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Key Challenges to Get to an Exascale

/ Power

* Traditional voltage
scaling is over

* Power now a major
design constraint

* Cost of ownership

* Driving significant
changes in architecture

=l

/ Programming %
. ° E »
Difficulty .
* Concurrency and new
micro-architectures will
significantly complicate
software
* Need to hide this

&:omplexity from the users/
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/ Concurrency

* A billion operations per
clock

* Billions of refs in flight
at all times

* Will require huge
problems

o

* Need to exploit all
available parallelism

/

* Many more components

e Components getting less
reliable

* Checkpoint bandwidth

not scaling /

Resiliency
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Improving Processor Efficiency

e Multi-core was a good first response to power issues
e Performance through parallelism
* Modest clock rate

e Exploit on-chip locality

* However, conventional processor architectures are optimized for single thread
performance rather than energy efficiency
* Fast clock rate with latency(performance)-optimized memory structures
e Wide superscalar instruction issue with dynamic conflict detection
e Heavy use of speculative execution and replay traps
e Large structures supporting various types of predictions
e Relatively little energy spent on actual ALU operations
* Could be much more energy efficient with multiple simple processors,
exploiting vector/SIMD parallelism and a slower clock rate
* But serial thread performance is really important (Amdahl’s Law):

» If you get great parallel speedup, but hurt serial performance, then you end up with
a niche processor (less generally applicable, harder to program)

Copyright 2011 Cray Inc.  CPS 2011
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Conclusion: Heterogeneous Computing

» To achieve scale and sustained performance per {S,watt}, must adopt:
...a heterogeneous node architecture
e fast cores for serial code
e many power-efficient cores for parallel code
...a deep, explicitly managed memory hierarchy
e to better exploit locality, improve predictability, and reduce overhead
...a microarchitecture to exploit parallelism at all levels of a code
e distributed memory, shared memory, vector/SIMD, multithreaded Lo
e (related to the “concurrency” challenge—leave no parallelism untapped) =S,
= Sounds a lot like GPU accelerators... nVIDIA

= NVIDIA Fermi™ has made GPUs feasible for HPC —
= Robust error protection and strong DP FP, plus programming enhancements
= Expect GPUs to make continued and significant inroads into HPC
* Compelling technical reasons
= High volume market
* |t looks like they can credibly support both masters (graphics and compute)

" Two issues w/ GPU acceleration: STRUCTURAL and PROGRAMMING

Copyright 2011 Cray Inc.  CPS 2011
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Structual Issues with Accelerated Computing

Memory 32GB Memory
Capacity ——>| SDRAM Bandwidth
~170 GBI/s
Flops
\ GPU
PCle-2 ~665 GF

8 GB/s

Bandwidth
and Synchronization

* This is a short-lived situation
* NVIDIA Denver and AMD Fusion

* Try to keep kernel data structures resident in GPU memory
* Avoids copying b/w CPU and GPU; work on GPU-network communication

* May limit breadth of applicability over next 2-3 years

Copyright 2011 Cray Inc.  CPS 2011
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Programming Issues with Accelerated Computing

e Primary issues with programming for GPUs:
Learn new language/programming model
Maintain two code bases/lack of portability

Tuning for complex processor architecture (and split CPU/GPU structure)

* Need a single programming model that is portable across machine types,
and also forward scalable in time
Portable expression of heterogeneity and multi-level parallelism

Programming model and optimization should not be significantly difference for
“accelerated” nodes and multi-core x86 processors

Allow users to maintain a single code base

* Need to shield user from the complexity of dealing with heterogeneity
High level language with good complier and runtime support
Optimized libraries for heterogeneous multicore processors

* Directive-based approach makes sense (adding to OpenMP 4.0)

* Getting the division of labor right:
User should focus on identifying parallelism (we can help with good tools)

Compiler and runtime can deal with mapping it onto the hardware
Copyright 2011 Cray Inc.  CPS 2011



hort Term Petascale Systems — Node A
rchitecture

Cores on the | Total Vector Length | Programming
node threading Model
Blue Waters 16 32 8 OpenMP/MPI/
Vector
Blue Gene Q 16 32 8 OpenMP/MPI/
Vector
Magna-Cours | 24 24 4 OpenMP/MPI/
Vector
Titan 16 32 (768%*) 16 Threads/
Cuda/Vector
Intel MIC 32 128 8 OpenMP/MPI/
Vector
Istanbul 32 64 8 OpenMP/MPI/
Vector

* Nvidia allows oversubscription to SIMT units



Hybrid Multi-core Architecture

e Massively Parallel System with high powered nodes
that exhibit

e Multiple levels of parallelism

e Shared Memory parallelism on the node
e SIMD vector units on each core or thread

e Potentially disparate processing units

e Host with conventional X86 architecture
e Accelerator with highly parallel — SIMD units

» Potentially disparate memories

e Host with conventional DDR memory
e Accelerator with high bandwidth memory

Ind



Hybrid Multi-core Architecture

o All MPI may not be best approach
* Memory per core will decease
* Injection bandwidth/core will decease
* Memory bandwidth/core will decrease

e Hybrid MPI + threading on node may be able to
e Save Memory
e Reduce amount of off node communication
required
e Reduce amount of memory bandwidth required



XE6 Node Details: b o
24-core Magny Cours

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

T
)
DDR3 Channel

i
DDR3 Channel

DDR3 Channel

DDR3 Channel

To Interconnect
2 Multi-Chip Modules, 4 Opteron Dies \ c:r—;:"’

» 8 Channels of DDR3 Bandwidth to 8 DIMMs

24 (or 16) Computational Cores

* 64 KB L1 and 512 KB L2 caches for each core
© 6 MB of shared L3 cache on each die

* Dies are fully connected with HT3

© Snoop Filter Feature Allows 4 Die:5MPxtevseale wed|  rFebruary 2011 10



XE6 Node Details: SRRy
24-core Magny Cours

2y

“;on I
\OP/

Run using 1 MPI task on the node

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

I
DDR3 Channel

2 Multi-Chip Modules, 4 Opteron Dies
* 8 Channels of DDR3 Bandwidth to 8 DIMMs

24 (or 16) Computational Cores
* 64 KB L1 and 512 KB L2 caches for each core
* 6 MB of shared L3 cache on each die

* Dies are fully connected with HT3

Use OpenMP across all 24 cores

o SW Filter Feature Allows 4 Die-SMPxtevseal@ Wedl  February 2011 »



XE6 Node Details: . ERANY

24-core Magny Cours  Run using 2 MPI tasks on the node
One on Each Die

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

T
I
DDR3 Channel

2 Multi-Chip Modules, 4 Opteron Dies
* 8 Channels of DDR3 Bandwidth to 8 DIMMs

24 (or 16) Computational Cores
* 64 KB L1 and 512 KB L2 caches for each core

© 6 MB of shared L3 cache on each die
_ ) Use OpenMP across all 12 cores
* Dies are fully connected with HT3 EbeiDic

o Sn&qp Filter Feature Allows 4 Die-SMPxtevsgale wedl February 2011 12



XE6 Node Details: . ERANY

24-core Magny Cours  Run using 4 MPI tasks on the node
One on Each Socket

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

T
I
DDR3 Channel

2 Multi-Chip Modules, 4 Opteron Dies
* 8 Channels of DDR3 Bandwidth to 8 DIMMs

24 (or 16) Computational Cores
* 64 KB L1 and 512 KB L2 caches for each core

© 6 MB of shared L3 cache on each die
_ ) Use OpenMP across all 6 cores
* Dies are fully connected with HT3 B bl ocket

o Sn&qp Filter Feature Allows 4 Die-SMPxtevsgale wedl February 2011 13



_ _ —
Proposed Programming Paradigm for

Hybrid Multi-core

e MPI or PGAS between nodes and/or sockets

e OpenMP, Pthreads or some other shared memory
parallelism across a portion of the cores on the node

e \Vectorization to utilize the SSE# or SIMD units on the
cores

14
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2011 Cray Upgrade Paths e

Interlagos and
Gemini

GPU Accelerator >

“XKG”

16
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Air to Liquid Cooled is also a field upgrade...

Room Neutral Air Exhaust

ﬁ‘ﬁ‘ﬁ‘ﬁ‘ﬂ‘ﬁ‘ﬁ‘ﬂ‘

Exit Evaporators
Cooling Coil (Cray
ECOphlex R134 piping)

Hot air is cooled using
liquid cooling before
being exhausted into the
computer room

Cool air is released into the
computer room
Liquid/

quwd I I I Vapor
= S . 1

Mixture out

Air heats as it passes
through the compute
blades

Hot air stream passes through
evaporator, rejects heat to R134a via
liquid-vapor phase change
(evaporation).

<:| Room ambient air inlet

Slide 17



Gemini Interconnect
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Cray Network Evolution e ———

SeaStar

Built for scalability to 250K+ cores
Very effective routing and low contention switch

Gemini
100x improvement in message throughput
3x improvement in latency
PGAS Support, Global Address Space
Scalability to 1M+ cores

Ask me about it

Cray XT6 — XE6 Workshop - INPE February 2011




Cray Gemini

* 3D Torus network
* Supports 2 Nodes per ASIC
» 168 GB/sec routing capacity

» Scales to over 100,000 network
endpoints

* Link Level Reliability and
Adaptive Routing

» Advanced Resiliency Features
* Provides global address space
* Advanced NIC designed to

efficiently support
* MPI

* Millions of messages/second

* One-sided MPI

* UPC, FORTRAN 2008 with
coarrays, shmem

- Global Atomics
Cray XT6 — XE6 Workshop - INPE

CRANY
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YARC Router

February 2011



Gemini vs SeaStar — Topology

XT Module
with SeaStar

XT Module

with Gemini
Cray XT6 — XE6 Workshop - INPE February 2011



Cray XE6 Chassis Topology

Cray XT6 — XE6 Workshop - INPE February 2011 22
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Gemini Advanced Features

e Globally addressable memory provides efficient
support for UPC, Co-array FORTRAN, Shmem and
Global Arrays

e Cray Programming Environment will target this capability
directly

e Pipelined global loads and stores
* Allows for fast irregular communication patterns

e Atomic memory operations
* Provides fast synchronization needed for one-sided
communication models

Cray XT6 — XE6 Workshop - INPE February 2011 23
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HPCC Natural Ring Latency Benchmark —
10
9 -+ Nehalem + IB natural ring
8 -+ #-- Westmere + IB natural ring

7 -+ 4#-- Cray XE6 natural ring

Latency (microseconds)
(@)]

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

mber of processes
Cray XT6 XE6 Workshop - INPE February 2011 24



Gemini— QDR Comparison
HPCC Random Ring Latency Benchmark

Latency (microseconds)
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12Core

=#&=Nehalem + IB random ring

—#—\Westmere + |IB random ring

=#=Cray XE6 random ring

24 Core .

Node
Gemini
2
1
0 1 T T T T T T T T T 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

mber of processes
Cray XT6 XE6 Workshop - INPE February 2011 25



Scalability and simulation rate

e Forecast Hours per compute Hours
e Typical performance improvement
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COSMO-LM
Grid 520x350 60L, 18 hour forecast

/I

140 /
120

100 /
80 /
60

L 2

Forecast hours per compute hours

40 /

20

0 500 1000 1500 2000 2500 3000

Number of cores

3500 4000

4500

'

Cray XT6 — XE6 Workshop - INPE

February 2011
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Remote gather: coarray vs MPI

® Coarray implementations are much simpler

® Coarray syntax allows the expression of remote data in a
natural way — no need of complex protocols

® Coarray implementation is orders of magnitude faster for
small numbers of indi MPI to coarray ratio (1024 PEs)

1000

100 \

—=-CAF put

10

MPI time / CAF time
:
3
0
0

1
256 512 1024 2048 4096 8192 16384 32768 65536 131072

Number of elements (nelts)

EEEEEEEEEEEEEEEEEEEEEEE



The Guidin ng Principle behind e
Co-Array Fortran

= \What is the smallest change required to make Fortran 90 an
effective parallel language?

= How can this change be expressed so that it is intuitive and
natural for Fortran programmers?

= How can it be expressed so that existing compiler technology
can implement it easily and efficiently?

