
Porting Applications with CUDA
Fortran and OpenACC

Jeff Larkin
Cray Center of Excellence

<larkin@cray.com>

CUDA Fortran

● CUDA Fortran is an extension of Fortran developed in
cooperation between Nvidia and PGI that provides similar
capabilities and limitations to CUDA for C.

● Pros
● It’s FORTRAN - No reason to port parts of an existing FORTRAN code

to C
● Close to the metal performance
● CUDA for C experience and best practices apply
● IT’S FORTRAN!!!!

● Cons
● Not Portable - Only available from PGI and Nvidia
● Requires separate CPU and GPU code paths

● One more Pro - Mixes well with OpenACC and CUDA

Libraries

What does it look like? - CUDA Fortran Kernel
real(kind=real_kind) :: gv(nv,nv,2),vvtemp(nv,nv
do q=1,qsize
 do k=1,nlev
 do j=1,nv
 do i=1,nv
 gv(i,j,1) = &
 elem%metdet(i,j)*(elem%Dinv(1,1,i,j)*v5d(i,j,k,q,1) + &
 elem%Dinv(1,2,i,j)*v5d(i,j,k,q,2))
 gv(i,j,2) = &
 elem%metdet(i,j)*(elem%Dinv(2,1,i,j)*v5d(i,j,k,q,1) + &
 elem%Dinv(2,2,i,j)*v5d(i,j,k,q,2))
 enddo
 enddo
 do j=1,nv
 do l=1,nv
 dudx00=0.0d0
 dvdy00=0.0d0
 do i=1,nv
 dudx00 = dudx00 + deriv%Dvv(i,l) * gv(i,j,1)
 dvdy00 = dvdy00 + deriv%Dvv(i,l) * gv(j,i,2)
 end do
 div4d(l ,j,k,q) = dudx00
 vvtemp(j ,l) = dvdy00
 end do
 end do
 do j=1,nv
 do i=1,nv
 div4d(i,j,k,q)= elem%rmetdetp(i,j) * &
 (rdx*div4d(i,j,k,q)+rdy*vvtemp(i,j))
 end do
 end do
 end do
end do

real(kind=real_kind), shared :: &
 gv1(nv,nv,levels_per_block),gv2(nv,nv,levels_per_block)
real(kind=real_kind), shared :: vvtemp(nv,nv,levels_per_block)
i = threadidx%x
j = threadidx%y
k = blockdim%z*(blockidx%x-1) + threadidx%z
q = blockidx%y

if (k.le.nlev) then
 ! convert to contra variant form and multiply by g
 gv1(i,j,threadidx%z) = &
 metdet(i,j)*(Dinv(1,1,i,j)*v5d(i,j,k,q,1) + &
 Dinv(1,2,i,j)*v5d(i,j,k,q,2))
 gv2(j,i,threadidx%z) = &
 metdet(j,i)*(Dinv(2,1,j,i)*v5d(j,i,k,q,1) + &
 Dinv(2,2,j,i)*v5d(j,i,k,q,2))
 call syncthreads()

 ! compute d/dx and d/dy
 dudx00=0.0d0
 dvdy00=0.0d0
 do ii=1,nv
 dudx00 = dudx00 + Dvv(ii,i) * &
 gv1(ii,j,threadidx%z)
 dvdy00 = dvdy00 + Dvv(ii,i) * &
 gv2(ii,j,threadidx%z)
 end do
 div4d(i,j,k,q) = dudx00
 vvtemp(j,i,threadidx%z) = dvdy00
 call syncthreads()

 div4d(i,j,k,q)= rmetdetp(i,j) * &
 (rdx*div4d(i,j,k,q)+rdy*vvtemp(i,j,threadidx%z))
endif

