oA
A%JE

An Accelerated, Distributed Hydro Code with
MPI and OpenACC

Andy Herdman & Wayne Gaudin

Andy.Herdman@awe.co.uk
www.awe.co.uk

© British Crown Owned Copyright [2012[/AWE

AT
AVWE
v

Background

= Changing HPC landscape, future uncertain
= Multi core: slower clock, but more of them
= Many core: GPUs, MIC, Fusion
= Massive scalability: Sequoia — 1.6 million cores

= |ssues for current code base
= Programming model? MPI, OpenMP, OpenCL, CUDA,
Clik, etc, etc

= Re-write not an option!
= Decades of manpower (c.f. MPP — but we got 3D from this!)
= Hardware temporary, software permanent

= Effort vs. gains

AT
AVWE
v

How to Investigate Options?

= Current code base

= Classified
Big! (~0.5M Lines of Code (LoC))
Complex — multi physics, utilities / libraries
Mostly Fortran
Flat MPI

AT
AVWE
v

How to Investigate Options?

= Benchmarks
= Benchmarks of current algorithms
= Big(ish) (~90k LoC — comms package 46k)
= Complex
= Flat MPI

= |nefficient tool to evaluate software techniques
= Turnaround taking too long (~18 months CUDA/OpenCL)

AT
AVWE
v

How to Investigate Options?

= Lightweight, but representative application
= Written with computer science in mind
= Small(ish) (~4.5k LoC)

= Amenable to range of programming methods and
hardware

= No “cut-offs”, etc
= Hence CloverLeaf “mini-app”
= Open source via Mantevo Project

o

AWE
v

CloverLeaf

2D Structured Hydrodynamic “mini-app”

Explicit solution to the compressible Euler
equations

Finite volume predictor/corrector
lagrangian step followed by an advective
remap

Single material

Common base to all interested physics
models (they all do hydro!)

Simplest physics for computer science

Already know hydro scales to 10k’s way
parallel

If methodology fails for hydro scheme, or
is difficult to get performance; then other
physics models are going to be more
difficult

Written with computer science in mind

Simple Fortran “kernels”
Minimised loop logic (Reduced error

checking. We know we’re running robust

problems)

Kernels are lowest level of compute —
don’t call subroutines

No derived types
Minimal Pointers
No Array Syntax
~4500 LoC

Amenable to range of programming
methods: MPI, OpenMP, OpenACC,
CUDA, OpenCL, PGAS, etc.

AT
AVWE
v

Programming Models: OpenACC

= Directives provide high level approach

= Based on original source code (e.g. Fortran, C)

= Easier to maintain/port/extend

= Users with OpenMP experience find it a familiar
programming model

= Compiler handles repetitive boilerplate code
(cudaMalloc, cudaMemcpy, etc.)

= Compiler handles default scheduling: user can step in
with clauses where needed

AT
AVWE
v

CloverLeaf: OpenACC

= \Worked with Cray’s Exascale Research Initiative in Europe since late
2010
= Access to early HW (Puffin) and SW (proposed OpenMP extensions)
= Direct Fortran interface

= Easy of implementation
= 2 months to write CloverLeaf from scratch and develop fully resident OpenACC
version
= Summary of OpenACC directives:
= 14 unique kernels
= 25 ACC DATA constructs
121 ACC PARALLEL + LOOP regions
4 REDUCTION LOOPS
12 ASYNC
4 UPDATE HOST
4 UPDATE DEVICE

rJ\dE

AW

=g

Test Problem Definition

Asymmetric test problem.

Regions of ideal gas at differing initial densities and
energies cause shock wave to be generated

Gives rise to shock front which penetrates low
density region
0.25 million cells

= relatively quick turnaround
= Long enough to see compute as main work load

AT
AVWE
v

Chilean Pine, AWE’s Cray XK6

40 Compute nodes, each:

= 1 x AMD 16-core Interlagos = PrgEnv-cray 4.0.36
= 2.1 GHz = CCE (8.0.2t0 8.1.0.157)

= 32GB DDR3 1600 MHz * Cuda 4.0.17a
= Craype-hugepages2M
= 1 NVIDIA X2090 ype-higepag
= 1.16 GHz
- 6GB GDDR5
= PCle 2.0

= Craype-accel-nvidia20

10

AT
AVWE
v

OpenACC: Steps

= Profile “hot spots”

= Accelerate on a kernel by kernel basis

= Accelerate all kernels

= Make entire code resident on device

= Effect of problem size

= Compare with MPI/OpenMP hybrid version
= Hybrid MPI/OpenACC implementation

= Optimisations

AT
AVWE
v

“Hot Spots”

% of Runtime Routine
41.79 advec_mom
20.54 advec_cell
12.72 pdv
9.06 calc_dt
5.32 accelerate
5.24 viscosity

12

A

=g

Accelerate Individual Kernels

13

N7
AWE

Accelerate Individual Kernels

50 -

.