8/15/11 Cray XT6-XE6 for INPE 28



What is Co-Array Syntax? e et

= Co-Array syntax is a simple extension to normal
Fortran syntax.
e |t uses normal rounded brackets ( ) to point to data in local
memory.

e |t uses square brackets [ ] to point to data in remote
memory.

e Syntactic and semantic rules apply separately but equally
to()and [].

8/15/11 Cray XT6-XE6 for INPE 29



Examples of Co-Array Declarations " mesrmmcourumcounan

real :: s[*]

real :: a(n)[*]

complex :: z[*]

integer :: index(n) [*]
real :: b(n)[p, *]

real :: c(n,m)[0:p, -7:q,
11:*]

real, allocatable :: w(:)
[:]

type (field) :: maxwell [p,*]

8/15/11 Cray XT6-XE6 for INPE 30



CAF Memory Model

X(1)lal,




What Do Co-Dimensions Mean? s

= real :: x(n)[p,q,]

e Replicate an array of length n, one on each image.

e Build a map so each image knows how to find the array on
any other image.

e Organize images in a logical (not physical) three
dimensional grid.
e The last co-dimension acts like an assumed size array: *
= num_images()/(pxq)
= A specific implementation could choose to represent
memory hierarchy through the co-dimensions.

8/15/11 Cray XT6-XE6 for INPE 32



The CAF Execution Model e

= The number of images is fixed and each image has its own
Index, retrievable at run-time:
e 1<,=num_images()
e 1<,=this_image() <,= num_images()

= Each image executes the same program independently of the
others.

" The programmer inserts explicit synchronization and
branching as needed.

= An “object” has the same name in each image.
= Fach image works on its own local data.

= An image moves remote data to local data through, and only
through, explicit CAF syntax.

8/15/11 Cray XT6-XE6 for INPE 33



Co-Array Fortran Extension e

= |[ncorporate the SPMD Model into Fortran 90
e Multiple images of the same program
e Text and data are replicated in each image

= Mark some variables with co-dimensions
e Co-dimensions behave like normal dimensions
e Co-dimensions express a logical problem decomposition

e One-sided data exchange between co-arrays using a Fortran-like
syntax

= Require the underlying run-time system to map the logical
problem decomposition onto specific hardware.

8/15/11 Cray XT6-XE6 for INPE 34



Communication Using CAF Syntax e

"y(:) = x(:)[p]

" mylndex(:) = index(:)

= yourindex(:) = index(:)[you]
= x(index(:)) = y[index(:)]

" x(:)[al = x(:) + x(:)[p]

Absent co-dimension defaults to the local object.

8/15/11 Cray XT6-XE6 for INPE 35



Irregular and Changing Data Structures




CRANY
CO_Array FO rtra n THME SUPERCOMPUTER COMPANY

= Can be implemented:

e Directly in the compiler; on those systems where the
compiler can issue memory fetches and stores directly to
remote processors memory, the statement becomes a
simple remote store.

> Allows co-array reference in a loop to be combined into
a vector load or store

> Allows compiler to use normal prefetch mechanism to
move fetches ahead of reference

e \ia a pre-processor; Rice University is currently working
on such a translator which generates subroutine calls for
transferring data to the remote processor

> Significantly more difficult to get performance better
than MPI

8/15/11 Cray XT6-XEG6 for INPE 37
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Importance of Vectorizing loop with the CAF reference
s iz = this_image(a)
g V-—~--< do ix = 1, kx
9. V r-< do iy = 1, ky
10. V r a(ix,iy) = b(iy,iz) [ix]
iV r——> end do
2 V====> end do

ftn-3021 ftn: INLINE File = data distro.f£90, Line = 7
Routine THIS IMAGE3 was not inlined because the compiler was unable to
to expand it inline.

locate
ftn-6204
A loop
ftn-6005
A loop
ftn-6208
A loop
8.

8/15/11

the routine
ftn: VECTOR
starting at
ftn: SCALAR
starting at
ftn: VECTOR
starting at

File
line
File
line
File
line

ol oIl oI

data distro.f90, Line = 8

was vectorized.

data distro.f90, Line = 9

was unrolled 4 times.

data distro.f90, Line = 9

was vectorized as part of the loop starting at line

Cray XT6-XEG for INPE 38
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Another Exam ple O s armeate S by
O e — — ——— < do im = 1, 10000
530, W 1f (blockid.eqg.imon in(4,1im) .and.
631. V & ibegin (sx) .le.imon in(1,im)" ".and.
0152 L Y & ibegin(sx+1l) .gt.imon in(l,im) .and.
CICIEIE 7 & Jbegin(sy) .le.imon in(2,1m) .and.
034. V & jbegin(sy+l) .gt.imon in(2,1im) .and.
525 SHEAY & kbegin (sz) .le.imon in(3,1m) .and.
556 S & kbegin(sz+1) .gt.imon in(3,1im)) then
037 CHAY num mon me = num mon me+l
Rl lmon (im) = .true.
e,V proc mon[iloid]%array (im)=procid global
640. V endif
N ——— — ——————— > end do

ftn-6375 ftn: VECTOR File = main 3d.f, Line = 629
A loop starting at line 629 would benefit from "!dir$ safe address".

iImmaEeEld e : VECTOR File = main 3d.f, Line = 629
A loop starting at line 629 was vectorized.

8/15/11 Cray XT6-XE6 for INPE 39



Special features of Baker relating to CAF/UPC e

= On X1, X1E, and ‘BlackWidow’, the custom processor directly
emits addresses for any memory location in the machine.
Scalar or vector loads/stores can be done to any global
address in the system

= On XE6 the Gemini NIC used to ‘extend’ address space of

Opteron references to access memory on remote nodes

e Fortran or C compilers recognize CAF references, x(i)[dest_pe], or
UPC ‘shared’ references, x[i][threads], and generates appropriate
ncHT messages to Gemini to load from or store to remote memory

e Users can stride on local offsets or across processor space with any
stride, including Gather/Scatter

e Compiler should generate vector requests as appropriate

8/15/11 Cray XT6-XE6 for INPE 40
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Cray “Glacier” Node

Node Characteristics

Number of X86 Cores 8,12 0r 16
(Interlagos)
X86 Peak 90-147 Gflops
Accelerator Cores 448
Accelerator Peak 600+ Gflops

X86 Memory 16 or 32GB capacity
at 51 GB/sec
Accelerator Memory | 6GB capacity at 180

GB/sec

CRANY

THE SUPERCOMPUTER COMPANY
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e CUDA Core count 448
® GPU Frequency 1.15GHz

e Peak Performance (DP)
515GFlops

e Power consumption 225W

e Memory type and size 6GB of
GDDR5 (ECC)

e Memory frequency 1.566GHz
e Memory interface width 384bit

e Custom heat sink for Glacier
blade

e Can be upgraded with follow-on
GPU

{71 T T SRR | PR T T -

43



Heat Sinks and Backer Plate

44
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Full Glacier Accelerator Blade

e Four nodes per blade

i

‘
.

e Gemini Mezzanine

AT
.\

3 -~
.ll..op.
T LELLLL

coon UEARARAL
Y 3 "_

e Plug compatible with XE6
blade

e Configurable processor,
memory and SXM GPU
card

e Currently running on
system with 175 nodes




Glacier Roadmap
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/ “NVIDEA
Kepler
IDEA Accelerator
Tesla 640 >1 Tflop
Sept - 2011

e Glacier will have a series of
accelerator modules available

e Peak per cabinet will range from ~75
Tflops to ~130 Tflops

e All Glacier nodes will use the
Interlagos processor

46
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Supercomputing Road Map s

GPU Blades
NVIDIA

AMD 8/12 Core
2X Compute Density
>3X Memory Bandwidth
ECOphlex Cooling

AMD Interlagos

Upgradeable Transverse Cooling
L Aries Interconnect
XT6.+ Gemini Productivity Enhancements
Native PGAS
ISV 'S £ (CCM Soft-Threads
vppor .( . ) Intel/Opteron & Accelerator
Core specialization
New 1/O blad Blades
ew |/O blade Capable to over 100 PF’s
2, %, %, 2, 2,
9 (/] 7 < P

. A B Cray Inc. Proprietary — Not For Public Disclosure 47
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Cray Software Objectives for Accelerators

1. Provide baseline accelerator environment
* Don’t preclude use of tools developers/programmers are used
to
2. Integrated Programming Environment
e Extension of PE Cray has provided on XT/XE systems
* Provide “bundled” 34 party commonly used or expected
software (compilers, libraries, tools)
3. Cray integrated programming environment include:

e Greatly enhance the productivity of the programming writing
new applications or porting existing applications to accelerators

e Improve performance of existing applications by exploiting
greater levels of parallelism

* Maintain source compatibility between multi-core and
accelerator versions of the code

8/15/11 48
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Programming for Future

Multi-Petaflop and Exaflop Computers

aka
Finding more parallelism in existing applications



Back to the Futures — Combining different levels of Y.
parallelism

e Fact e Fact
* For the next decade all e Current petascale
HPC system will basically applications are not
have the same structured to take
architecture advantage of these
L Message passing between nodes arCh|tectu res

e Multi-threading within the node — e Current — 80-90% of application

MPI will not do use a single level of parallelism,
e Vectorization at the lower level - message passing between the

cores of the MPP system

e Looking forward, application
developers are faced with a
significant task in preparing their
applications for the future
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Cray’s Programming Environment

e Tools for identifying e Tools for maintaining
additional parallel structures performance portable
within the application applications

e Investigation of looping e Supply compiler that
structures within a accepts directives from
complex application OpenMP sub-committee

e Scoping tools for formulating extensions to
investigating the target companion
parallelizability of high accelerators
level Iooping structures e Application developer able to

develop a single code that can run
efficiently on multi-core nodes
with or without accelerator
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Hybridization* of an All MPI
Application

* Creation of an application that exhibits three levels of
parallelism, MPIl between nodes, OpenMP** on the node and

vectorized looping structures

** Why OpenMP? To provide performance portability. OpenMP is
the only threading construct that a compiler can analyze
sufficiently to generate efficient threading on multi-core nodes and
to generate efficient code for companion accelerators.



Additional Note about Accelerators

* Many application developers, particularily ISVs have
not put in the effort to convert their application to
MPI. These applications potentially can utilize
accelerators on the node to significantly enhance
their performance

e Most of these do use OpenMP parallelization — by
adding OpenMP accelerator extensions, these
application should be able to benefit from

accelerators
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CAUTION!!

e Do not read “Automatic” into this presentation, the
Hybridization of an application is difficult and efficient code

only comes with a thorough interaction with the compiler to
generate the most efficient code and

e High level OpenMP structures

e Low level vectorization of major computational areas

e Performance is also dependent upon the location of the data.

Best case is that the major computational arrays reside on the
accelerator. Otherwise computational intensity of the
accelerated kernel must be significant

Cray’s Hybrid Programming Environment
supplies tools for addressing these issues



CRANY

THE SUPERCOMPUTER COMPANY

Three levels of Parallelism required

e Developers will continue to use MPI between nodes or sockets

e Developers must address using a shared memory
programming paradigm on the node

e Developers must vectorize low level looping structures

e While there is a potential acceptance of new languages for
addressing all levels directly. Most developers cannot afford
this approach until they are assured that the new language
will be accepted and the generated code is within a
reasonable performance range



Possible Programming Models for the Node

e Cuda
e OpenCL

e Existing Fortran, C and C++ with extensions
e Pthreads, Thread Building Blocks
e Comment line directives

e OpenMP extensions for Accelerators

All of these programming models require the
application developer to replace MPI within
the node — to develop Hybrid versions of the
application



Comparison of Programming Models for the Node

| portability Perf/portability
2 5 1 2

Cuda
OpenCL 2 5 1 1

Existing 3 4 2 3
Language with
threading

Existing 5 4 5 5
Language with
directives

Copyright 2011 Cray Inc.  CPS 2011



Portability

Nvida AMD IBM Power IBM BG X86 multi-
GPGPU GPGPU core
Cuda X

OpenCL X X

Existing X X X
Language

with

threading

Existing X X X X X
Language

with

directives

Copyright 2011 Cray Inc.  CPS 2011




Comparisons between Cuda and OpenMP accelerator
extensions

e Cuda

e Widely used programming model for effectively
utilizing the accelerator

e Flexibility to obtain good performance on the
accelerator

e OpenMP accelerator extensions — things to prove
* Are the directives powerful enough to allow the
developer to pass information on to the compiler
» Can the compiler generate code that get
performance close to Cuda.



