
1

PGI® Compilers and Tools on the
ORNLTitan System

16 APR 12

OLCF Spring Training and Users' Meeting

Dave Norton
dave.norton@pgroup.com

530.544.9075
www.pgroup.com

PGI ACC Workstation / Server / CDK
Linux, Windows, MacOS, 32-bit, 64-bit, AMD64, Intel 64, Nvidia

UNIX-heritage Command-level Compilers + Graphical Tools

Self-contained OpenMP/MPI/Accelerator
Parallel SW Development Solution

Compiler Language Command

PGFORTRAN™ Fortran 77, Fortran 95,
Fortran 2003, CUDA
Fortran

pgfortran
pgf90
pgf77

PGCC® ANSI C99, K&R C and
GNU gcc Extensions

pgcc

PGC++® ANSI/ISO C++
GNU compatible C++

pgCC
pgc++

PGDBG® MPI/OpenMP debugger pgdbg

PGPROF® MPI/OpenMP/ACC profiler pgprof

PGI® Compilers & Tools Positioning
 PGI compilers & tools are dedicated to scientific computing,

where utilization of latest architecture features and speed on
generated code is #1 criteria

•  Not intended to replace infrastructure compilers (GCC/VC++)
 HPC-focused compilers & tools technologies

  State of the art local, global and inter-procedural optimizations

  Automatic vectorization and SIMD/SSE code generation

  Support of OpenMP 3.0 standard

  Automatic loop parallelization

  Profile-guided optimization

  PGI Unified Binary technology to target different ‘flavors’ of same
architecture or heterogeneous architectures

  Graphical tools to debug/profile multithreaded/multiprocess hybrid
applications

To load the PGI compiler on the ORNL systems

> Module load PrgEng-pgi/4.0.30!

Cray supplies wrappers to all of the compilers on the system so that the Fortran
compiler is always invoked as “ftn”, the C compiler as “cc”, and C++ as “CC”
regardless of the actual compile vendor being used.

> module list!

 pgi/12.2.0!

> ftn -V foo.f -o foo!

 pgfortran 12.2-0 64-bit target on Linux -tp bulldozer-64!

!

!

Compiling codes with PGI

Or you can call the compiler directly with “pgfortran” but you won’t get the Cray
library wrappers for use in the ONRL system

On the Cray, to change the version of the PGI compiler, you need to switch
modules:

> module switch pgi/10.2.0 pgi/12.2.0!

> ftn -V foo.f -o foo!

 pgf90 12.2-0 64-bit target on Linux -tp bulldozer!

On your workstation, if you have multiple versions of PGI installed, you can
invoke a different version of the compiler through the compile driver:

> pgfortran -V9.0-4 hello.f -o hello !

 pgfortran 9.0-4 64-bit target on Linux -tp bulldozer!

!

!

Using a different version of PGI

The PGI compile driver by default compiles for the processor on which the
compilation takes place. The driver allows you to easily cross compile for
another target processor:

> pgfortran -V foo.f -o foo -tp istanbul-64!

 pgfortran 10.4-0 64-bit target on Linux -tp istanbul-64!

The Cray compile driver now also allows this capability.

> pgfortran -V -c foo.f -tp istanbul-64!

> ftn -V foo.o -o foo -tp istanbul-64!

!

!

!

!

Changing target processors

> ftn foo.f -o foo !

Invoking the compiler with no flags for optimization will set the scalar
optimization level to 1 if –g is not specified.

> ftn -g foo.f -o foo!

Invoking the compiler with no flags for optimization will set the scalar
optimization level to 0 if –g is specified.!

> ftn -O foo.o -o foo !

Invoking the compiler with the -O flag for optimization will set the scalar
optimization level to 2 regardless of whether –g is also specified.
Optimization levels O0 through O4 perform increasing aggressive scalar
optimizations!

!

!

Basic levels of scalar optimization

> ftn -fast foo.f -o foo !

