Porting to Hybrid, Multi-core Systems

Heidi Poxon
| Manager & Technical Lead, Performance Tools
i Cray Inc.

CSCS XK PE Workshop March 6-7, 2012

When to Move to a Hybrid Programming Model e

= \When code is network bound

e | ook at collective time, excluding sync time: this goes up as network
becomes a problem

e | ook at point-to-point wait times: if these go up, network may be a
problem

= \When MPI starts leveling off

e Too much memory used, even if on-node shared communication is
available

e As the number of MPI ranks increases, more off-node communication
can result, creating a network injection issue

= \When contention of shared resources increases

MarcluZ Cray Inc. Proprietary

Optimizations for multi-core systems " =i ctuenn

= Reduce number of MPI| ranks per node

= Add parallelism to MPI ranks to take advantage of cores
within a node while minimizing network injection contention

= Maximize on-node communication between MPI ranks

= Relieve on-node shared resource contention by pairing
threads or processes that perform different work (for example
computation with off-node communication) on the same node

= Accelerate work intensive parallel loops

MarcluZ Cray Inc. Proprietary

Steps to Porting to Hybrid Multi-core Systems e

= Determine where to add additional levels of parallelism
e Assumes MPI application is functioning correctly on X86
e Find top work-intensive loops (perftools + CCE loop work estimates)

= Split loop work among threads

e Do parallel analysis and restructuring on targeted high level loops
e Use CCE loopmark feedback, Reveal loopmark and source browsing

= Add parallel directives and acceleration extensions
e |Insert OpenMP directives (Reveal scoping assistance)

e Run on X86 to verify application and check for performance
improvements

e Convert desired OpenMP directives to OpenACC

March §i2‘012 Cray Inc. Proprietary

Steps to Porting to Hybrid Multi-core Systems (2) e

= Run on X86 + GPU and get performance feedback

e perftools profiling analysis

= Optimize for data locality and copies to the GPU
e perftools accelerator statistics

= Optimize kernel on GPU
e perftools GPU counter statistics
e perftools Kernel statistics

= Optimize core performance on CPU
e Automatic profiling analysis with CPU HW counter threshold feedback

March 6-7, 2012 Cray Inc. Proprietary

Determine where to add additional
levels of parallelism —

loop work estimates

Loop Work Estimates b e 8

= Helps identify loops to optimize (parallelize serial loops):
e | oop timings approximate how much work exists within a loop

e Trip counts can be used to approximate work and help carve up loop
on GPU

= Enabled with CCE —h profile_generate option

e Should be done as separate experiment — compiler optimizations are
restricted with this feature

= | oop statistics reported by default in pat_report table

= Coming soon: integrated loop information in profile
e Get exclusive times and loops attributed to functions

Marc‘:u Cray Inc. Proprietary

Collecting Loop Statistics

= Access CCE and perftools software
module load PrgEnv-cray perftools

= Compile AND link with —h profile _generate
cc —h profile_generate —c my_program.c
cc —h profile_generate —o my_program my_program.o

= |Instrument binary for tracing
pat_build —u my program OR
pat_build —-w my_program

= Run application
= Create report with loop statistics
pat_report my program+pat.xf > loops_report

Marc‘:u Cray Inc. Proprietary

CRANY"

THE EUPERCOMPUTER COMPANY

Example Report — Loop Work Estimates) e 8

Table 1: Profile by Function Group and Function

Time% | Time | Imb. | Imb. | Calls |Group
| | Time | Time% | | Function
I I I I | PE=HIDE

| | | | | Thread=HIDE

100.0% | 176.687480| --| --|17108.0 |Total
I
| 85.3% | 150.789559| --| --| 8.0 |[USER

Il
| 85.0% | 150.215785 | 24.876709 | 14.4% | 2.0 | jacobi_.LOOPS

| 12.2% | 21.600616| --| --|16071.0 |MPI

Il
| 11.9% | 21.104488 | 41.016738 | 67.1% | 3009.0 | mpi_waitall

| 24%]| 4.297301| --| --| 1007.0 [MPI_SYNC

Il
| 2.4%| 4.166092| 4.135016 | 99.3% | 1004.0 | mpi_allreduce_(sync)

Cray Inc. Proprietary

Example Report — Loop Work Estimates (2)