Consider the following kernel

do k = 1,nz
do j=1,ny
SPECIES: do n=1,n spec-1
do i = 1,nx

diffFlux (i, j,k,n,1) = -

+
diffFlux(i,j,k,n,2) = -
+
diffFlux(i,j,k,n,3) = -
+
enddo
do i = 1,nx

diffFlux(i,Jj,k,n_spec,1)
diffFlux(i,Jj, k,n_spec,2)
diffFlux(i,Jj, k,n_spec, 3)

enddo
enddo SPECIES
do i = 1,nx

Ds mixavg(i,Jj,k,n) * ( grad Y¥Ys(i,Jj,k,n,1)
yspecies (i, j,k,n) * grad mixMwW(i,Jj, k,1) )
Ds mixavg(i,Jj,k,n) * ( grad Ys(i,Jj,k,n,2)
yspecies(i,Jj,k,n) * grad mixMW(i,Jj, k,2) )
Ds mixavg(i,Jj,k,n) * ( grad Ys(i,Jj,k,n,3)
yspecies(i,Jj,k,n) * grad mixMwW(i,Jj, k,3) )
= diffFlux(i,Jj,k,n_spec,1l) - diffFlux(i,]
= diffFlux(i,Jj,k,n_spec,2) - diffFlux(i,]
= diffFlux(i,Jj,k,n_spec,3) - diffFlux(i,]

grad T(i,j,k,1) -lambda j,k) * grad T(i,3,k,1)
grad T(i,J,k,2) -lambda j,k) * grad T(i,73,k,2)
grad T(i,],k,3) = -lambda j,k) * grad T(i,73,k,3)
enddo
do n=1,n_ spec
do i = 1,nx
grad T(i,j,k,1) grad T(i,J,k,1) + h spec(i,],
grad T(i,j,k,2) = grad T(i,Jj,k,2) + h spec(i,],
grad T(i,j,k,3) = grad T(i,Jj,k,3) + h spec(i,]
enddo
enddo
enddo

enddo

n) *diffFlux (i, Jj
n) *diffFlux(i, j,
n) *diffFlux (i, Jj

14

14

j, k,n
k,n,
k,n

14
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)
)
)

14 14

w N =

14 14
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A rewrite for Cuda Fortran S SUPENOOWPTYER SURPANY
First extract to kernel and call

! transfer

CEESICRRIENcN = grad Ys h
diffFlux d = diffFlux h
yspecies d = yspecies h

| goee ©f Sl Seistefa

ds mixavg d = ds mixavg h
grad t d = grad t h

grad mixMW d = grad mixMW h
lambda d = lambda h

grid = dim3((nxyz-1)/512+1,1,1)
threadBlock = dim3(512,1,1)

call calcDiffFlux<<<grid, threadBlock>>>(lambda d, grad T d, grad mixMW d, diffFlux d, &
Ds mixavg d, yspecies d, grad Ys d, h spec d)
ierr = cudaThreadSynchronize ()



A rewrite for Cuda Fortran
And now the kernel (1)

4 =
if

(blockIdx%x-1) *blockDim%$x + threadIdx%x

(i <= nxyz)
! move firs
lambda r =
grad T 1 =
grad T 2 =
grael T 3 =
! now diffF
diffFlux n_
diffFlux n_
diffFlux n_
grad mixMWw

grad mixMWw
grad mixMWw

then
t part of grad T here
lambda (1)
-lambda r*grad T(i,1)
-lambda r*grad T(i,2)
-lambda r*grad T(i,3)
lux
spec 1 = diffFlux(i,n spec,1)
spec_2 = diffFlux(i,n_spec, 2)
spec_3 = diffFlux(i,n_spec, 3)
1 = grad mixMw (i, 1)
2 = grad mixMw (i, 2)
3 grad mixMWw (i, 3)

do n=1, n spec-1

Ds mixav
yspecies
diffFlux
diffFlux
diffFlux
diffFlux
diffFlux
diffFlux
n_ seee =
grad T 1
grad T 2
grad T 3
diffFlux
diffFlux
diffFlux
enddo

~n_spec 2

g r = Ds mixavg(i,n)

_r = yspecies(i,n)

1 = - Ds mixavg r *(grad Ys(i,n,
2 = - Ds mixavg r *(grad Ys(i,n,2)
3 = - Ds mixavg r *(grad Ys(i,n,3)

= h spec(i,n)
= grad T 1 + h spec r*diffFlux 1
grad T 2 + h spec r*diffFlux 2

= grad T 3 + h spec r*diffFlux 3
(i,n,1) = diffFlux 1
(ilym,2) = chlEtilusx 2
(d,m,3) = chliErirlos 3

CRANY

THE SUPERCOMPUTER COMPANY

1) Unrolled all dir loops

2) Combined two n_spec loops
3) Moved around computation
4) Assigned most arrays to temps

+ yspecies r*grad mixMW 1)
+ yspecies r*grad mixMW 2)
+ yspecies r*grad mixMW 3)
n spec 1 = diffFlux n spec 1 - diffFlux 1
= diffFlux n spec 2 - diffFlux 2
n spec 3 = diffFlux n spec 3 - diffFlux 3



A rewrite for Cuda Fortran CRRANY"

And now the kernel (2)

! do n = n spec iteration and write out final data

fspeciirs =thispechis, n "spec)

grad T 1 = grad T 1 + h spec r*diffFlux n spec 1
grad T 2 = grad T 2 + h spec r*diffFlux n spec 2
grad T 3 = grad T 3 + h spec r*diffFlux n spec 3

grad T(i,1) = grad T 1
grad T(i,2) = grad T 2
grad T(i,3) = grad T 3
diffFlux(i,n spec,1l) = diffFlux n spec 1

diffFlux(i,n spec, 2)
diffFlux(i,n spec, 3)
endif

diffFlux n spec 2
diffFlux n spec 3
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Or Add directives

!Somp acc_region
!Somp acc_loop collapse(2)

o k = 1,nz
do j=1,ny
SPECIES: do n=1,n spec-1
do i = 1,nx
diffFlux(i,j,k,n,1) = - Ds mixavg(i,j,k,n) * ( grad ¥Ys(i,j,k,n,1) &
+ yspecies(i,j,k,n) * grad mixMW(i,j,k,1) )
diffFlux(i,j,k,n,2) = - Ds mixavg(i,Jj,k,n) * ( grad ¥Ys(i,j,k,n,2) &
+ yspecies(i,Jj,k,n) * grad mixMW(i,j, k,2) )
diffFlux(i,j,k,n,3) = - Ds mixavg(i,Jj,k,n) * ( grad ¥Ys(i,j,k,n,3) &
+ yspecies(i,Jj,k,n) * grad mixMW(i,Jj, k,3) )
enddo
do i = 1,nx
diffFlux(i,j,k,n spec,1l) = diffFlux(i,j,k,n spec,1l) - diffFlux(i,Jj,k,n,1)
diffFlux(i,j,k,n spec,2) = diffFlux(i,j,k,n spec,2) - diffFlux(i,Jj,k,n,2)
diffFlux(i,j,k,n spec,3) = diffFlux(i,j,k,n spec,3) - diffFlux(i,Jj,k,n,3)
enddo
enddo SPECIES
do i = 1,nx
grad T(i,j,k,1) = -lambda(i,j,k) * grad T(i,Jj,k,1)
grad T(i,j,k,2) = -lambda(i,j,k) * grad T(i,Jj,k,2)
grad T(i,j,k,3) = -lambda(i,j,k) * grad T(i,Jj,k,3)
enddo
do n=1,n spec
do i = 1,nx
grad T(i,j,k,1) = grad T(i,Jj,k,1) spec(i,3j, k,n)*diffFlux(i,j,k,n,1)

grad T(i,j,k,2)
grad T(i,Jj,k,3)
enddo
enddo
enddo
enddo
!Somp end acc loop
!Somp end acc region

+ h
grad T(i,j,k,2) + h spec(i,j,k,n)*diffFlux(i,j, k,n,2)
grad T(i,j,k,3) + h spec(i,j,k,n)*diffFlux(i,]j, k,n,3)
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218, 1 Ce========== < !Somp acc region
219. 1 G !$omp acc loop collapse(2)
220, 1 G Ceom=—===== < do k = 1,nz
221, 1 G C g======= < do j=1,ny
222, 1 G € g Ho=== < SPECIES: do n=1l,n spec-1
223. 1 G C g 5 gf--< do i = 1,nx
224. 1 G C g 5 gf ! driving force is just the gradient in mole fraction:
225. 1 G C g 5 gf diffFlux(i,j,k,n,1) = - Ds mixavg(i,j,k,n) * ( grad Ys(i,j,k,n,1) &
226, 1 G © g 5 @t + yspecies(i,Jj,k,n) * grad mixMW(i,Jj,k,1) )
227, I G Cie D Cht diffFlux(i,j,k,n,2) = - Ds mixavg(i,j,k,n) * ( grad Ys(i,j,k,n,2) &
228. 1 G C g 5 gf + yspecies(i,Jj,k,n) * grad mixMW(i,Jj, k,2) )
229. 1 G C g 5 gf diffFlux(i,j,k,n,3) = - Ds mixavg(i,j,k,n) * ( grad Ys(i,j,k,n,3) &
230. 1 G C g 5 gf + yspecies(i,Jj,k,n) * grad mixMW(i,Jj, k,3) )
231. 1 GC g5 gf--> enddo
YNNG C g 5 f---< do i = 1,nx
233. 1 GC g5 £ diffFlux(i,j,k,n_spec,1l) = diffFlux(i,Jj,k,n_spec,l) - diffFlux(i,Jj, k,n,1)
234. 1 G C g b5 f diffFlux(i,j,k,n_spec,2) = diffFlux(i,Jj,k,n_spec,2) - diffFlux(i,Jj, k,n,2)
BISME G C g 5 f diffFlux(i,j,k,n_spec,3) = diffFlux(i,Jj,k,n_spec,3) - diffFlux(i,Jj, k,n,3)
236. 1 GC g5 f---—> enddo
PEYINN G C g 5———-—- > enddo SPECIES
238. 1 G C g g-——- < do i = 1,nx
239. 1 GCgg grad T(i,j,k,1) = -lambda(i,j,k) * grad T(i,Jj,k,1)
240. 1 G C g g grad T(i,j,k,2) = -lambda(i,j,k) * grad T(i,],k,2)
241. 1 G C g g grad T(i,j,k,3) = -lambda(i,j,k) * grad T(i,Jj,k,3)
242. 1 G C g g————- > enddo
243. 1 G C g 5-———- < do n=1,n_ spec
244, 1 G C g 5 g-—--< do i = 1,nx
245. 1 G C g 5 g grad T(i,j,k,1) = grad T(i,J,k,1) + h spec(i,j,k,n)*diffFlux(i,j,k,n,1)
246. 1 G C g b5 g grad T(i,j,k,2) = grad T(i,J,k,2) + h spec(i,j,k,n)*diffFlux(i,j,k,n,2)
247. 1 GCgb5g grad T(i,j,k,3) = grad T(i,J,k,3) + h spec(i,j,k,n)*diffFlux(i,j,k,n,3)
248. 1 G C g 5 g———> enddo
249. 1 G C g 5-——- > enddo
250, 1 @ € g > enddo
251, 1 § o055 > enddo
252. 1 G !$omp end acc_ loop
PR NG > !Somp end acc_region