Invoking the compiler with the –fast (or –fastsse) flag sets common
optimizations which include:

 -O2
 -Munroll=c:1
 -Mnoframe (gives the compiler another register)
 -Mlre
 -Mautoinline
 -Mvect=sse <= this is the vectorizer
 -Mscalarsse
 -Mcache_align
 -Mflushz
 -Mpre !

!

!

Basic levels of vector optimization

Vectorization is the key to getting the best performance out of floating point intense
codes. Current processors are capable of operating on 128 bits at a time. This
means they can do 2 – double precision operations or 4 – single precision operations
at the same time – as long as those operations can all be described by a single
instruction (i.e. a vector operation).

AVX – used on Bulldozer and Sandybridge - increases this to 256 bit wide units

The vectorizer performs the following operations:
 Loop interchange and loop splitting
 Loop fusion
 Memory-hierarchy (cache tiling) optimizations
 Generation of SSE instructions and prefetch instructions
 Loop peeling to maximize vector alignment
 Alternate code generation

!

!

Basic levels of vector optimization

What is AVX?

Before VEX:
movsd (%rax, %r9), %xmm0
movsd (%rax, %r8), %xmm1
movsd %xmm1, %xmm2
addsd %xmm0, %xmm2

After VEX:
vmovsd (%rax, %r9), %xmm0
vmovsd (%rax, %r8), %xmm1
vaddsd %xmm0, %xmm1, %xmm2

12

255 ... 128 127 ... 0

0.0 xmm0

ymm0

0.0 xmm1

ymm1

... ...

...

0.0 xmm14

ymm14

0.0 xmm15

ymm15

Importance of Vectorization

13

Know Your Target Processors

AMD Bulldozer PGI target processor flag : –tp bulldozer

Specify size of SIMD instructions : -Mvect=simd:[128|256]

Enable/Disable generation of FMA instructions: -[no]fma

Running FMA4 code on anything but Bulldozer will yield:

Illegal instruction (core dumped)

Make use of PGI Unified Binary technology to produce optimal code

paths for multiple x64 architectures within a single executable.

14

vzeroupper instruction generation
This instruction zeroes out the upper 128 bits of all the ymm registers

and marks them as clean.

If you mix 256-bit AVX instructions with legacy SSE instructions that

use xmm registers, you will incur performance penalties of roughly
one hundred cycles at the transition points.

The PGI compiler currently generates the vzeroupper instruction right

before a call is made. This is because we cannot be sure how the
callee has been compiled.

When compiling functions that perform AVX instruction sequences, the

PGI compiler generates a vzeroupper instruction right before
returning, again because we cannot make assumptions about how
the caller was compiled.

15

16

There are several common coding issues that may prevent vectorization.
The programmer may have enough knowledge to provide additional
information to the compiler to work around these issues.

In C and C++ the compiler may not have enough information about the
pointers passed into a subroutine to be able to determine that those pointers
don’t overlap. (-Msafeptr option or pragma or restrict keyword)

Function calls can be inlined to allow vectorization (-Minline)

Constants may be of the wrong type (-Mfcon)

Loops may be too long or too short. In both cases, additional options to the
vectorizer may be successful in generating vector code.

!

!

Common impediments to vector
optimization

18

-Msafeptr Option and Pragma

–M[no]safeptr[=all | arg | auto | dummy | local | static | global]

all All pointers are safe

arg Argument pointers are safe

local local pointers are safe

static static local pointers are safe

global global pointers are safe

#pragma [scope] [no]safeptr={arg | local | global | static | all},…

Where scope is global, routine or loop

If you are just starting with a new code, we suggest that you try a short run
of the code with optimization level –O2.

If the answers look good, then try the same run with the –fast flag.

If the answers are the same as the first run, use –fast as the basis for further
optimizations. If the answers differ, try turning of optimizations one at a
time until you find the optimization that is causing the difference. You can
then track down in your code where that difference occurs and determine if
it can be fixed, or if the optimization needs to be left turned off.

