

2

Microkernel on Compute PEs,
full featured Linux on Service
PEs.
 Service PEs specialize by

function
 Software Architecture

eliminates OS “Jitter”
 Software Architecture enables

reproducible run times
 Large machines boot in under

30 minutes, including
filesystem

Service Partition

Specialized

Linux nodes

Compute PE

Login PE

Network PE

System PE

I/O PE

3

GigE

10 GigE

GigE

RAID

Subsystem

Fibre

Channels

SMW

Compute node

Login node

Network node

Boot/Syslog/Database nodes

I/O and Metadata nodes

X

Z
Y

4

6.4 GB/sec direct connect

HyperTransport

Cray

SeaStar2+

Interconnect

25.6 GB/sec direct

connect memory

Characteristics

Number of Cores 12

Peak Performance
Istanbul (2.6)

124 Gflops/sec

Memory Size 16 GB per node

Memory
Bandwidth

25.6 GB/sec

5

Cray XT5 systems ship with the
SeaStar2+ interconnect

Custom ASIC

 Integrated NIC / Router

MPI offload engine

Connectionless Protocol

Link Level Reliability

Proven scalability to 225,000
cores

HyperTransport

Interface

Memory

PowerPC

440 Processor

DMA

Engine6-Port

Router

Blade
Control

Processor
Interface

Now Scaled

to 225,000

cores

6

7

8

H
ig

h
 V

e
lo

c
it
y
 A

ir
fl
o

w

H
ig

h
 V

e
lo

c
it
y
 A

ir
fl
o

w

L
o

w
 V

e
lo

c
it
y
 A

ir
fl
o

w

L
o

w
 V

e
lo

c
it
y
 A

ir
fl
o

w

L
o

w
 V

e
lo

c
it
y
 A

ir
fl
o

w
9

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

6MB L3

Cache

Greyhound

Greyhound

Greyhound

Greyhound

Greyhound

Greyhound

6MB L3

Cache

Greyhound

Greyhound

Greyhound

Greyhound

Greyhound

Greyhound

6MB L3

Cache

Greyhound

Greyhound

Greyhound

Greyhound

Greyhound

Greyhound

6MB L3

Cache

Greyhound

Greyhound

Greyhound

Greyhound

Greyhound

GreyhoundH
T

3

H
T

3

 2 Multi-Chip Modules, 4 Opteron Dies

 8 Channels of DDR3 Bandwidth to 8 DIMMs

 24 (or 16) Computational Cores, 24 MB of L3 cache

 Dies are fully connected with HT3

 Snoop Filter Feature Allows 4 Die SMP to scale well

To Interconnect

HT3

HT3

HT3

HT1 / HT3

10

10 12X Gemini
Channels

(Each Gemini
acts like two

nodes on the 3D
Torus)

Cray Baker Node Characteristics

Number of
Cores

16 or 24

Peak
Performance

140 or 210 Gflops/s

Memory Size 32 or 64 GB per node

Memory
Bandwidth

85 GB/sec

High Radix
YARC Router

with adaptive
Routing

168 GB/sec
capacity

11

Module with

SeaStar

Module with

Gemini

Y

X

Z

12

6.4 GB/sec direct connect

HyperTransport

Cray
SeaStar2+

Interconnect

83.5 GB/sec direct
connect memory

Characteristics

Number of Cores 16 or 24 (MC)
32 (IL)

Peak Performance
MC-8 (2.4)

153 Gflops/sec

Peak Performance
MC-12 (2.2)

211 Gflops/sec

Memory Size 32 or 64 GB per
node

Memory
Bandwidth

83.5 GB/sec

13

14

Hot air stream passes through evaporator, rejects
heat to R134a via liquid-vapor phase change

(evaporation).

R134a absorbs energy only in the presence of heated air.

Phase change is 10x more efficient than pure water

cooling.

Liquid/Vapor
Mixture out

Liquid
in

Cool air is released into the computer room

15

R134a piping Exit Evaporators

Inlet Evaporator

16

17

New enhanced blower to
handle the 130 Watt Magny-
Cours Processor

 Enhanced sound kit to reduce
noise

More efficient design
New VFD (Variable Frequency

Diode) for blower
 An upgrade kit product code

will be available for existing
XT5 customers which will
contain the required
components

18

19

Air taken from top, no

line of sight for sound

Foam lined

duct for

sound

absorption

Extra foam added to

front. Door now

seals to front IO

extension

20

Site specific
Public Domain

ISV Applications

21

Cray Software
Ecosystem

Applications

Compilers

Debuggers

Schedulers

Tools

OS

CrayPat
Cray Apprentice

Libraries
Public Domain Tools

Cray Linux
Enviroment

 Service nodes run a full-featured SLES10 Linux installation
 We add our tools, libraries, and services

 Compute nodes run a slim-line Linux kernel with only necessary services
 Only run what’s needed so the application can rule the roost

 Libraries
 MPT – Message Passing Toolkit
 LibSci – Cray Scientific Libraries (BLAS, LAPACK, SCALAPACK, FFTW, etc)
 I/O Libraries – HDF5 & NetCDF

 Tools
 Compilers – PGI, Cray, GNU, Pathscale, Intel
 CrayPAT – Performance Analysis Tools

 ALPS
 Application placement, job launching, application clean-up
 Users interface with ALPS primarily via aprun

 PBS/TORQUE & MOAB
 All jobs on the local XTs are batch jobs
 MOAB is an advanced job scheduler that is used on Jaguar and Kraken

22

Capacity/Production

(Mid-weight Linux Image)

Less

Compatibility

Full

Compatibility

27550

27750

27950

28150

28350

0 1 2 3

Capability (Ultra-light Linux Image)

Shrink-wrap

3rd Party Application

(Full Linux Image and all services)