Legend to Compiler Notes

Primary Loop Type

2 HQHOO

Pattern matched

Collapsed
Deleted
Cloned
Accelerated
Inlined
Multithreaded

Vectorized

Modifiers

S 0 B0 B 3 P-Q Hh
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atomic memory operation
blocked
conditional and/or computed

fused

partitioned

interchanged

partitioned

non-blocking remote transfer
partial

unrolled

shortloop

unwound



And a little restructuring

!Somp acc_region num pes(2:512)
!Somp acc_loop collapse (3)
do k = 1,nz
do j=1,ny
do i = 1,nx
grad T(i,j,k,1) = -lambda(i,j, k) * grad T(i,3j,k,1)
grad T(i,3j,k,2) -lambda(i,j, k) * grad T(i,3j,k,2)
grad T(i,j,k,3) -lambda(i,j, k) * grad T(i,Jj,k,3)
t 1=diffFlux(i,Jj,k,n spec,1)
t 2=diffFlux(i,Jj,k,n_spec,2)
t 3=diffFlux(i,Jj,k,n_spec, 3)
SPECIES: do n=1,n_ spec
if(n < n_spec) then

diffFlux(i,j,k,n,1) = - Ds mixavg(i,Jj,k,n) * ( grad ¥Ys(i
+ yspecies(i,Jj,k,n) * grad mixMW (i
diffFlux(i,j,k,n,2) = - Ds mixavg(i,Jj,k,n) * ( grad ¥Ys(i
+ yspecies(i,Jj,k,n) * grad mixMW (i
diffFlux(i,j,k,n,3) = - Ds mixavg(i,j,k,n) * ( grad ¥Ys(i
+ yspecies(i,Jj,k,n) * grad mixMW (i

t 1=+t 1-diffFlux(i,j,k,n,1)
t 2 =t 2 - diffFlux(i,j,k,n,2)
t 3=t 3 - diffFlux(i,j,k,n,3)
end if
grad T(i,j,k,1) = grad T(i,3J,k,1) spec(i,j, k,n)*diffFlux(i,j,k,n,1)

grad T(i,3j,k,2)
grad T(i,3j,k,3)
enddo SPECIES
diffFlux(i,j,k,n spec,1)
diffFlux(i,j, k,n spec,2)
diffFlux(i,j,k,n spec,3) =
enddo
enddo
enddo
!Somp end acc loop
!Somp end acc region

grad T(i,J,k,3)

Il
ct ot
(CORNON |

/j/k/nll
rJrk, 1)
/j/k/n/2
13k, 2)
/j/k/n/3

)
)
)
)
)
rJrk,3) )

+ h
grad T(i,j,k,2) + h spec(i,Jj,k,n)*diffFlux(i,j, k,n,2)
+ h spec(i,j,k,n)*diffFlux(i,Jj, k,n,3)
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219, 1 Ge=———===T= < !Somp acc region num pes(2:512)
220. 1 G !$Somp acc loop collapse (3)
221, 1 G Ce======= < do k = 1,nz
222, 1 G C Ce===== < do j=1,ny
223, 1 G C C g5 do 1 = 1,nx
224. 1 G CCg grad T(i,j,k,1) = -lambda(i,j, k) * grad T(i,3j,k,1)
225, 1 G C C g grad T(i,j,k,2) = -lambda(i,j, k) * grad T(i,3j,k,2)
226. 1 GCCg grad T(i,j,%k,3) = -lambda(i,j, k) * grad T(i,3j,k,3)
228. 1 G € € g t 1=diffFlux(i,j, k,n spec,1)
229. 1 G C € g t 2=diffFlux(i,Jj, k,n spec,2)
230. 1 GCCaqg t 3=diffFlux(i,Jj, k,n spec, 3)
ZIYPININGH CTCl g 6=—< SPECIES: do n=1,n_ spec
234. 1 G C C g 6 if(n < n _spec) then
ZBISPNING C C g 6 diffFlux(i,j,k,n,1) = - Ds mixavg(i,Jj,k,n) * ( grad ¥Ys(i,j,k,n,1) &
236. 1 GCC g6 + yspecies(i,j,k,n) * grad mixMW(i,j,k,1) )
ZBNINIS G C C g 6 diffFlux(i,j,k,n,2) = - Ds mixavg(i,Jj,k,n) * ( grad ¥Ys(i,j,k,n,2) &
238. 1 GCCg 6 + yspecies(i,j,k,n) * grad mixMW(i,3j,k,2) )
ZBISMNIE G C C g 6 diffFlux(i,j,k,n,3) = - Ds mixavg(i,Jj,k,n) * ( grad Ys(i,j,k,n,3) &
240. 1 G C C g 6 + yspecies(i,j,k,n) * grad mixMW(i,Jj,k,3) )
242. 1 GCCg 6 t1l=1¢t1-diffFlux(i,j, k,n,1)
243. 1 GCC g 6 t 2=+t 2 - diffFlux(i,j, k,n,2)
244, 1 GCC g 6 t 3 =t 3 - diffFlux(i,j,k,n,3)
246. 1 G C C g 6 end 1if
248. 1 G C C g 6 grad T(i,j,k,1) = grad T(i,3j,k,1) + h spec(i,j,k,n)*diffFlux(i,j, k,n,1)
249, 1L € (CHENINE grad T(i,j,k,2) = grad T(i,3J,k,2) + h spec(i,j,k,n)*diffFlux(i,j, k,n,2)
250, 1L € CGNSNNE grad T(i,j,k,3) = grad T(i,3J,k,3) + h spec(i,j,k,n)*diffFlux(i,j,k,n,3)
251. 1 GCCg 6
PV CEC N C g 6——> enddo SPECIES
254, 1 & € @ diffFlux(i,j, k,n spec,1) t1
2515) 1 &€ € g catERENENEA(ES )k nii S PEE!, 2 = St 12
256, 1L (G GHENe; clESERERIREA (S kS IS D EC ISHEES NS
258, 1L € € € -2 enddo
259, 1 G € 7= > enddo
260, 1 6 G5 > enddo
261, IPNeE !Somp end acc loop
GOV C = = —————— > !Somp end acc_region



And the timings ==.,‘ I
lgnoring Data Transfer*

Kernel .0417 Seconds .0061 Seconds .0113 Seconds .0067 Seconds
Only

* In S3D all of the arrays used in this computation will reside on the
Accelerator prior to the invocation of the kernel.
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Converting the MPI application to a Hybrid OpenMP/MPI CERANY
a p p I icati 0 n THE SUPERCOMPUTER COMPANY

Task 1 — Identification of potential accelerator kernels

e |dentify high level computational structures that account for a significant
amount of time (95-99%)

e To do this, one must obtain global runtime statistics of the application

e High level call tree with subroutines and DO loops showing inclusive/exclusive time, min, max,
average iteration counts.

e Tools that will be needed
e Advanced instrumentation to measure

e DO loop statistics, iteration counts, inclusive time
e Routine level sampling and profiling
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Gathering High Level looping statistics

Table 1: Profile by Function Group and Function
Time% | Time | Imb. | Imb. | Calls | Group
| | Time | Time$% | | Function
| | | | | PE=HIDE
| | | | | Thread=HIDE
100.0% | 96.774934 | —=_| -- | 6083.9 |Total
| __________________________________________________________________________________
| 100.0% | 96.766637 | Sl -- | 6056.9 |USER
B T T T T T T T TS —————————————— 5
[ 18.7% | 18.125552 | 15.748098 | 49.6% | 200.0 |streaming .LOOPS
|| 16.4% | 15.904828 | 5.941168 | 29.0% | 200.0 Irecolor_.EOOP@li.723
[ 11.3% | 10.909372 | 0.428680 | 4.0% | 1.0 |initmpi .LOOP@11i.313
|| 9.9% | 9.614664 | 0.047006 | 0.5% | 1.0 |read pa;allel .LOOPS
|| 8.5% | 8.220680 | 3.385983 | 31.1% | 200.0 |stregming_.LO6P@li.774
|| 7.9% |  7.622818 | 1.101631 | 13.5% | 200.0 |streaming exchange .LOOPS
| | 4.9% | 4.699645 | 1.298570 | 23.1% | 200.0 |collisiong_.LOOP@lI.456
| | 4.4% | 4.257534 | 1.162477 | 22.9% | 200.0 |collisionb .LOOPQRLi.607
|| 3.8% | 3.637698 | 0.803541 | 19.3% | 201.0 |cal velocity .LOOP@1i.874
|l 3.5% | 3.421273 | 0.450034 | 12.4% | 200.0 |wall boundary .LOOP@li.802
| | 2.2% | 2.119447 | 5.224182 | 75.9% | 201.0 |injection .LOOPS
| | 2.1% | 2.031823 | 2.732934 | 61.2% | 200.0 |collision5_.LOOPS
| | 1.3% | 1.252738 | 0.188434 | 13.9% | 201.0 |injection .LOOP@1i.S967



Table 1:

100.0% |

[l 90.0%
31
4]
S|
6l
71
81
91
[ 202
31
4
S|
6l
71
| 1.6
S|
4]
5
6l
71
[ 0.9
31
Al
S|
6l
71
81
[ 0.4
31
A
S|
6]
71
81

oe

oe

o

oe

Profile by Function and Callers

Time

333.310995 |

7.348773

6.030917

2.843254

1.477712

Calls

120405.1

99841.2

2000.

1000.

1000.

| Group

\
!
\

Function

Caller
PE=HIDE

|Total

0

0

0

|USER

| compute forces elastic dev .LOOPS
| compute forces elastic dev

| compute forces elastic .LOOPS

\ compute forces elastic

| iterate time .LOOPS

\ iteratg_timg_

| specfem3d

\ xspecfem3d

|it update displacement scheme .LOOPS
| it update displacement scheme

\ iEerate_Eime_.LOOPS B B

\ iterate time

\ specfem3d

| xspecfem3d

|compute forces elastic .LOOPS

\ computg_forceg_elastig_

| iterate time .LOOPS

\ iterate time

| specfem3d

| xspecfem?d_

| locate receivers .LOOPS

| locate receivers

| setup receivers_ .LOOPS

| setup receivers

\ setug_sources_geceivers_

| specfem3d

| xspecfem3d

|write vtk data elem 1 .LOOPS

| write vtk data elem 1

| rmd_getuE_inngr_ouEe;_elemnts_.LOOPS
| rmd setup inner outer elemnts
| read mesh databases

| specfem3d

| xspecfem3d

CRANY
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Gathering High Level looping statistics

Table 2: Loop Stats from -hprofile generate

Loop | Loop Incl | Loop Incl | Loop Hit |Loop Trips | Loop |Function=/.LOOP\.
| ____________________________________________________________________________________
| 86.0% | 464.222802 | 464.222802 | 1 | 200.0 | novec |[lbm3d2p d .LOOP.4.1i.118
| 9.0% | 48.424200 | 0.242121 | 200 | 34.0 | novec |recolor .LOOP.0.1i.722
| 6.8% | 36.439476 | 0.000455 | 80000 | 101.0 | novec |recolor .LOOP.1.1i.723
| 6.7% | 36.394050 | 0.000005 | 8080000 | 101.0 | novec |recolor .LOOP.2.11i.724
| 5.6% | 30.165525 | 0.000001 | 21111225 | 15.0 | novec |recolor .LOOP.3.1i.744
| 4.6% | 24.770886 | 0.123854 | 200 | 14.0 | novec |recolor .LOOP.0.1i.773
| 4.5% | 24.500305 | 0.122502 | 200 | 34.0 | novec |collisionb .LOOP.5.1i.606
| 4.4% | 23.493726 | 0.117469 | 200 | 34.0 | novec |wall boundary .LOOP.0.11.801
| 4.3% | 23.470821 | 0.116770 | 201 | 34.0 | novec |injection .LOOP.0.11i.966
| 4.3% | 23.415045 | 0.116493 | 201 | 34.0 | novec |cal velocity .LOOP.0.1i.873
| 4.3% | 23.307203 | 0.116536 | 200 | 34.0 | novec |collisiona .LOOP.0.1i.455
| 4.3% | 23.256005 | 0.116280 | 200 | 34.0 | novec |collisionb .LOOP.0.1i.570
| 3.5% | 18.858521 | 18.858521 | 1] 400.0 | novec |read parallel .LOOP.0.11i.854
| 2.8% | 15.080327 | 0.037701 | 400 | 1014776.0 | novec |recolor .LOOP.1.11i.774
| 1.5% | 8.200184 | 0.000103 | 80000 | 101.0 | novec |collisiona .LOOP.1.1i.456
| 1.5% | 8.148148 | 0.000001 | 8080000 | 101.0 | novec |collisiona .LOOP.2.1i.457
| 1.4% | 7.553060 | 0.000094 | 80000 | 101.0 | novec |collisionb .LOOP.6.11i.607
| 1.4% | 7.489768 | 0.000001 | 8080000 | 101.0 | sunwind |collisionb .LOOP.7.1i.608
| 1.2% | 6.399606 | 0.000080 | 80400 | 101.0 | novec |cal velocity .LOOP.1.11i.874
| 1.2% | 6.344608 | 0.000001 | 8120400 | 101.0 | sunwind |cal velocity .LOOP.2.11i.875
| 1.2% | 6.229104 | 0.000078 | 80000 | 101.0 | novec |wall boundary .LOOP.1.1i.802
| 1.1% | 6.145206 | 0.000001 | 8080000 | 101.0 | sunwind |wall boundary .