) 1]

30

25

Total Runtime (s)

20

15

10

0 \ ‘
No Acceleration Advec_mom ACC'ed Adwvec_cell ACC'ed PdV ACC'ed calc_dt ACC'ed accelerat ACC'ed Viscosity ACC'ed

® Non ACC'ed @ Device Compute 0O Data:H2D O Data:D2H W Sync

O
AWE

Accelerate Multiple Kernels

60

50

40

30

Total Runtime (s)

20

10

No Acceleration All ACC'ed

@ Non ACC'ed @ Device Compute 0O Data:H2D 0O Data:D2H

B Sync

15

A

=g

Fully Resident on Accelerator

16

i
A‘__\%JE

Fully Resident on Accelerator

60 -

50

40

Total Runtime (s)
w
S

20
10
0]
No Acceleration All ACC'ed Fully Resident
@ Non ACC'ed @ Device Compute 0O Data:H2D O Data:D2H B Sync

17

AT
AVWE
v

Increasing Problem Size

= 500 x 500 modest problem size
= Typical problem sizes in range 300k to 8M cells
= Science demanding even greater

= Same performance as this is increased?

i
‘l%g%%iﬁi

Increasing Problem Size

500x500

x3.01
\
N\
N\

300

Total Runtime (s)
@
o

960x960

x4.91

315 100 J
50
5 -
0- 0-
oos 2048x2048 . 4096x4069
2500 1 20000 -
“ 2000)
: x5.82 £ 15000 |
5 1500 / 5 x5.76
< 5 10000
5 1000 5 \
500 | 5000 -
0- - 0
@ Device Compute 0O Data:H2D 0O Data:D2H B Sync

19

AT
AVWE
v

Hybrid MPI/OpenMP Comparison

Architecture Optimal Turnaround Time
Utilisation for 9602
2.1 GHz Interlagos | 8 MPI 1 OpenMP 43.52
(1 core / “Bulldozer”)
1.16 GHz nVidia OpenACC 58.03

X2090

20

W
AL_\%JE

Hybrid MPI/OpenACC

= Same test case
= Use the 960x960 mesh

= Up simulation time from 0.5 ys to
15.5 ys

= Need to run a little longer now going
distributed

= Halo exchange data now needs to
be updated on host and device

= Explicitly packing our own buffers
= This is “Version A’

21

N7
AWE

“Version A” Performance

1800 -

1600 -

1400 ~

AN

1200 +

AN

1000 - \
800 -

Total Runtime (s)

x5.97

600 -

x0.88

400 ~

1_1CPU 1_16 CPU 1GPU 2GPU

4 GPU

. ./&-I

6 GPU

@ Version A

22

A

=g

What'’s it Actually Doing?

= Use CrayPat to re-profile for the
GPU

= Tells us advec and cell
momentum routines still
dominate as they did for CPU
profile

= |ntuitively this is what you’d
expect

= But what's it actually doing?

= |s it “good” or “bad”?

23

A

=g

Use the “listing file”!
Use the “-ra” CCE compiler option

Creates listing files (*.Ist)

Shows that kernel isn’t threaded in advec_cell.f90

work is done sequentially

= jis split among the threads, then all threads are
doing the same j at the same time

Why? - loops are calculating values and then
using these updated values i.e. “dependencies”

Can remove them? - Yes!
Break loop in two

move updates (pre / post mass, energy, volume)
into separate update loop

24

A

=g

Check the “listing file”

= Check the “*.Ist” file

= Inner loop is now partitioned
over the threadblocks

A

=g

Re-Profile

= Re-profile with CrayPat
= advec cell: 28s to 12s
= Still correct answer?

= Yes!