!

!

Which level of optimization to start?

Optimization flags are processed on the command line in the order in which
they occur. For example - to turn on all –fast optimizations except loop
redundant elimination:

> ftn -fast -Mnolre foo.o -o foo !

Most optimizations can be turned on with the syntax –Moptimization

Most optimizations can be turned off with the syntax -Mnooptimization

!

!

Turning off optimizations

Optimizations and debugging don’t always go hand in hand, however...

> ftn -fast -gopt foo.f -o foo!

-gopt inserts debugging information without disabling optimizations. It is
often helpful for tracking down a code bug that only appears in optimized
code, or a bug that occurs far enough into a code that running the code with
no optimizations takes a painful amount of time.

!

!

Optimizations and debugging

Generating tracebacks
Linux uses the backtrace system call to create the stacktrace when a fault or error
occurs. The only requirement is to link with the -Meh_frame option:

 > pgfortran -Meh_frame -o x x.f90

Then before running the program, the following environment variable is set as
follows:
 
> export PGI_TERM=trace  

Generating tracebacks
Here is a sample traceback from within the PGI runtime.
(An attempt to deallocate an allocatable array more than one time):
 
0: DEALLOCATE: memory at (nil) not allocated  
 ./x(__hpf_abort+0x7d) [0x40bb8d]  
 ./x(__hpf_dealloc+0xeb) [0x40b57b]  
 ./x(MAIN_+0x217) [0x408177]  
 ./x(main+0x40) [0x407f40]  
 /lib64/libc.so.6(__libc_start_main+0xf4) [0x2b877285e154]  

 ./x [0x407e69]

Here is a sample traceback from a SEGV in user code:

Error: segmentation violation, address not mapped to object  
 rax 0000000005f45908, rbx 0000000000000001, rcx 00000000000187f9  
 rdx 00000000000187f9, rsp 00007fffcdaef9a0, rbp 00007fffcdaef9a0  
 rsi 00007fffcdaef9c4, rdi 00002ab2dd77e020, r8 00000000ffffffff  
 r9 0000000000000000, r10 0000000000000022, r11 0000000000000246  
 r12 0000000000000001, r13 00007fffcdaefae0, r14 0000000000000000  
 r15 0000000000000000  
 /lib64/libpthread.so.0 [0x2ab2dd1ebc10]  
 ./y(init_+0x1f) [0x4081bf]  
 ./y(MAIN_+0x9b) [0x407ffb]  
 ./y(main+0x40) [0x407f40]  
 /lib64/libc.so.6(__libc_start_main+0xf4) [0x2ab2dd468154]  
 ./y [0x407e69]  
!

There are too many compiler flags to remember all of their options. You can
get help in several places:

> man pgfortran!

> pgfortran -fast -help – gives help on -fast

Full PDF manuals are online in (e.g)

/opt/pgi/12.2.0/linux86-64/2012/doc

Manuals are also available at:

http://www.pgroup.com/resources/docs.htm

!

!

What does this flag do?

Optimization is as much a user exercise as it is a compiler exercise. To see
what the compiler thinks of your code, compile using the –Minfo flag.

> pgfortran -fast -Minfo foo.f -o foo!

Use the information generated by –Minfo to help identify coding issues and
locate places where code can be improved so the compiler can do an optimal
job on it.

> pgfortran -Minfo -help

!

!

What exactly is being optimized?

27

> ftn -fast -Mipa=fast -Minfo -S graphRoutines.f90!
!
localmove:!
 334, Loop unrolled 1 times (completely unrolled)!
 343, Loop unrolled 2 times (completely unrolled)!
 358, Generating vector sse code for inner loop!
 364, Generating vector sse code for inner loop!
 Generating vector sse code for inner loop!
 392, Generating vector sse code for inner loop!
 423, Generating vector sse code for inner loop!
!

