiblist <- list()

28 while (flag ==0){

29 fiblist [[i]] <- fib(i)

30 i <- i+1

31 if (fiblist [[i-1]] > 100) flag <- 1

32 }

33 fiblist [[length(fiblist)]] <- NULL

34 fiblist

rscripts/loops.r

4.4 *ply

The *ply family of functions such as apply(), lapply(), sapply(), tapply(), and vapply() are loop-like func-
tions that can offer enhanced readability of code, as well as even (sometimes) offering performance advantages
over using loops.

1 # sorting columns of a matrix

2 x <- cbind(x1 = 2:1, x2 = c(3:1, 5:7))

3 x

4

5 for (i in 1:2){

6 x[,i] <- sort(x[,i])

7 }

8 x

9

10 x <- cbind(x1 = 2:1, x2 = c(3:1, 5:7))

11 apply(X=x, MARGIN=2, FUN=sort)

12 apply(X=x, MARGIN=1, FUN=sort)

13 apply(X=x, MARGIN=3, FUN=sort)

14

15 # some other plys

16 lapply(X=rep("Hello", 5), FUN=identity)

17 sapply(X=rep("Hello", 5), FUN=identity)

18 sapply(X=rep("Hello", 5), FUN=identity , simplify=FALSE)

19 sapply(X=rep("Hello", 5), FUN=identity , USE.NAMES=FALSE)

20

21 lapply(X=1:10, FUN=fib)

22 sapply(X=1:10, FUN=fib)

23

24 # sapply can be useful for subsetting lists

25 x <- list (1:3, 4:6, 7:9)

26 x

27 sapply(X=x, FUN="[[", FUN.VALUE =2)

28

29 # tapply

30 ind <- list(c(1, 2, 2), c("A", "A", "B"))

31 table(ind)

32 tapply(X=1:3, INDEX=ind , FUN=sum)

7

rscripts/plys.r

4.5 Exercises

1. Create a function f that will take an integer n print ”success” if the number is divisible by 5, and print
”failure” otherwise. In R, %% is the modulus operator, with a%%b returning the remainder of the division
of a divided into b. So 10%%5 returns 0, 11%%5 returns 1, 12%%5 returns 2, etc.

2. Use a for loop to evaluate the function f you just developed on each of the numbers in the vector 1:20. Do
the same with sapply.

5 Formula Methods

Much of data analysis involves the repeated selection of variables and their functions and interactions for models.
Because this is so common, R has the powerful concept of a “formula” that allows shorthand specification and
manipulation of what variables to include in an analysis and in what way. Typically, the formula method is used
with a data frame, where the variables are its columns.

1 library(rpart)

2 install.packages("rpart.plot")

3 library(rpart.plot)

4 data(car.test.frame)

5 summary(car.test.frame)

6 fit <- rpart(Mileage ~ Country + Reliability + Price + Type +

Weight + Disp. + HP , data=car.test.frame)

7 rpart.plot(fit)

8 rsq.rpart(fit)

9 vars <- names(car.test.frame)

10 vars

11 model <- as.formula(paste(vars[3], paste(vars[-3], collapse="

+ "), sep=" ~ "))

12 model

13 fit <- rpart(model , data=car.test.frame)

14 rpart.plot(fit)

15 model <- as.formula(paste(vars[2], paste(vars[-2], collapse="

+ "), sep=" ~ "))

rscripts/formula.r

6 Input and Output of Data

As you have seen, R has many integrated data sets. This is useful for teaching R and for playing with R but it
doesn’t get your data analyzed. Base R has facilities for reading ASCII files and there are several packages for
reading files produced by other software such as Excel, SAS, SPSS, Octave, NetCDF, HDF5, and many others.
The R Data Import/Export manual is an excellent initial source on what R packages are relevant to what data
format. Because of so many different formats available, we only briefly cover ASCII data input and output here
and refer users needing other format information to the R Data Import/Export manual.

1 car.test.frame

2 save(car.test.frame , file="Rcardata")

3 rm(car.test.frame)

4 ls()

5 load("Rcardata")

6 ?write.table

7 write.table(car.test.frame , file="cardata.txt")

8

http://cran.r-project.org/doc/manuals/R-data.html
http://cran.r-project.org/doc/manuals/R-data.html

8 ?read.table

9 cardata <- read.table("cardata.txt", header=TRUE)

10 all(cardata == car.test.frame)

11 all(cardata == car.test.frame , na.rm=TRUE)

12 all(is.na(cardata) == is.na(car.test.frame))

13

14 ?scan

rscripts/io.r

7 Where to Learn More?

The r-project.org web site under the Manuals link provides a good place to start. The Books link now lists over
100 books. There are numerous other web sites that provide a wealth of information on various R topics. Some
of these follow.

Cookbook for R: http://wiki.stdout.org/rcookbook/

R Graph Gallery: http://addictedtor.free.fr/graphiques/

The R Journal: http://journal.r-project.org/

R Mailing Lists: http://www.r-project.org/mail.html

The R Wiki: http://rwiki.sciviews.org

8 Suggested Solutions to Exercises

8.1 Section 4 Solutions

1.

1 f <- function(n){

2 if (n %% 5 == 0) print("success") else print("failure")

3 }

2.

1 # loop

2 for (i in 1:20){

3 f(i)

4 }

5

6 # sapply

7 sapply(X=1:20, FUN=f)

9

http://wiki.stdout.org/rcookbook/
http://addictedtor.free.fr/graphiques/
http://journal.r-project.org/
http://www.r-project.org/mail.html
http://rwiki.sciviews.org

	Introduction
	How to Run R

	R Packages
	Basics of R
	Basic Objects and Data Types
	A Super Calculator
	Probability Distributions
	Matrices, Arrays, Data Frames, and Factors

	Functions, Logic, Loops, and the *ply Family
	Functions
	Logic
	Loops
	*ply
	Exercises

	Formula Methods
	Input and Output of Data
	Where to Learn More?
	Suggested Solutions to Exercises
	Section ?? Solutions