What does it look like? - CUDA Fortran
Launcher

do q=1,qsize
 do k=1,nlev
 do j=1,nv
 do i=1,nv
 gv(i,j,1) = &
 elem%metdet(i,j)*(elem%Dinv(1,1,i,j)*v5d(i,j,k,q,1) + &
 elem%Dinv(1,2,i,j)*v5d(i,j,k,q,2))
 gv(i,j,2) = &
 elem%metdet(i,j)*(elem%Dinv(2,1,i,j)*v5d(i,j,k,q,1) + &
 elem%Dinv(2,2,i,j)*v5d(i,j,k,q,2))
 enddo
 enddo
 do j=1,nv
 do l=1,nv
 dudx00=0.0d0
 dvdy00=0.0d0
 do i=1,nv
 dudx00 = dudx00 + deriv%Dvv(i,l) * gv(i,j,1)
 dvdy00 = dvdy00 + deriv%Dvv(i,l) * gv(j,i,2)
 end do
 div4d(l ,j,k,q) = dudx00
 vvtemp(j ,l) = dvdy00
 end do
 end do
 do j=1,nv
 do i=1,nv
 div4d(i,j,k,q)= elem%rmetdetp(i,j) * &
 (rdx*div4d(i,j,k,q)+rdy*vvtemp(i,j))
 end do
 end do
 end do
end do

use cudafor
type (dim3) :: griddim,blockdim

blockdim = dim3(nv, nv, nlev)
griddim = dim3(qsize, nelem, 1)

dvv_d = deriv%dvv
v5d_d = v5d
dinv_d = elem%dinv
metdet_d = elem%metdet
rmetdetp_d = elem%rmetdetp

call divergence_sphere5d_gpu<<<griddim,blockdim>>>
 (v5d_d,dvv_d,dinv_d,metdet_d,rmetdetp_d,rdx,rdy,div4d_d)

div4d = div4d_d

CUDA Fortran Optimization

● CUDA Fortran is just CUDA, so the same tools and
techniques apply
● Use CUDA profiler by setting COMPUTE_PROFILE=1 at runtime.
● Use -Mcuda=ptxinfo for register and memory usage, useful with the

Nvidia occupancy calculator
● Shared memory, constant memory, coalesced memory

operations, warp-divergence, etc. work just like CUDA for
C

● Data transfer is key
● It doesn’t matter how fast your kernel is if you’re copying data

inefficiently.
● “Pin” your buffers to gain PCIe bandwidth and

asynchronous transfer

Use Interface Blocks

● Fortran Interface blocks allow
overloading procedure name
dependent on input types

● The “device” attribute can be
used to specialize input
arguments.

● So… by creating a generic
interface, CPU and GPU routines
can have the same calling
sequence and will be picked at
runtime according to be local to
memory

module addone_mod
 interface addone
 module procedure &
 addone_host,addone_dev
 end interface
 contains
 subroutine addone_host(B,N)
 integer :: N
 real(8) :: B(N)
 end subroutine
 subroutine addone_dev(B,N)
 integer :: N
 real(8),device :: B(N)
 type(dim3) :: griddim,&
 blockdim
 end subroutine
end module

Use CudaMemCpy rather than ‘=‘

● CUDA Fortran has an awesome feature that allows
copying data (syncrhonously) using the standard assign
operator (=)

● In several cases, we saw assignment result in many, small
copies, rather than 1 large.

● Replacing with a call to cudaMemCpy or
cudaMemCpyAsync gave much better results

● Aside: In theory one could overload the ‘=‘ operator within
a module and implement this shortcut oneself, but we did
not try this.

Remember that memcpy is faster than PCIe

● It’s tempting to think that streaming PCIe copies over
chunks is cheaper than packing/unpacking buffers

● Don’t do this:
do i=1,nchunks
 cudaMemcpy chunk
end do

● DDR3 Memory is capable of > 12 GB/s
● PCIe is capable of < 6GB/s

● Do this instead:

pack_chunks_on_device(chunks,buffer)
cudaMemcpy buffer
unpack_chunks_on_host(buffer,chunks)

● Make sure your buffer is “pinned”

CUDA Fortran and OpenACC can do that??

Start with something simple…

● Create Vectors A & B, both of length N.

● We don’t need to initialize them on the
CPU, so create and initialize each on the
device

● Return the results to the CPU, where
they’ll be output.