Current benchmark we are working

do 1i=1,ntimes

if(ip == 0) then
print *, 'step = ',ii*npasses
endif

do jj=1,npasses

if(ip == 0) then
Write(*,*) Th*xk*x*xk*x**xx%x Step = **********', ((ii_l)*npasseS)‘l'jj
endif

call set boundary macro press?Z
call set boundary micro press
call collisiona
call collisionb
call recolor
call streaming
call wall boundary
call cal velocity
call injection
end do

etime = mpi wtime ()
call saturation

end do

Copyright 2011 Cray Inc.  CPS 2011




CRANY

Converting the MPI application to a Hybrid OpenMP/MPI application

Task 2 Parallel Analysis, Scoping and Vectorization

e Investigate parallelizability of high level looping structures
e Often times one level of loop is not enough, must have
several parallel loops

e User must understand what high level DO loops are in fact
independent.
e Without tools, variable scoping of high level loops is very
difficult
e Loops must be more than independent, their variable usage must adhere to
private data local to a thread or global shared across all the threads

* Investigate vectorizability of lower level Do loops

* Cray compiler has been vectorizing complex codes for over
30 years
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Task 2 Parallel Analysis and Scoping

e Tools that will be needed

* Whole program analysis scoping tool with User interaction

e The compiler performs an initial parallelization analysis to identify obvious inhibitors
to parallelization

e The User instructs the compiler to ignore various inhibitors if possible

e The compiler performs an initial scoping analysis and presents the User with
concerns with array usage

e The User works with the environment to trace variables through the high level
looping structure, works with the compiler to scope the variables in question.

» Vectorization Feedback from the Compiler

e Tremendous experience from years of vector architectures
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Lets scope out the potential OpenMP loops

-— Loop starting at line 221

auto shared(cell, local 1x,local ly,1lz,rho,uxyz)

-- Loop starting at line 262

auto shared(b,cell,local 1x,local 1ly,1z,r,rho,uxyz)

-- Loop starting at line 438

auto shared(b,cell,local 1x,local 1ly,1z,r,rho,uxyz)

-— Loop starting at line 558

auto shared(cell,grad,local 1x,local ly,1lz,rho,wet)

-- Loop starting at line 572

auto shared(cell,grad,local 1x,local ly,lz,wet)

-—- Loop starting at line 591

auto shared

(b,cell,cil,cil0O,cill,cil2,cil3,cild,ci2,ci3,cid4,ci5,ci6,ci7,ci8,ci9, grad,
local 1x,local ly,1z)

-- Loop starting at line 712

auto firstprivate(crit,icrit)

auto shared(b,cell,cix,ciy,ciz,local 1x,local ly,1lz,r,rho,uxyz)

msg-obj: fi FAIL -- Value/Shared Scope Conflict.

-— Loop starting at line 784

auto shared (b, index, index max, r)

—-—- Loop starting at line 812

auto shared(b,cell,local 1x,local ly,1z,r)

-- Loop starting at line 965

auto shared(b,cell,local 1x,local ly,1lz,r,rho,uxyz)

-- Loop starting at line 1125

auto shared(b,bbar,blue,cell,local 1x,local ly,1lz,r,rbar,red, rho, surf)
auto reduction (+:bbar, +:rbar)
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Vectorization Problem in recolor —call to maxloc

123, L=====o===== < do k=0,1z-1

724, 1 2========= < do j=0,1local 1ly-1

725, 1 2 J======= < do 1=0,1local 1x-1

726, 1 2 3 if (cell(i,j,k)==0) then

727, 1 2 3 fi(0) = r0(i,j,k) + DbO(i,]J, k)
728, 1 2 3 fi(l) = r1(i,j,k) + Dbl(i,]j,k)
729, 1 2 3 fi(2) = r2(i,j,k) + Db2(i,]J, k)
742, 1L 28

743. 1 2 3 Vw———-<> crit(1:15) = (cix(0:14)*fx(i,J,k)+ciy(0:14)*fy(i,F, k) +&
744, 1 2 3 ciz (0:14)*fz(i,73,k))
YZISPNs 2 3 4————— < do 1=0,14

746. 1 2 3 4 w——<> max loc = maxloc(crit)

7477 . 1 2 3 4 mm = max_ loc (1)

EIER i 2 3 4 crit (mm) = worst value

749, 1 2 3 4 mm = mm-1

750 5 1 2 3 4 frac r = max (0.0d0,min(rho _r(i,Jj, k), fi(mm)))
751 5 1 2 3 4 rho r(i,j,k) = rho r(i,j,k)-frac r
752, 1L 2!

753, 1L 2N R(i,j,k,mm) = frac r

754. 1 2 3 4 B(i,j,k,mm) = fi(mm) - R(i,]J,k,mm)
USERN S S 4 ——— —— > end do

756, 1L 288 end if

757, 1 2 S5 > end do

758, 1 2==so=—o0= > end do

B ——————— > end do



Recolor Routine — now vectorized

do k=0,1z-1
do j=0,local 1ly-1
do i=0,local 1x-1
crit(i,:)=0.0
lerilt (i, g) = 0
if (cell(i,j,k)==0) then
® © ©
do iii = 1,14
do ii = 1,14
if(crit(i,ii) .gt.crit(i,ii+1))then
crit temp = crit(i,ii+l)
icrit temp = icrit(i,ii+l)
crit(i,ii+l)=crit(i,ii)
icrit(i,ii+l) = icrit(i,ii)
crit(i,ii)=crit temp
icrit(i,ii) = icrit temp
endif
enddo
enddo

icrit(i,ii)-1

max (0.0d0, min (rho (2, i
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Using directives to give the compiler information

e Developing efficient OpenMP regions is not an easy task;
however, the performance will definitely be worth the effort

e Compilation of OpenMP regions to accelerator by the compiler
is approaching the performance of hand-coded CUDA or
OpenCL with the advantage that it results in portable code.
And it will only get better.

* With OpenMP extensions targeting accelerators, data
transfers between multi-core socket and the accelerator
can be optimized. Utilization of registers and shared
memory can also be optimized

* With OpenMP extensions targeting accelerators, user can
control the utilization of the accelerator memory and
functional units.

» These directives are currently being discussed by a subgroup
of the OpenMP committee which includes Cray, PGI,IBM,Intel
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Now we start adding directives -collisionb

!Somp acc region loop private(k,j,i,fx tmp, fy tmp,fz tmp,cif2)

do k=0,1

Zi—1-

do 9=0 el HREN
do i=0,1local 1x-1

fx

57
fz_

if

_tmp = 0.0d0

tmp = 0.0d0
tmp = 0.0dO0

(cell (1

fx tmp

fy tmp

fz tmp

+J,k)==0) then
=grad (i+1, ] s k)
+grad (i+1, j+1, k+1)
+grad (i+1,3-1,k+1)+
-grad (i-1,j-1,k-1)+
-grad (i-1,j+1,k-1)
=grad(i ,3+1,k )
+grad (i+1, J+1, k+1)+
-grad (i+1,j-1,k+1)+
-grad(i-1,j-1,k-1)
+grad(i-1,j+1,k-1)

(1 )

( )

( )

(1 )

=grad ;3 S kt+l

+grad(i+1, j+1, k+1)+grad(i-1, j+l k+l

+grad (i+1,3j-1, k+1
-grad(i-1,3-1,k-1

-grad(i-1,3 ,k
-grad(i-1,j+1, k+
grad(i+1,j+1, k-
grad(i+1,j-1,k-
-grad (i- l,j 1, k+

-grad (i
grad (i-
rad(1+l j+l k-
(1
(i-
(1
(1
(
(

|_\|_\|_\|_\
~— — — — — — — — — ~— ~— ~— ~— ~—

2 &2 2

-grad (i+1, j 1, k-
—-grad

-grad 73

-grad (i+1, j+1,k-1
-grad (i+1,j-1,k-1
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Task 3 Correctness Debugging

e Run transformed application on the accelerator and investigate the
correctness and performance

* Run as OpenMP application on multi-core socket
e Use multi-core socket Debugger - DDT

e Run as Hybrid multi-core application across multi-core socket and
accelerator
e Tools That will be needed

» Information that was supplied by the directives/user’s interaction with
the compiler
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Task 4 Fine tuning of accelerated program

e Understand current performance bottlenecks
* |s data transfer between multi-core socket and accelerator a
bottleneck?
* |Isshared memory and registers on the accelerator being used
effectively?

e |s the accelerator code utilizing the MIMD parallel units?

e |sthe shared memory parallelization load balanced?

e |sthe low level accelerator code vectorized?

e Are the memory accesses effectively utilizing the memory bandwidth?

Ind
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Task 4 Fine tuning of accelerated program

e Tools that will be needed:
* Compiler feedback on parallelization and vectorization of input
application
e Hardware counter information from the accelerator to identify
bottlenecks in the execution of the application.

e Information on memory utilization
e Information on performance of SIMT units

Several other vendors are supplying similar performance gathering tools
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Useful tools contd. e

e Craypat profiling

e Tracing: "pat_build -u <executable>" (can do APA sampling

first)

e "pat_report -0 accelerator <.xf file>"; -T also useful
e Other pat_report tables (as of perftools/5.2.1.7534)

June 27, 2011

acc_fu
acc_time
acc_time_fu

acc_show_by ct

flat table of accelerator events

call tree sorted by accelerator time

flat table of accelerator events sorted by accelerator time
regions and events by calltree sorted alphabetically

88
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Run and gather runtime statistics

Table 1: Profile by Function Group and Function
Time % | Time |Imb. Time | Imb | Calls |Group
| | | Time % | | Function
| | | | | PE='HIDE'
| | | | | Thread='HIDE'
100.0% | 83.277477 | == | -- | 851.0 |Total
| ________________________________________________________________
| 51.3% | 42.762837 | == | -- | 703.0 |ACCELERATOR
- | == 75773 ittt et
|| 18.8% | 15.672371 | 1.146276 | 7.3% | 20.0 |recolor .SYNC COPY@li.790€not good
|l 16.3% | 13.585707 | 0.404190 | 3.1% | 20.0 |recolor .SYNC COPYQli.793€not good
| 7.5% | 6.216010 | 0.873830 | 13.1% | 20.0 |lbm3d2p d .ASYNC KERNELQ@1i.1l16
| | 1.6% | 1.337119 | 0.193826 | 13.5% | 20.0 |lbm3d2p d .ASYNC KERNEL@1i.119
| | 1.6% | 1.322690 | 0.059387 | 4.6% | 1.0 [1lbm3d2p d .ASYNC COPY@1i.100
| | 1.0%5 | 0.857149 | 0.245369 | 23.7% | 20.0 |collisionb .ASYNC KERNEL@1i.586
| | 1.0% | 0.822911 | 0.172468 | 18.5% | 20.0 |lbm3d2p d .ASYNC KERNEL@1li.114
| 0.9% | 0.786618 | 0.386807 | 35.2% | 20.0 |injection .ASYNC KERNEL@1i.1119
| | 0.9% | 0.727451 | 0.221332 | 24.9% | 20.0 |lbm3d2p d .ASYNC KERNEL@1i.118
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Keep data on the accelerator with acc_data region

!Somp acc data acc copyin(cix,cil,ci2,ci3,ci4,ci5,ci6,ci7,ci8,ci9,cil0,cill, &
!Somp& cil2,cil3,cil4, r,b,uxyz,cell, rho,grad, index max, index, &
!Somp& ciy,ciz,wet,np,streaming sbufl, &