Table 3: Inclusive Loop Time from -hprofile_generate

Loop Incl | Loop | Loop | Loop |Function=/.LOOPI.]
Time | Hit | Trips | Trips | PE=HIDE
Total | | Min | Max |

|175.676881| 2| 0] 1003 [jacobi_.LOOP.07.1i.267
| 0.917107| 1003| 0| 260 |jacobi_.LOOP.08.1i.276
| 0.907515| 129888| 0| 260 |jacobi_.LOOP.09.1i.277
| 0.446784| 1003| 0| 260 |jacobi_.LOOP.10.1i.288
| 0.425763| 129888| 0| 516 |jacobi_.LOOP.11.1i.289
| 0.395003| 1003| 0| 260 |jacobi_.LOOP.12.1i.300
| 0.374206| 129888| 0| 516 [jacobi_.LOOP.13.1i.301
| 126.250610| 1003| 0| 256 |jacobi_.LOOP.14.1i.312
| 126.223035| 127882| 0| 256 [jacobi_.LOOP.15.1i.313
| 124.298650 | 16305019| 0| 512 |jacobi_.LOOP.16.1i.314
| 20.875086| 1003| 0| 256 |jacobi_.LOOP.17.1i.336
| 20.862715| 127882| 0| 256 |jacobi_.LOOP.18.1i.337
| 19.428085|16305019| 0| 512 |jacobi_.LOOP.19.1i.338

March m& Cray Inc. Proprietary

CRANY"

THE EUPERCOMPUTER COMPANY

Do parallel analysis and restructuring
on targeted high level loops —

Reveal

L

Compiler Feedback D v

= Generate compiler program library with whole program
analysis for more in-depth inter-procedural analysis
e % cc —hwp —h pl=/path_to_my_ program_library/

= Generate loopmark information, view .Ist files
e % cc—rm—c my_program.c

= Use Reveal to view loopmark information, compiler
messages, browse source

Cray Inc. Proprietary

Reveal CRANY

New code restructuring and analysis assistant...
e Uses both the performance toolset and CCE's program library
functionality to provide static and runtime analysis information
e Assists user with the code optimization phase by correlating source
code with analysis to help identify which areas are key candidates for
optimization

= Key Features
e Annotated source code with compiler optimization information
> Feedback on critical dependencies that prevent optimizations
e Scoping analysis
> ldentify, shared, private and ambiguous arrays

o Allow user to privatize ambiguous arrays
o Allow user to override dependency analysis

e Source code navigation based on performance data collected through
CrayPat

MarcluZ Cray Inc. Proprietary

CRANY"

Source Code — Loopmark Compiler T
= feedback
- 32.33% calc2 F 56 DO 200 I=1,M =
Le 3233% CALC2 - 67 DO 200 J=js,je
_ 68 UNEW(I+1,]) = UOLD(I+1 J)+
” T 69 1 TDTS8*(Z(I+1 |+1)+Z(1+1) CV(I+1 J+1)+CV
e Loop@Ea 70 2 4CV(I+1,)))-TDTSDX*H(I+1,J)-H(1,}))
b 17.34% calclF 71 if(j.gt.1)then
b 0.21% swim.F T VNEW(L]) = VOLD(L))-TDTS8*Z(1+1])+Z(1]))
73 1 #{CU(I+1))+CU(1J}+CU(1J-1)+CU(1+1J-1))
74 2 -TDTSDY*(H(1,))-H(1,)-1))
Performance 75 endif

feedback : 76 if(j.eq.n)then

77 VNEW(],J+1) = VOLD(I,J+1)-TDTS8* Z(I1+1, J+1)+Z|

78 1 *{CU(I+1,)+1)+CU(1J+1)+CU(l))+CU{1+1,)))
Compiler 79 2 -TDTSDY*[H(I,J+1)-H(1))

\ feedback 80 endif

81 PNEW(1,]) = POLD(L,))-TDTSDX*{CU(1+1,))-CU(1,)})

82 1 -TDTSDY*CV(I,)+1)-CV(l1))

Info /‘ N 83 200 CONTINUE

Line B&: 84

Loop unrolled 2 times.