= This is “Version B”

26

A

=g

“Version B” Performance

1800

1600 -

1400 -

1200 -

1000 +

800 ~

Total Runtime (s)

600 -

400

200 A

1_1CPU 1_16 CPU 1 GPU 2 GPU 4 GPU 6 GPU

O Version A @ Version B

A

=g

Follow Same Procedure

Now advec_mom dominating profile

= “* |st” file shows that loops with
multiple levels of nesting are not
being accelerated

28

A

=g

Remove Nested Loops

= Multiple levels of loop nesting
removed.

29

W
AL_\%JE

Not Quite Partitioned

= Multiple levels of loop nesting
removed.

= Now all but one is partitioned
across the threads.

= Know it's ok, so force it to be
scheduled across all threads

= I3ACC LOOP VECTOR

30

A

=g

Check “listing file” and Re-Profile

“* Ist” file shows all loops now
partitioned across the threads

Re-profile with CrayPat
advec_mom: 19s to 8s
Still correct answer?

Yes!

31

A

=g

Avoid Global Variable Access

Now timestep routine is dominating

Again the “*.Ist” file shows timestep was
just running on one thread

Issue was global variables

threads could potentially write to these,
hence scheduled on one thread

These are only used in summary print, so
currently disabled

If/once MINLOC supported then can get
round this

32

A

=g

Check “listing file” and Re-Profile - Again

= “* Ist” file shows all loops
now partitioned across the
threads

= Re-profile with CrayPat

= timestep: 13sto < 1s
= Still correct answer?
= Yes!

= This is “Version C”

33

A

=g

“Version C” Performance

Total Runtime (s)

1800

1600 -

1400 -

1200 -

1000 +

800 ~

600 -

400

200 A

1_1CPU

1_16 CPU 1 GPU 2 GPU

4 GPU

6 GPU

O Version A

@ Version B

OVersion C

34

AT
AVWE
v

Going multi GPU

= Looked next at bottlenecks affecting multi GPU execution

= Limit halo depth copy appropriately
= Previously copying max. data possible, rather than what is necessary: i.e. 1:size

= Used CRAY ACC _DEBUG
= Writes accelerator-related activity to stdout
= Levels range 0 to 3 (Using 2)
= Available on all versions of CCE
= Only documented (“man crayftn”) on 8.1.0.165 or greater

ACC: Start transfer 1 items from accelerate.f90:26
ACC: allocate, copy to acc ‘chunks’ (2376 bytes)
ACC: End transfer (to acc 2376 bytes, to host 0 bytes

Showed copying of “chunk” derived type

Why?

Implicit copy of derived type happening for scalar components of that type
Local scalars added and copied fields for “chunk” derived type to them.

= Stopped the implicit copy of all of the chunk derived type being copied to the GPU.

This is “Version D”

35

A

=g

“Version D” Performance

Total Runtime (s)

1800

1600 -

1400 -

1200 -

1000 +

800 ~

600 -

400

200 A

1_1CPU

1_16 CPU

1 GPU

2 GPU

4 GPU

6 GPU

O Version A

@ Version B

O Version C

O Version D

36

A

=g

What are all those “ACC_SYNC_WAITS”?

= “sync waits” still dominating profile

= These are only in kernels that
allocate data on the device

37

W
A‘__\%JE

Pre-Allocated Temp Array “Trick”

= Pre-allocate temporary arrays and
initially copy these to device

= Re-use these multiple times by
passing these through the
subroutine

= Removes allocations from kernels

= “ACC_SYNC_WAIT"s gone

= No need for “present_or_create”,
just “present”

= So “ACC_COPY’s gone
= This is “Version E”

38

i
A_\%JE

“Version E” Performance

1800

1600 -

1400

x19.34

1200 +

1000 -

[e5)
o
o

Total Runtime (s)

1_1CPU 1.16 CPU 1 GPU 2 GPU

@ Version A E Version B OVersion C OVersion

ersion

39

A

=g

rove the CPU Code

= Derived metrics “Version A”
= PAT_RT_HWPC=1

GPU Optimisations Im

= Looks ok
= 652 MFLOPS

= Derived metrics “Version E”

= L1 cache utilisation up factor 2.3
= Average 4.164 uses per operand

= Qver1 GFLOPS

40

AT
AVWE
v

Performance Relative to Benchmark Code

12000 -

10000 \

\ x156.64
\ x5.61
4000 + /
\
x8.10 /

1_1CPU 1_16 CPU 1 GPU 2 GPU 4 GPU 6 GPU

Total Runtime (s)