! Sompé& streaming sbufl, streaming sbuf2,streaming sbuf4, streaming sbuf5, &
! Sompé& streaming sbuf’s,streaming sbuf8s,streaming sbuf9n, streaming sbufl0ls, &
! Somp & streaming sbuflln, streaming sbufl2n,streaming sbufl3s,streaming sbuflin, &
! Somp & streaming sbuf7e,streaming sbuf8w, streaming sbuf9e, streaming sbuflle, &
! Sompé& streaming sbufllw, streaming sbufl2e,streaming sbufl3w, streaming sbufldw, &
! Sompé& streaming rbufl, streaming rbuf2,streaming rbuf4, streaming rbufb5, &
! Sompé& streaming rbuf7n,streaming rbuf8n,streaming rbuf9s, streaming rbuflln, &
I Sompé& streaming rbuflls, streaming rbufl2Zs,streaming rbufl3n,streaming rbuflis, &
! Somp & streaming rbuf7w,streaming rbuf8e,streaming rbuf9w, streaming rbufllw, &
!Sompé& streaming rbuflle, streaming rbufl2w,streaming rbufl3e, streaming rbuflde, &
I Somp & send e,send w,send n,send s,recv_e,recv_w,recv_n,recv_s)

do ii=1,ntimes

O 0 O

call set boundary macro press2
call set boundary micro press
call collisiona

call collisionb

call recolor



Now when we do communication we have to update the host

!Somp acc region loop private(k,Jj, i)
deny=0, 1ocal 1y-1
do 1=0,local 1x-1
if (cell(i,j,0)==1) then

grad (1i,3J,-1) = (1.0d0-wet) *db*press
else
grad (i,]J,-1) = db*press
end if
grad (i,3,1z) = grad(i,]J,1z-1)
end do
end do

!Somp end acc region loop

!Somp acc update host (grad)
call mpi barrier (mpi comm world,ierr)
call grad exchange

!Somp acc update acc(grad)

CRANY
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But we would rather not send the entire grad array back — how about



Packing the buffers on the accelerator

!Somp acc data present(grad,recv_w,recv_e,send e,send w,recv n, &

I Sompé& recv_s,send n,send_s)

!Somp acc region loop
do k=-1,1z
do j=-1,1local ly

send e(j,k) = grad(local 1x-1,]
rJ

send w(j,k) = grad(0
end do
end do
!Somp end acc region loop
!Somp acc update host (send e,send w)

call mpi irecv(recv_w, bufsize(2),mpi double precision,w id,
tag(25),mpi comm world,irequest in(25),ierr)

@) @) O

call mpi isend(send w, bufsize(2),mpi double precision,w id,
tag(26), & mpi comm world, irequest out (26),ierr)

call mpi_waitall(27ireqaest_in(25),istgtus_req,ierr)

call mpi waitall(2,irequest out(25),istatus req,ierr)

!Somp acc update acc(recv e, recv_w)
ISomp acc region
lSomp acc_loop

do k=-1,1z
s e 1, local 1y
Eledilocal 1xas ] , k)
grad(_l /j /k)

recv_e(Jj, k)
recv_w(j, k)

CRANY
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Final Profile - bulk of time in kernel execution

37.9% | 236.992782 | -— -- | 11403.0 |ACCELERATOR

15.7% | 98.021619 | 43.078137 | 31.0% | 200.0 |lbm3d2p d .ASYNC KERNELQ@1i.129

3.7% | 23.359080 | 2.072147 | 8.3% | 200.0 |lbm3d2p d .ASYNC KERNEL@1li.127

3.6% | 22.326085 | 1.469419 | 6.3% | 200.0 [lbm3d2p d .ASYNC KERNEL@1i.132

3.0% | 19.035232 | 1.464608 | 7.3% | 200.0 |collisionb .ASYNC KERNEL@1i.599

2.06% | 16.216648 | 3.505232 | 18.1% | 200.0 [lbm3d2p d .ASYNC KERNEL@1i.131

2.5% | 15.401916 | 8.093716 | 35.0% | 200.0 |injection .ASYNC KERNEL@1i.1116

1.9% | 11.734026 | 4.488785 | 28.1% | 200.0 |recolor .ASYNC KERNEL@1li.786

0.9% | 5.530201 | 2.132243 | 28.3% | 200.0 |collisionb .SYNC COPY@1i.593

0.8% | 4.714995 | 0.518495 | 10.1% | 200.0 |collisionb .SYNC COPY@1i.596

0.6% | 3.738615 | 2.986891 | 45.1% | 200.0 |collisionb .ASYNC KERNEL@1li.568

0.4% | 2.656962 | 0.454093 | 14.8% | 1.0 |1lbm3d2p d .ASYNC COPY@1i.100

0.4% | 2.489231 | 2.409892 | 50.0% | 200.0 |streaming exchange .ASYNC COPY@1i.810
0.4% | 2.487132 | 2.311190 | 48.9% | 200.0 |streaming exchange .ASYNC COPY@1li.625
0.2% | 1.322791 | 0.510645 | 28.3% | 200.0 |streaming exchange .SYNC COPY@1li.622
0.2% | 1.273771 | 0.288743 | 18.8% | 200.0 |streaming exchange .SYNC COPY@1li.574
0.2% | 1.212260 | 0.298053 | 20.0% | 200.0 |streaming exchange .SYNC COPY@1li.759
0.2% | 1.208250 | 0.422182 | 26.3% | 200.0 |streaming exchange .SYNC COPY@1i.806
0.1% | 0.696120 | 0.442372 | 39.5% | 200.0 |streaming exchange .ASYNC KERNEL@1li.625
0.1% | 0.624982 | 0.379697 | 38.4% | 200.0 |streaming exchange .ASYNC KERNEL@1i.525
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Useful tools

e Compiler feedback:
* -ra to generate *.Ist loopmark files (equivalent for C)
e -rd to generate *.cg and *.opt files
e * cg useful to understand synchronisation points (CAF and ACC)

e "ptxas -v *.ptx" gives information on register and shared
memory usage (no way yet for user to adjust this)

e Runtime feedback (no recompilation needed)

e "export CRAY_ACC_DEBUG=[1,2,3]" commentary to
STDERR

* NVIDIA compute profiler works with CUDA and directives
* "export COMPUTE_PROFILE=1"
e gives information on timings and occupancy in separate file

* "more /opt/nvidia/cuda/<version>/doc/Compute_Profiler.txt" for documentation
e Vince Graziano has a great script for summarising the output

June 27, 2011 94
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Cray GPU Programming Environment —

e Objective: Enhance productivity related to porting applications to hybrid
multi-core systems

e Four core components
e Cray Statistics Gathering Facility on host and GPU
* Cray Optimization Explorer — Scoping Tools (COE)
e Cray Compilation Environment (CCE)
e Cray GPU Libraries

Copyright 2011 Cray Inc.  CPS 2011




Titan: Early Science Applications

WL-LSMS

Role of material disorder,
statistics, and fluctuations in
nanoscale materials and
systems.

S3D

How are going to
efficiently burn next
generation diesel/bio
fuels?

PFLOTRAN

Stability and viability of large
scale CO, sequestration;
predictive containment
groundwater transport

CAM / HOMME

Answer questions about specific
climate change adaptation and
mitigation scenarios; realistically
represent features like
precipitation patterns/statistics
and tropical storms

CRANY
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LAMMPS

Biofuels: An atomistic model
of cellulose (blue)
surrounded by lignin
molecules comprising a
total of 3.3 million atoms.
Water not shown.

Denovo
Unprecedented high-
fidelity radiation
transport calculations
that can be used in a
variety of nuclear
energy and technology
applications.
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S3D — A DNS solver

e Structured Cartesian mesh flow solver

e Solves compressible reacting Navier-Stokes, energy and species

conservation equations.
8t order explicit finite difference method

— 4 order Runge-Kutta integrator with error estimator / / 7‘ /
Detailed gas-phase thermodynamic, chemistry and
molecular transport property evaluations / / / /

Lagrangian particle tracking

MPI-1 based spatial decomposition and parallelism / / /
Fortran code. Does not need linear algebra, FFT or ¥
solver libraries. / / /

Developed and maintained at CRF, Sandia (Livermore) with BES and ASCR
sponsorship. Pl — Jacqueline H. Chen (jhchen@sandia.gov)



Benchmark Problem and Profile

—

e A benchmark problem was defined to closely resemble the target simulation
* 52 species n-heptane chemistry and 483 grid points per node

— 48°* 18,500 nodes = 2 billion
grld p0|ntS Integrator: W Chemistry

— Target problem would take two e
months on today’s Jaguar

 Code was benchmarked and
profiled on dual-hex core XT5

e Several kernels identified and
extracted into stand-alone
driver programs

Thermo
properties;
4%

L 4 'Y" -
Copyright 2011 Cray Inc.  CPS 2011 l'

Core S3D
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Acceleration Strategy

Team:
Ramanan SankaranORNL
Ray Grout NREL
John Levesque Cray
Goals:

Convert S3D to a hybrid multi-core application suited for a multi-core node with
or without an accelerator.
Be able to perform the computation entirely on the accelerator.

Arrays and data able to reside entirely on the accelerator.

Data sent from accelerator to host CPU for halo communication, I/O and monitoring only.

Strategy:

To program using both hand-written and generated code.

- Hand-written and tuned CUDA*.
- Automated Fortran and CUDA generation for chemistry kernels

- Automated code generation through compiler directives

® S3D is now a part of Cray’s compiler development test cases
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Original S3D

S3D
Time Step Solve_Drive
Time Step Runge K Integrate

Time Step Runge K RHS

get mass
Time Step  Runge K fraction
Time Step  Runge K get_velocity
Time Step  Runge K calc_inv_avg
Time Step  Runge K calc_temp

Compute
Time Step  Runge K Grads
Time Step  Runge K Diffusive Flux
Time Step  RungeK Derivatives

Time Step  Runge K reaction rates



Profile from Original S3D
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Table 1: Profile by Function Group and Function
Time$% | Time | Imb. | Imb. | Calls | Group
| | Time | Time% | | Function
| | | | | PE=HIDE
| | | | | Thread=HIDE
100.0% | 284.732812 | == | -— | 156348682.1 |Total
‘ ______________________________________________________________________________________________
|  92.1% | 262.380782 | == | -- | 155578796.1 |USER
B e~~~ =~ oo
|| 12.4% | 35.256420 | 0.237873 | 0.7% | 391200.0 |ratt i .LOOPS
| | 9.6% | 27.354247 | 0.186752 | 0.7% | 391200.0 |ratx i .LOOPS
| | 7.7% | 21.911069 | 1.037701 | 4.5% | 1562500.0 |mcedif .LOOPS
| | 5.4% | 15.247551 | 2.389440 | 13.6% | 35937500.0 |mcevald
|| 5.2% | 14.908749 | 4.123319 | 21.7% | 600.0 |rhsf .LOOPS
| | 4.7% | 13.495568 | 1.229034 | 8.4% | 35937500.0 |mcevald4 .LOOPS
| ] 4.6% | 12.985353 | 0.620839 | 4.6% | 701.0 Jcalc_tempSthermchem m .LOOPS
|| 4.3% | 12.274200 | 0.167054 | 1.3% | 1562500.0 |mcavis newStransport m .LOOPS
| 4.0% | 11.363281 | 0.606625 | 5.1% | 600.0 |computespeciesdiffflux$transport m .LOOPS
| ] 2.9% | 8.257434 | 0.743004 | 8.3% | 21921875.0 |mixcp$thermchem m
| | 2.9% | 8.150646 | 0.205423 | 2.5% | 100.0 |integrate .LOOPS
| 2.4% | 6.942384 | 0.078555 | 1.1% | 391200.0 |gssa_ i .LOOPS
| 2.3% | 6.430820 | 0.481475 | 7.0% | 21921875.0 |mixcp$thermchem m .LOOPS
| 2.0% | 5.588500 | 0.343099 | 5.8% | 600.0 |computeheatflux$transport m .LOOPS
| 1.8% | 5.252285 | 0.062576 | 1.2% | 391200.0 |rdwdot i .LOOPS
| 1.7% 4.801062 | 0.723213 | 13.1% | 31800.0 |derivative x calc_.LOOPS
| 1.6% | 4.461274 | 1.310813 | 22.7% | 31800.0 |derivative y calc_ .LOOPS
|| 1.5% | 4.327627 | 1.290121 | 23.0% | 31800.0 |derivative z calc_ .LOOPS
| 1.4% | 3.963951 | 0.138844 | 3.4% | 701.0 |get mass frac$variables m .LOOPS
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S3D
Time Step Solve_Drive
Time Step Runge K Integrate