High Scale

Low Scale

23

 Benefit: Eliminate noise with overhead
(interrupts, daemon execution) directed
to a single core

 Rearranges existing work
 Without core specialization: overhead affects every core
 With core specialization: overhead is confined, giving app

exclusive access to remaining cores

Helps some applications, hurts others
 POP 2.0.1 on 8K cores on XT5: 23% improvement
 Larger jobs should see larger benefit
 Future nodes with larger core counts will see even more benefit

 This feature is adaptable and available on a job-by-job
basis

24

25

 Cray XT/XE Supercomputers come with compiler wrappers to simplify
building parallel applications (similar the mpicc/mpif90)
 Fortran Compiler: ftn
 C Compiler: cc
 C++ Compiler: CC

 Using these wrappers ensures that your code is built for the compute
nodes and linked against important libraries
 Cray MPT (MPI, Shmem, etc.)
 Cray LibSci (BLAS, LAPACK, etc.)
 …

 Choosing the underlying compiler is via the PrgEnv-* modules, do not call
the PGI, Cray, etc. compilers directly.

 Always load the appropriate xtpe-<arch> module for your machine
 Enables proper compiler target
 Links optimized math libraries

26

 PGI – Very good Fortran and C, pretty good C++
 Good vectorization
 Good functional correctness with optimization enabled
 Good manual and automatic prefetch capabilities
 Very interested in the Linux HPC market, although that is not their only focus
 Excellent working relationship with Cray, good bug responsiveness

 Pathscale – Good Fortran, C, possibly good C++
 Outstanding scalar optimization for loops that do not vectorize
 Fortran front end uses an older version of the CCE Fortran front end
 OpenMP uses a non-pthreads approach
 Scalar benefits will not get as much mileage with longer vectors

 Intel – Good Fortran, excellent C and C++ (if you ignore vectorization)
 Automatic vectorization capabilities are modest, compared to PGI and CCE
 Use of inline assembly is encouraged
 Focus is more on best speed for scalar, non-scaling apps
 Tuned for Intel architectures, but actually works well for some applications on

AMD (this is becoming increasingly important)

…from Cray’s Perspective

27

 GNU Inproving Fortran, outstanding C and C++ (if you ignore vectorization)
 Obviously, the best for gcc compatability
 Scalar optimizer was recently rewritten and is very good
 Vectorization capabilities focus mostly on inline assembly, but automatic

vectorization is improving
 Note: may be required to recompile when changing between major version (4.5

-> 4.6, for example)

 CCE – Outstanding Fortran, very good C, and okay C++
 Very good vectorization
 Very good Fortran language support; only real choice for Coarrays
 C support is quite good, with UPC support
 Very good scalar optimization and automatic parallelization
 Clean implementation of OpenMP 3.0, with tasks
 Sole delivery focus is on Linux-based Cray hardware systems
 Best bug turnaround time (if it isn’t, let us know!)
 Cleanest integration with other Cray tools (performance tools, debuggers,

upcoming productivity tools)
 No inline assembly support

28

…from Cray’s Perspective

 PGI
 -fast –Mipa=fast(,safe)
 If you can be flexible with precision, also try -Mfprelaxed
 Compiler feedback: -Minfo=all -Mneginfo
 man pgf90; man pgcc; man pgCC; or pgf90 -help

 Cray
 <none, turned on by default>
 Compiler feedback: -rm (Fortran) -hlist=m (C)
 If you know you don’t want OpenMP: -xomp or -Othread0
 man crayftn; man craycc ; man crayCC

 Pathscale
 -Ofast Note: this is a little looser with precision than other compilers
 Compiler feedback: -

LNO:simd_verbose=ON:vintr_verbose=ON:prefetch_verbose=ON
 man eko (“Every Known Optimization”)

 GNU
 -O2 / -O3
 Compiler feedback: -ftree-vectorizer-verbose=1
 man gfortran; man gcc; man g++

 Intel
 -fast
 Compiler feedback: -vec-report1
 man ifort; man icc; man iCC

29

 Goal of scientific libraries
Improve Productivity at optimal performance

 Cray use four concentrations to achieve this
 Standardization

 Use standard or “de facto” standard interfaces whenever available

 Hand tuning
 Use extensive knowledge of target processor and network to optimize common code

patterns

 Auto-tuning
 Automate code generation and a huge number of empirical performance evaluations

to configure software to the target platforms

 Adaptive Libraries
 Make runtime decisions to choose the best kernel/library/routine

30

31

FFT

CRAFFT

FFTW

P-CRAFFT

Dense

BLAS

LAPACK

ScaLAPACK

IRT

CASE

Sparse

CASK

PETSc

Trilinos

IRT – Iterative Refinement Toolkit

CASK – Cray Adaptive Sparse Kernels

CRAFFT – Cray Adaptive FFT

CASE – Cray Adaptive Simplified Eigensolver

 BLAS

 LAPACK

 SCALAPACK

 BLACS

 PBLAS

 ACML

 FFTW 2&3

 PETSC

 TRILINOS

 IRT*

 MUMPS

 ParMetis

 SuperLU

 SuperLU_dist

 Hypre

 Scotch

 Sundials

 CASK*

 CRAFFT*

 CASE*

32

* Cray-specific

 Full MPI2 support (except process spawning) based on ANL MPICH2
 Cray used the MPICH2 Nemesis layer for Gemini
 Cray-tuned collectives
 Cray-tuned ROMIO for MPI-IO

 Current Release: 5.3.0 (MPICH 1.3.1)
 Improved MPI_Allreduce and MPI_alltoallv
 Initial support for checkpoint/restart for MPI or Cray SHMEM on XE

systems
 Improved support for MPI thread safety.
 module load xt-mpich2

 Tuned SHMEM library
 module load xt-shmem

33