Use –Minfo to see which loops vectorize

Use –Mneginfo to see why things don’t vectorize

The –fast flag is the 90/90 solution for code optimization. That is, it
achieves about 90% of the possible performance for about 90% of the codes.

That means there are some additional areas that can be explored.

Interprocedural analysis can be helpful for C codes and Fortran codes
without interface blocks. (Interface blocks are to the language specification
what IPA is to the compiler)

> ftn -fast -Minfo -Mipa=fast foo.f -o foo!

***If compiling and linking are done in separate steps, you must be sure to
pass the IPA flag to the linker too.

IPA involves an additional pass of the compiler.

!

!

Additional compiler optimizations

The suggested usage for IPA is to apply –Mipa=fast globally

The –Mipa flag has a large number of options that may be helpful in certain
circumstances. These options are generally best applied to a specific
subroutine to address a specific issue.

A couple of the more interesting flags include:

-Mipa=libopt This allows recompiling and optimization of routines from
libraries using IPA information. If you make extensive use of libraries in
your code, try compiling those libraries with –Mipa=fast so that you have
the option of using IPA when you link your application to that library

-Mipa=safeall This declares that all unknown procedures are safe.

!

!

Additional IPA optimizations

Several memory management options are available and may be beneficial
depending on how your code accesses memory. Smartalloc tends to do a
better job managing memory then standard Unix malloc.

Smartalloc can make use of “big pages”. Using big pages helps to minimize
the number to TLB misses. This option tends to be helpful for codes that do
a big initial allocate and then manage their own memory.

> ftn -fast -Minfo -Mipa=fast -Msmartalloc=huge foo.f -o foo!

***-Msmartalloc must be used to compile main, and also to link the
program

!

!

Additional compiler optimizations

Inlining can have a significant impact on application performance. It’s most
dramatic effects tend to be on C++ codes which have many many small
functions.

Inlining can be done at several different points in the compilation.

-Minline/autoinline - during the regular compilation phase

-Mipa=inline - during the recompile for IPA

Inline libraries - created during the “make” process

!

!

Additional compiler optimizations

The auto inliner is for C/C++ only. This enables inlining functios
with the inline attribute. The suboptions control how the auto inliner
operates.

-M[no]autoinline
 Enable inlining of functions with the inline attribute.
 -Mautoinline is implied with the -fast switch. The options are:

 levels:n Inline up to n levels of function calls; the default
 is to inline up to 10 levels.

 maxsize:n Only inline functions with a size of n or less. The
 size roughly corresponds to the number of statements
 in the function, though the correspondence is not
 direct. The default is to inline functions with a
 size of 100 or less.

 totalsize:n
 Stop inlining when this function reaches a size of n.
 The default is to stop inlining when a size of 8000
 has been reached.

!

!

Use of -Minline/-Mextract to create an inline library. This works for
all languages(C/C++/FORTRAN). To create an inline library with
-Mextract do the following:
!
pgfortran -Mextract=lib:libfloat.il -c add.f90!
pgfortran -Mextract=lib:libfloat.il -c sub.f90!
pgfortran -Mextract=lib:libfloat.il -c mul.f90!
pgfortran -Mextract=lib:libfloat.il -c div.f90!
!
This creates an inline library name libfloat.il which can be used
during compliation as follows:
!
pgf90 -fast -Minline=libfloat.il -c -Minfo -Mneginfo !
 driver.f90!
!

Creating and Using Inline Libraries

!
The -Minfo messages for this compile are:

test:!
 14, Generated an alternate loop for the loop!
 Generated vector sse code for the loop!
 21, Generated an alternate loop for the loop!
 Generated vector sse code for the loop!
 22, add inlined, size=2, file add.f90 (2)!
 33, Generated an alternate loop for the loop!
 Generated vector sse code for the loop!
 34, sub inlined, size=2, file sub.f90 (2)!
 45, Generated an alternate loop for the loop!
 Generated vector sse code for the loop!
 46, mul inlined, size=2, file mul.f90 (2)!
 57, Generated an alternate loop for the loop!
 Generated vector sse code for the loop!
 58, div inlined, size=2, file div.f90 (2)!