Time Step Runge K RHS

Time Step Runge K get mass fraction
Time Step Runge K get_velocity
Time Step Runge K calc_inv_avg
Time Step Runge K calc_temp

Time Step Runge K Compute Grads
Time Step Runge K Diffusive Flux
Time Step Runge K Derivatives
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Statistics from running S3D

Table 1: Profile by Function Group and Function

Time% | Time | Imb. |  Imb. | Calls |Group
| | Time | Time% | [ EunCEion === - e e e e e e b L e
85.3% | 539.077983 | == | -—- | 144908.0 |USER

| === S o ————————————
[ 21.7% | 136.950871 | 0.583731 | 0.5% | 600.0 |rhsf
[ 14.7% | 93.237279 | 0.132829 | 0.2% | 600.0 |rhsf .LOOP@1i.1084
| | 8.7% | 55.047054 | 0.309278 | 0.6% | 600.0 |rhsf .LOOP@11i.1098
| | 6.3% | 40.129463 | 0.265153 | 0.8% | 100.0 |integrate
| | 5.8% | 36.647080 | 0.237180 | 0.7% | 600.0 |rhsf .LOOP@1i.1211
| | 5.6% | 35.264114 | 0.091537 | 0.3% | 600.0 |rhsf .LOOP@1i.194
| | 3.7% | 23.624271 | 0.054666 | 0.3% | 600.0 |rhsf .LOOP@1i.320
| | 2.7% | 17.211435 | 0.095793 | 0.6% | 600.0 |rhsf .LOOP@1i.540
| | 2.4% | 15.471160 | 0.358690 | 2.6% | 14400.0 |derivative y calc buff r .LOOP@1i.1784
| | 2.4% |  15.113374 | 1.020242 | 7.2% | 14400.0 |derivative z calc buff r .LOOP@1i.1822
| | 2.3% | 14.335142 | 0.144579 | 1.1% | 14400.0 |derivative x calc buff r .LOOP@1i.1794
| | 1.9% | 11.794965 | 0.073742 | 0.7% | 600.0 |integrate .LOOPE@1li.96
| | 1.7% | 10.747430 | 0.063508 | 0.7% | 600.0 |computespeciesdiffflux2Stransport m .LOOP
| | 1.5% | 9.733830 | 0.096476 | 1.1% | 600.0 |rhsf .LOOPQ@1i.247
| | 7| 7.649953 | 0.043920 | 0.7% | 600.0 |rhsf .LOOP@1i.Z274
| | 0.8% | 5.116578 | 0.008031 | 0.2% | 600.0 |rhsf .LOOP@1i.398
| | 0.6% | 3.966540 | 0.089513 | 2.5% | 1.0 [s3d_
| | 0.3% | 2.027255 | 0.017375 | 1.0% | 100.0 |integrate .LOOP@1i.73
| | 0.2% | 1.318550 | 0.001374 | 0.1% | 600.0 |rhsf .LOOP@1i.376
| | 0.2% | 0.986124 | 0.017854 | 2.0% | 600.0 |rhsf .REGION@1i.1096
| | 0.1% 0.700156 | 0.027669 | 4.3% | 1.0 |exit



Advantage of raising loops -

e Create good granularity OpenMP Loop

* |Improves cache re-use

e Creates a good potential kernel for an accelerator

Reduces Memory usage significantly




Resultant Hybrid S3D Performance
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Restructured S3D for multi-core systems

Time Step —acc_data

Time Step—acc_data Runge K
Time Step—acc_data Runge K
Time Step—acc_data Runge K
Time Step—acc_data Runge K
Time Step—acc_data Runge K
Time Step—acc_data Runge K
Time Step—acc_data Runge K
Time Step—acc_data Runge K
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S3D

Solve_Drive

Integrate

RHS
get mass fraction
get_velocity
calc_inv_avg
calc_temp
Compute Grads
Diffusive Flux
Derivatives

reaction rates
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Sample from S3D — Hybrid-Multi-core Part1

!$omp acc _data acc_copyin(g,volum) acc shared(yspecies,u,avmolwt,mixMW, temp)
!$omp acc region loop private (i,ml,mu)

do i = 1, nx*ny*nz, ms
ml = i
mu = min(i+ms-1, nx*ny*nz)

call get mass frac r( g, volum, yspecies, ml, mu)

call get velocity vec r( u, g, volum, ml, mu)

call calc inv_avg mol wt r( yspecies, avmolwt, mixMW, ml, mu)

voltmp(ml:mu,1,1)=gq(ml:mu,1,1,5)*volum(ml:mu,1,1)

call calc temp r(temp, voltmp, u, yspecies, cpmix, avmolwt, ml, mu)
end do
!Somp end acc_region loop

! Start communication - the prep routines do posts and sends

! using buffer identified by itmp

itmp = 1
!Somp acc update host (u,temp, yspecies)
call computeVectorGradient prep( u, itmp )
call computeScalarGradient prep( temp, itmp )
SIEE=1, 1 spec

call computeScalarGradient prep( yspecies(:,:,:,n), itmp )

enddo
Compute remaining properties whilst communication is underway
!Somp acc region loop private(i,ml,mu)

J

do i = 1, nx*ny*nz, ms
ml = i
mu = min(i+ms-1, nx*ny*nz)

call calc gamma r( gamma, cpmix, avmolwt, ml, mu)
call calc press r( pressure, q(:,:,:,4), temp, avmolwt, ml, mu )
eallbcale specEnth allpts r(temp, h spec, ml, mu)

end do

!Somp end acc region loop



Sample from S3D — Hybrid-Multi-core Part 2

! Now wait for communication
call derivative xyz wait( itmp )
SEARCRE TSR I Cernal Twait = . falsel
itmp =1
!Somp acc update acc(u, temp, yspecies)
call computeVectorGradient calc( u, grad u, itmp )
call computeScalarGradient calc( temp, grad T, itmp )
!Somp acc region loop private(n,itmp)
do n=1,n spec
itmp = n + 4
call computeScalarGradient5d calc( yspecies(l,1,1,n), &
grad Ys(1,1,1,1,1), n _spec, n, itmp,sscale 1lx,sscale ly,sscale 1z )
enddo
!Somp end acc _region loop
!Somp end acc data

Copyright 2011 Cray Inc.  CPS 2011
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Current Status of putting S3D on XK6

e Internal XK6 with 171 nodes of
e Magna-Cours
e Fermi +
e Hybrid S3D running across entire system without accelerators

e Computation sections
e 4 point-wise calculations of primary variables (running)

o 2 diffusive flux calculations (not running — compiler bug)
e Trying to inline a very deep call chain — may need to re-code

e 2 getrates calculations (running)
» 3 derivative computations ( running)

* Once all computational sections are running, will use acc_data
to put all data on accelerator and update halos back and forth
to host

Copyright 2011 Cray Inc. = CPS 2011
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Interprocedural Analysis with Inlining

e For the next year, until we can call subroutines and
functions on the accelerator, the compiler must inline
all subroutines and functions within a acc_region.

e This is performed automatically by the compiler

e Can be incrementally controlled by using compile line options
e -hwp —hpl=<path to program library>

Copyright 2011 Cray Inc.  CPS 2011



Whole Program Analysis -hwp e s

e There are several things that inhibit the inlining of
the call chain beneath the acc_region

e Call to subroutines and functions that the compiler
does not see

* |/O, STOP, etc ( Not anymore)
e Array shape changing through argument passing

°* Dummy arguments
e Real*8 dummy(*), dummy_2d(nx,*)
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Successful Inlining

248. I$Somp acc_region_loop private(i,ml,mu)

249. 1-----—-- < doi=1, nx*ny*nz, ms

250. 1 ml=i

251. 1 mu = min(i+ms-1, nx*ny*nz)

252. 1 | call get_mass_frac_r( q, volum, yspecies, ml, mu) I get Ys from rho*Y's, volum from rho
253. 1 | call get_velocity vec r( u, q, volum, ml, mu) I fill the velocity vector

254. 1 | call calc_inv_avg_mol_wt_r( yspecies, avmolwt, mixMW, ml, mu) ! set inverse of mixture MW
255, 1----m-mm- > end do

Copyright 2011 Cray Inc.  CPS 2011
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Inliner diagnostics

333. 1---—-—--- < don=1,n_spec

334. 1 itmp=n+4

335. 1 Icall computeScalarGradient_calc( yspecies(:,:,:,n), grad_Ys(:,:,:,n,:), itmp )
336. 1 call computeScalarGradient5d_calc( yspecies(1,1,1,n), &

A

ftn-3007 ftn: ERROR RHSF, File = rhsf.f90, Line = 336, Column = 12
Routine "write_date_and_time", referenced in "terminate_run", was not inlined because a scalar actual argument at position 1 is

being mapped to an array dummy argument.

A

ftn-3007 ftn: ERROR RHSF, File = rhsf.f90, Line = 336, Column = 12
Routine "write_date_and_time", referenced in "terminate_run", was not inlined because a scalar actual argument at position 1 is

being mapped to an array dummy argument.

A

ftn-3007 ftn: ERROR RHSF, File = rhsf.f90, Line = 336, Column = 12
Routine "write_date_and_time", referenced in "terminate_run", was not inlined because a scalar actual argument at position 2 is

being mapped to an array dummy argument.

A

ftn-3007 ftn: ERROR RHSF, File = rhsf.f90, Line = 336, Column = 12
Routine "write_date and_time", referenced in "terminate_run", was not inlined because a scalar actual argument at position 1 is

being mapped to an array dummy argument.

Copyright 2011 Cray Inc.  CPS 2011
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Inliner diagnostics (-rmp )

A

ftn-3007 ftn: ERROR RHSF, File = rhsf.f90, Line = 336, Column = 12
Routine "write_date_and_time", referenced in "terminate_run", was not inlined because a scalar actual argument at position 1 is

being mapped to an array dummy argument.

A

ftn-3007 ftn: ERROR RHSF, File = rhsf.f90, Line = 336, Column = 12
Routine "write_date_and_time", referenced in "terminate_run", was not inlined because a scalar actual argument at position 1 is

being mapped to an array dummy argument.

A

ftn-3007 ftn: ERROR RHSF, File = rhsf.f90, Line = 336, Column = 12
Routine "write_date_and_time", referenced in "terminate_run", was not inlined because a scalar actual argument at position 2 is

being mapped to an array dummy argument.

A

ftn-3007 ftn: ERROR RHSF, File = rhsf.f90, Line = 336, Column = 12
Routine "write_date_and_time", referenced in "terminate_run", was not inlined because a scalar actual argument at position 1 is

being mapped to an array dummy argument.

Copyright 2011 Cray Inc.  CPS 2011



Inliner diagnostics (-rmp )

A

ftn-3021 ftn: ERROR RHSF, File = rhsf.f90, Line = 336, Column = 12

Routine "mpi_finalize", referenced in "terminate_run", was not inlined because the compiler was unable to locate the routine to

expand it inline.

A

ftn-3021 ftn: ERROR RHSF, File = rhsf.f90, Line = 336, Column = 12

Routine "mpi_barrier", referenced in "terminate_run", was not inlined because the compiler was unable to locate the routine to

expand it inline.

A

ftn-3021 ftn: ERROR RHSF, File = rhsf.f90, Line = 336, Column = 12

Routine "mpi_wait", referenced in "derivative_y_calc_buff_r", was not inlined because the compiler was unable to locate the

routine to expand it inline.

A

ftn-3021 ftn: ERROR RHSF, File = rhsf.f90, Line = 336, Column = 12

Routine "mpi_wait", referenced in "derivative_y_calc_buff_r", was not inlined because the compiler was unable to locate the

routine to expand it inline.

Copyright 2011 Cray Inc.  CPS 2011
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All Compiler Internal Errors are not errors

e Currently many compiler internal errors are given
when forms are encountered that inhibit acceleration

e Calls within the acc_region
e These can be identified by using the inliner

e Derived Types

e These are being worked

* Dummy arguments
* Etc.