Loop interchanged with loop e e i
atline B7. 86 C

Marc‘:u Cray Inc. Proprietary

Add parallel directives and
acceleration extensions -

Reveal

Display Scoping Information for Selected Loop

= himeno_caf_acc.f0g8

= INITMT
Loop@72
Loop@73
Loop@74
Loop@32
Loop@93
Loop@34

INITCONM

= INITMAX
Loop@135
Loop@138
Loop@142
Loop@145
Loop@142
Loop@152

HIMENOBMTXP

= JACOBI

Loop@287
[lop@2ol

Loop@292
Loop@23

Loop@326
Loop@333

Loop@334

Loop@341
Loop@342
Loop@373
Loop@374
Loop@37

Looj

N39S

290
@) 291

Idir$ omp_analyze_loop
DO K=2.kmax-1
DO J=2,jmax-1
DO I=2.imax-1
SO=ail. LK pil+1.) K) &
+ailLE2*pil, J+1.K) &
+a(l L3 pil) K+1) &
+hi{L LE T p (1, J+1,K) &
-pl+1.J-1.K) &
p-1J+1 KD &
+p(-1.J-1.K) &
+h(L L2 (pil, J+1.K+1) &
-pil 1K) &
-pll J+1K-1) &
+pil, 1100 &
+h(LLE 3 *pil+1.d, K+1) &
Sp-1., K1) &
-pil+1.d K-1) &
+P(l-1.d, K-10) &
+C(LLI (1,0 K &
+C{LLEZ2)*pil. 1K) &
+C{LLIE3*pil,) K-1) &
+wrk1 (LK)

SS=(s0*ail. LK.4)-p(l.J K *ond(l.d,

WGOSA=-WGOSA+55%55

Wrk2(LLK)=p(L LK)+ OMEGA*SS

enddo
enddo
enddo
wgosa_caf=wgosa

1§ AH: pack buffers containing the halos

imax
jmax

kmax

himeno_caf_acc.fO8: lines 291 -= 318

F L Info

Type
Array
Array
Array
Array
Scalar
Scalar

Scalar

omega Scalar

1] Array
s0 Scalar
SS Scalar

wgosa Scalar

wrk
Wrl2

Array

Array

Scope

Shared
Shared
Shared
Shared
Shared
Shared
Shared
Shared
Shared
Private

Private

Shared
Shared
Shared

1§ Could use acc_update here but non-contiguous array shapes currently

1% not supported

1§ A hack to make sure we don"t end up with an empty block

Idirt nmn analvza lnnn

Cray Inc. Proprietary

M
N

CRANY"

THE EUPERCOMPUTER COMPANY

N
N

‘ Dump Data ‘ ‘ M Close

Reveal Next Steps e

= Navigate by profile call tree with loops

® |nitiate scoping analysis from within Reveal (no omp_analyze
directives or compiler command-line option)

= Directive generation and insertion into source
" Focus on loops with unknowns

= Create OpenMP or OpenAcc directives

= Highlight “interesting” compiler feedback

e \Was call site flattened or not?
e \Was loop flattened or not?
e \Was loop or region pattern-matched?

Cray Inc. Proprietary

How to use Reveal 0.1 (early alpha version))

= Use cce 8.0.3 or later
= Start with clean build

= Collect loop statistics with cce and perftools to identify loops
to parallelize

= Add !dir$ omp_analyze loop directive before each loop to
parallelize

e This directive only works with serial loops. Add —x omp or —x acc to
your cce compile options if loop is already parallel

= Compile application for scoping analysis

e % ftn -nomp_analyze -hwp -hpl=/full_path/program.pl
= | aunch reveal:

e % reveal program.pl

Marc‘:u Cray Inc. Proprietary

How to use Reveal 0.1 (early alpha version) =Sl Su

= Expand files and functions to look for loops with scoping
iInformation (highlighted green)

= Scope any unknowns

= Dump scoping information to stderr (where you launched
reveal) to copy and past into a directive in your source by
clicking “Dump Data”

Cray Inc. Proprietary

Blue Waters PE Workshop December 13-16, 2011

	�Porting to Hybrid, Multi-core Systems�
	When to Move to a Hybrid Programming Model
	Optimizations for multi-core systems
	Steps to Porting to Hybrid Multi-core Systems
	Steps to Porting to Hybrid Multi-core Systems (2)
	�Determine where to add additional levels of parallelism – �loop work estimates
	Loop Work Estimates
	Collecting Loop Statistics
	Example Report – Loop Work Estimates
	Example Report – Loop Work Estimates (2)
	�Do parallel analysis and restructuring on targeted high level loops – �Reveal
	Compiler Feedback
	Reveal
	Source Code – Loopmark
	�Add parallel directives and acceleration extensions - �Reveal
	Display Scoping Information for Selected Loop
	Reveal Next Steps
	How to use Reveal 0.1 (early alpha version)
	How to use Reveal 0.1 (early alpha version)
	Questions�??