● What does this really show?
● OpenACC is great at the high-level

● No need for multiple copies of each
array (device/host)

● When possible, populate device
arrays on the device to avoid the cost
of a copy

program main
 integer, parameter :: &
 N = 1000
 real(8) :: A(N),B(N)
 integer :: i

 !$acc data create(A), &
 copyout(B)
 !$acc parallel
 A(:) = 1.0
 !$acc end parallel
 !$acc parallel
 B(:) = 2.0 * A(:)
 !$acc end parallel
 !$acc end data

 print *,B(1:6),"\n...\n",&
 B((N-5):N)
end program

Add some CUDA Fortran
module addone_mod
 use cudafor
 implicit none
 private
 public interface addone
 module procedure addone_host,addone_dev
 end interface
 contains
 subroutine addone_dev(B,N)
 integer :: N
 real(8),device :: B(N)
 type(dim3) :: griddim, blockdim
 griddim = dim3(ceiling(real(N)/real(512)),1,1)
 blockdim = dim3(512,1,1)
 call addone_kernel<<<griddim,blockdim>>>(B,N)
 print *, "device"
 end subroutine
 attributes(global)&
 subroutine addone_kernel(B,N)
 integer,value :: N
 real(8) :: B(N)
 integer i
 i = ((blockIdx%x - 1) * blockDim%x) + &
 threadIdx%x
 if (i.le.N) then
 B(i) = B(i) + 1
 endif
 end subroutine
end module

program main
 use addone_mod
 integer, parameter :: N = 1000
 real(8) :: A(N),B(N)
 integer :: i

 !$acc data create(A), copyout(B)
 !$acc parallel
 A(:) = 1.0
 !$acc end parallel
 !$acc parallel
 B(:) = 2.0 * A(:)
 !$acc end parallel

 !DEVICE
 call addone(B,N)

 !$acc end data

 !HOST
 call addone(B,N)

 print *,B(1:6),"\n...\n",B((N-5):N)

end program

Add in a library or two…
program main
 use addone_mod
 use cublas
 integer, parameter :: N = 1000
 real(8) :: A(N),B(N)
 integer :: i

 !$acc data create(A), copyout(B)
 !$acc parallel
 A(:) = 1.0
 !$acc end parallel
 !$acc parallel
 B(:) = 2.0 * A(:)
 !$acc end parallel

 !DEVICE
 call addone(B,N)

 call daxpy(N,alpha,A,1,B,1)
 !$acc end data

 !HOST
 call addone(B,N)

 print *,B(1:6),"\n...\n",B((N-5):N)

end program

● What’s my point of this silly example?

● Just because you choose 1
programming model today, doesn’t
mean you’re stuck with that choice.

● Mixing CUDA C, CUDA Fortran,
Libraries, and OpenACC is both
possible and reasonable.

● More on this in a moment…

If I were starting today, what would I do?

My Recommendations

● Start with OpenACC
● OpenACC has matured to the point that it is useful for most

applications.
● If you do a lot of partial array updates and/or partial derived type

updates, you may still have some trouble
● It helps to have an efficient OpenMP code first.

● Get the data movement figured out first.
● If it takes longer to copy the data back and forth than computing on the

CPU, kernels can be infinitely fast and it won’t matter.
● If you find things that are hard or inefficient to do via

directives, fall back to CUDA (C or Fortran)
● Don’t forget to use accelerated libraries when available.

● Report bugs!!
● Compilers won’t get better if we don’t know they’re broken.
● Poor performance is a bug too, if you can beat our performance, show

us the code.

	Porting Applications with CUDA Fortran and OpenACC
	CUDA Fortran
	What does it look like? - CUDA Fortran Kernel
	What does it look like? - CUDA Fortran Launcher
	CUDA Fortran Optimization
	CUDA FORTRAN Best Practices
	Use Interface Blocks
	Use CudaMemCpy rather than ‘=‘
	Remember that memcpy is faster than PCIe
	Stupid Programmer Tricks
	Start with something simple…
	Add some CUDA Fortran
	Add in a library or two…
	My recommendations	
	My Recommendations