OBenchmark @ Version E Version B OVersion C O Version D B Version E ‘

AT
AVWE
v

Multiple GPU Scalability

= Ramp up problem size again
= Fill the IL socket with the 9602 => 38402

= Strong and Weak Scale 0.5us problem

42

AT
AVWE
v

0.5us, 38402 Mesh, Strong Scaled

35.00

30.00

25.00

Scaling vs 1 GPU
N
o
o
S

-—
o
o
S

5.00

0.00

Parallel Efficiency

~0.48

/

/

J

o

-

0

5 10 15 20 25 30
Number of GPUs

35

43

AT
AVWE
v

0.5us, 38402 Mesh, Weak Scaled

1sttime GPU has neighbours
in all directions

22.80 - \
22.70

22.60 \ 4'_/‘

22.50 /*0/‘7
22.40

2230 /
22.20

Husec per cell

2210 /

22.00

21.90 /

21.80 J

21.70 w w ‘ ‘ ‘ ‘ ‘
0 4 8 12 16 20 24 28

Number of GPUs

32

44

A
A_\%JE

0.5us, 38402 Mesh, Weak Scaled

0 4 8 12 16 20 24 28
Number of GPUs

32

45

AT
AVWE
v

Conclusions

= Quickly get accelerated with OpenACC

= |nsights / optimisations that enable the compiler to
generate partitioned threaded code for the accelerator via
OpenACC, also enable compiler to improve generated
code for CPU performance

= Compiler / Tool feedback is very good
= Accelerator info in “*.Ist” files invaluable
= CRAY_ACC _DEBUG
= CrayPat
= Some stuff missing
= MINLOC
= ATOMIC / CRITICAL operations

= Cray support has been 15t class

rJ\dE

AW

=g

Summary

Can deve
piecemea

Relative s

op OpenACC version of your code in a
manner

nort timeframe have distributed

accelerated code

Explicit hydrodynamics is amenable to
accelerated technology

x19.34 over 1 Interlagos core
x4.91 over 1 Interlagos socket
Weak scaling shows relative constant cost per cell

47

AT
AVWE
v

What’s Next?

= Feedback “mini-app” experience to production applications
= Ran on 32 GPUs (most we can) want more

= Mantevo

= Project Leads: Richard Barrett & Mike Heroux
= https://software.sandia.gov/mantevo

= OpenMP tasked based — MPI/OpenMP/OpenACC hybrid
= Other algorithms

= |mplicit solution to diffusion equation
= Deterministic solution to transport equation
= Monte Carlo solution of the transport equation

48

AT
AVWE
v

Acknowledgements

= Cray in general
= Cray Partner Network
= Compiler Team
= Tools Team

= |n particular Alistair Hart (Cray)

49

	An Accelerated, Distributed Hydro Code with MPI and OpenACC
	Background
	How to Investigate Options?
	How to Investigate Options?
	How to Investigate Options?
	CloverLeaf
	Programming Models: OpenACC
	CloverLeaf: OpenACC
	Test Problem Definition
	Chilean Pine, AWE’s Cray XK6
	OpenACC: Steps
	“Hot Spots”
	Accelerate Individual Kernels
	Accelerate Individual Kernels
	Accelerate Multiple Kernels
	Fully Resident on Accelerator
	Fully Resident on Accelerator
	Increasing Problem Size
	Increasing Problem Size
	Hybrid MPI/OpenMP Comparison
	Hybrid MPI/OpenACC
	“Version A” Performance
	What’s it Actually Doing?
	Use the “listing file”!
	Check the “listing file”
	Re-Profile
	“Version B” Performance
	Follow Same Procedure
	Remove Nested Loops
	Not Quite Partitioned
	Check “listing file” and Re-Profile
	Avoid Global Variable Access
	Check “listing file” and Re-Profile - Again
	“Version C” Performance
	Going multi GPU
	“Version D” Performance
	What are all those “ACC_SYNC_WAITS”?
	Pre-Allocated Temp Array “Trick”
	“Version E” Performance
	GPU Optimisations Improve the CPU Code
	Performance Relative to Benchmark Code
	Multiple GPU Scalability
	0.5µs, 38402 Mesh, Strong Scaled
	0.5µs, 38402 Mesh, Weak Scaled
	0.5µs, 38402 Mesh, Weak Scaled
	Conclusions
	Summary
	What’s Next?
	Acknowledgements