Ind
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Early Software/Hardware Issues

e Finding lots of bugs in tools and compiler
e Cannot fix them until they are identified

e |dentified bottleneck in MPI messaging between
GPUs

* This is being addressed by Cray/Nvidia

e Want zero transfer messages — GPU directly to other GPU
e Directives are emerging — changing
e Usage is identifying new capabilities — pipelining
e Future GPUs will have a higher performance
advantage over x86 sockets
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Himeno Benchmark on Cray XK6:
an OpenMP for Accelerators exercise

Roberto Ansaloni
Alistair Hart

" Cray Performance Symposium, 25.July.11



Contents of talk

e A performance case study
e The Himeno benchmark

e Accelerating Himeno using OpenMP directives
e assume you have met these already

e Performance and scaling of the Himeno code

e How to accelerate a code using directives
e Avademecum

e Suitability of codes and examples available
e Useful tools and tricks for accelerator directives

June 27, 2011 119
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The Himeno Benchmark

O

O

O

e 3D Poisson equation
e 19-point stencil ®
e Highly memory intensive, memory bandwidth bound

e Fortran, C, MPl and OpenMP implementations
available from http://accc.riken.jp/HPC e/himenobmt e.html

e Several configurations available
e Tests on XL configuration: 1024 x 512 x 512

e NVIDIA paper on GPU CUDA implementation

e Phillips, E.H.; Fatica, M.;
Implementing the Himeno benchmark with CUDA on GPU clusters

|IEEE International Symposium on Parallel & Distributed Processing
(IPDPS), 2010 [PDF, or ahart@cray.com]

June 27, 2011 120




The Jacobi computational kernel

DO K=2,kmax-1
DO J=2,jmax-1

e The stencil is applied to PO 122 imax-1 - | e
S0=a(I,J,K,1)*p(I+1,J, K ) =
pressure array p +a(I,J,K,2)*p(I, J+1,K ) & — -
+a(I,J,K,3)*p(I, J, K+1) & _ E
e Updated pressure values are #5(1,3,K,1)* (p (141,41 K ) -p(I+1,3-1,K ) & ]
-p(I-1,J3+1,K )+p(I-1,J-1,K )) & '
saved to temporary array b1, 0,K,2)% (b (I, 341,K$1)-p(I, J-1,K¢1) & c
| C
-p(I, J+1,K-1)+p(I, J-1,K-1)) & .
erz +b(I,J,K,3)*(p(I+1,J, K+1)-p(I-1,J, K+1) & =
. -p(I+1,J, -1)+p(I-1,J, -1)) & N
e Control value wgosa is oty PRV R g
Computed +c(I,J,K,2)*p(I, J-1,K ) & .
+c(I,J,K,3)*p(I, J, K-1) & _ E
e |In the benchmark this kernel + wrkl(1,9,K) 2
is iterated a fixed number of SS=(S0%a (1,0,K,4) 5 (1,3,K)) *bnd (I,3,K)
hy WGOSA=WGOSA+SS*SS
times (nn) wrk2 (1,3, K)=p{T, 7, K) +OMEGA. 58
ENDDO
ENDDO
ENDDO

June 27, 2011 Cray Confidential 121
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Distributed implementation

e The outer loop is performed a P
ﬁxed number Of times compute Jacobi kernel — wrk2,wgosa

e The Jacobi kernel is executed and
new pressure array wrk2 and
control value wgosa are computed

copy back wrk2 into p

pack halo from p into send buffers

e The array is updated with the new
pressure values

exchange halos with neighbour PEs

. The haIO region Values are unpack halo into p from recv buffers
exchanged between neighbor PEs

1 llred t
e Send and receive buffers are used Allreduce to sum wgosa across PEs
ENDDO

e The maximum control value is
computed with an Allreduce
operation across all the PEs

June 27, 2011 Cray Confidential 122
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e Several versions tested, with communication
implemented in MPI or Fortran coarrays

e GPU version using OpenMP Accelerator directives

e Comparing Cray XK6 timings with best Cray XE6
results (hybrid MPI/OpenMP)

* Arrays reside permanently on the GPU memory

e Data transfers between host and GPU are:
e Communication buffers for the halo exchange
e Control value

June 27, 2011 123



Allocating arrays on the GPU T e

e Arrays are allocated on the GPU
memory in the main program with

the acc_data directive !$omp acc_data acc_shared &
'Somp& (p,a,b,c,wrkl,wrk2,bnd, &

PROGRAM himenobmtxp

* In the subroutines the acc _data
directive is replicated with the
present clause, to use the data
already present in the GPU
memory and avoid extra '$omp end acc_data
allocations

'$omp& sendbuffx up,sendbuffx dn, &
!$omp& sendbuffy up,sendbuffy dn, &
'$omp& sendbuffz up,sendbuffz dn)

Y ] SUBROUTINE jacobi (nn,gosa)
e Since present clause is used, no

'$Somp acc_data present &
acc_copy* clauses are used, and '$omps (p,a,b,c,wrkl,wrk2,bnd, &
data transfers to/from host are '$omp& sendbuffx_up,sendbuffx dn, &
implemented by GCC_Update '$omp& sendbuffy up,sendbuffy dn, &

d | reCﬁveS !'$Somp& sendbuffz up,sendbuffz dn)

Jum Cray Confidential 124
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Jacobi kernel on the GPU

e The GPU kernel for the main loop

DO loop=1,nn

is created with the gosa = 0
acc_region_loop directive wgosa = 0

e The scoping of the main variables tsomp acc_region_loop ¢
! i s . . 'Somp& private(sO0,ss) &
is specified earlier with the _

. . '$Somp& reduction (+:wgosa) &

acc_data directive - no need to 'Somps num_pes (2:256)
replicated it in here DO K=2,kmax-1

e wgosa is computed by specifying DO J=2,jmax-1

the reduction clause, asin a
standard OpenMP parallel loop

DO I=2,imax-1
SO0=a(I,J,K,1)*p(I+1,J, K ) &

* num_pes clause is used to indicate wgosa = wgosa + SS*SS
the number of threads within a ENDDO
9 ENDDO
threadblock (compiler default 128) ENDDO

June 27, 2011 Cray Confidential 125



Halo region buffers

e Halo values are extracted from the
wrk2 array and packed into the | Somp ace loop
send buffers, on the GPU DO j = 2,3jmax-1

!'$omp acc_region

DO i = 2,imax-1

e Aglobal acc region is specified and
sendbuffz dn(i,j)= wrk2(i,j,2)

buffers in the X, Y, and Z directions o o
. . sendbuffz up(i,j)= wrk2(i,j, kmax-1)
are packed within acc_loop blocks ENDDO

e The send buffers are copied to host ENDDO
memory with acc_update tyomp end ace_loop

* In the same way, after the halo '$omp acc_loop
exchange, the recv buffers are '$omp end acc_loop
transferred to the GPU memory !$omp end acc_region

and used to update the array p

'$Somp acc_update &

e N.B. Currently it’s not pOSSible to '$omp& host(sendbuffz dn,sendbuffz up)
include array sections in
acc_update —buffers are necessary

June mﬂ Cray Confidential 126



Coarray implementation

Coarrays are used to perform the
halo exchange

Non-blocking communication
needs pgas defer sync directive

Programmer now responsible for
data synchronization

By deferring sync point, network
comms can be overlapped with
CPU or GPU activity

Updating p from wrk2 (on GPU)
overlapped with halo exchange

N.B. no sync all: CAF intrinsic
COSUM has loose synchronisation
(so do need sync memory first).

June 27, 2011 Cray Confidential
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'dir$ pgas defer sync
recvbuffz up(:,:) [myx, myy myz-1] = &
sendbuffz dn(:,:)

'$omp acc_region_loop
DO k = 2,kmax-1
DO j = 2,jmax-1
DO i = 2,imax-1
p(i,j,k) = wrk2(i,j, k)
ENDDO
ENDDO
ENDDO
'$omp end acc_region_ loop
sync memory
gosa = COSUM (wgosa)
!'$omp acc_update &

!'$Somp& acc(recvbuffz dn,recvbuffz up)

127
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Coarray implementation

e Coarrays are used

halo exchange Compiler does not currently support using

coarrays in an accelerator region,
* Non-blocking so this does not work!
needs pgas
You need to make a local copy of the coarray
buffers to non-coarray buffers and then transfer
them to GPU memory.

® Programmgd
data synch

e By deferring

comms can be This affects the performance, by increasing the
CPU or GPU activin host CPU time.
e Updating p from wrk2x
overlapped with halo exchange ~F
e N.B. no sync all: CAF intrinsic gosa = COSOM{ggosa)
COSUM has loose synchronisation '$omp acc_update &

'Sompé& accl|(recvbuffz dn,recvbuffz up)

(so do need sync memory first).

June 27, 2011 Cray Confidential 128



OpenMP for Accelerator GPU version e

e Total number of lines in the original Himeno

MPI-Fortran code: 629
e Total number lines in the modified version
with coarrays and accelerator directives: 554
e don't need MPI_CART_CREATE and the like
e Total number of accelerator directives: 27

e plus 18 "end" directives

June 27, 2011 129



Benchmarking the code

* Cray XK6 configuration (vista)
e Single AMD MC12 2.1GHz CPU cores, 12 cores per node
* Nvidia Tesla X2090 GPU, 1 per node
* Running with 1 PE (GPU) per node
* Himeno case XL needs at least 8 Cray XK6 nodes

e Cray XE6 configuration (kaibab)
* Dual AMD MC12 2.1 GHz nodes, 24 cores per node
* Running on fully packed nodes: all cores used

* Depending on the number of nodes, 1-6 OpenMP threads
per PE are used

* All comparisons are for strong scaling
» fixed total problem size
* Nvidia CUDA example is weak scaling

June 27, 2011
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Himeno Timings

e The ACC code on the Cray XK6 outperforms the Cray XE6
e Larger gap on small number of nodes

e CAF communication is more efficient than MPI
e CAF is worse on small number of nodes — more on this later

Himeno Benchmark - XL configuration
100

Time (seconds)

10 ——MPI/OMP
—=-MPI/ACC
—a CAF/ACC

8 16 32 64 128

Number of nodes
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Himeno Performance

* Node-for-node, Cray XK6 (GPU) outperforms Cray XE6 (CPU)
e CAF/ACC is the faster than MPI/ACC on high number of nodes

e ACC code has slightly worse scalability than MPI/OMP

e more on this later

Himeno Benchmark - XL configuration
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e Cray XK6 is always faster
e Ratio drops on 16 nodes
* On 16 nodes the CPU code gets a superlinear boost due to cache effect

e On 128 nodes GPU code is about 20% faster than CPU code

Himeno Benchmark - XL configuration
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CAF/ACC code breakdown (craypat!)

* Host/GPU transfers always take more time than the halo exchange (network)
* this code would benefit from an efficient direct GPU-GPU communication

CRANY
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* On 128 nodes less than 50% of the time is spent in the GPU compute kernel

e Extra copy of coarray buffers increases the CPU time (potentially avoidable)

e This is why CAF code is slower at low node count

June 27, 2011
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Conclusions from the Himeno case study

* It has been very simple to implement the GPU code with
OpenMP accelerator directives

 Work has evolved with updates in the (pre-release) compiler
e Always got the right answers
e QOccasionally needed workarounds before features implemented
e Compiler team extremely responsive
® Future releases will provide more control of the GPU and
allow for better performance

* Codes where data can permanently reside in GPU memory
will benefit from an efficient direct GPU-GPU communication
e N.B. GPUs not on same PCle bus
e Many hardware questions need addressing to do this

June 27, 2011 135
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Future work for Himeno

* Increased overlap of communication and computation
e async clause for accelerator kernels, data transfers will help this
e is there enough work in himeno to really hide the comms?

e we tried precomputing halo regions of temporary array wrk2 for earlier halo exchange
e allows better overlap with GPU computation (interior of wrk2, copy of wrk2 into p)
e so far this has not improved code performance

e measuring overlap is not easy
e Better tuning of GPU kernels
e A distributed CUDA implementation should be implemented
to verify the efficiency of the OpenMP for Accelerator
directives
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Thank you. Questions?