As a result of inlining the functions add, sub, mul, and div the
compiler was then able to vectorize the loops that contained those
calls.

!

!

Use of -Mipa=inline to inline functions/subroutines. This works for all
languages(C/C++/FORTRAN). Create the library using the -Mipa=inline
option as follows:
!
pgfortran -Mipa=fast,inline -Minfo -Mneginfo -c add.f90!
pgfortran -Mipa=fast,inline -Minfo -Mneginfo -c sub.f90!
pgfortran -Mipa=fast,inline -Minfo -Mneginfo -c mul.f90!
pgfortran -Mipa=fast,inline -Minfo -Mneginfo -c div.f90!
!
ar cr libfloat.a add.o sub.o mul.o div.o!
!
This creates a library named libfloat.a which can be used during compliation
as follows(need to use the libinline suboption):
!
pgf90 -fast -Mipa=fast,inline,libinline -c -Minfo -Mneginfo !
 driver.f90!
pgf90 -fast -Mipa=fast,inline,libinline -o d driver.o !
 libfloat.a!
!

The -Minfo messages for this compile are:
!
test:!
 14, Generated an alternate loop for the loop!
 Generated vector sse code for the loop!
 21, Loop not vectorized/parallelized: contains call!
 33, Loop not vectorized/parallelized: contains call!
 45, Loop not vectorized/parallelized: contains call!
 57, Loop not vectorized/parallelized: contains call!
IPA: Recompiling driver.o: stale object file!
test:!
 0, Pointer c is only set via allocate statements!
 Pointer b is only set via allocate statements!
 Pointer a is only set via allocate statements!
 Function add does not write to any of its arguments!
 Function add does not reallocate any of its arguments!
 Function add does not reassociate any of its pointer arguments!
 Function add does not reallocate any global variables!
 Function add does not reassociate any global pointers!
 Function add does not read any global (common/module) variables!
 Function add does not write any global (common/module) variables!
 Function sub does not write to any of its arguments!
 Function sub does not reallocate any of its arguments!
 Function sub does not reassociate any of its pointer arguments!
 Function sub does not reallocate any global variables!
 Function sub does not reassociate any global pointers!
 Function sub does not read any global (common/module) variables!
 !

There are a number of compiler options that offer the possibility of
significant performance improvement at the expense of accuracy. If you are
having numerical issues, you might tighten some restrictions.

-Kieee – floating point strictly conforms to IEEE 754 standard. (off by default)

-Ktrap – turns on the behavior of the processor when exceptions occur

-Mdaz – mode to treat IEEE denormalized input numbers as zero

-Mflushz – set SSE to flush-to-zero mode (on with –fast)

-Mfprelaxed - perform certain floating point operations using relaxed precision when it
improves the speed. (This is the default mode on most other vendor’s compilers)

!

!

Compiler optimizations and accuracy

There are three general techniques for using more then one core for a
computation. Of course, on large XT6 machines, all codes implement
parallelism through MPI.

While most codes are MPI everywhere, some codes benefit by using the
shared memory on the node through either automagic parallelizing by the
compiler or/and OpenMP. OpenMP compilation is invoked with the –mp
flag, automagic parallelization with the –Mconcur flag.

Environment variables which can effect OpenMP performance include:

OMP_SCHEDULE – can be static, dynamic, guided or auto

OMP_NUM_THREADS – specifies the number of threads to use

OMP_STACKSIZE – override the default stack size for new threads.

!

!

Using more then one core

We developed Gnu compatible pgc++ (PGI’s current C++ compiler is call “pgcpp”
or “pgCC”) to become link compatible with the growing number of Gnu compiled
libraries available, including the Gnu STL and Boost.

The link compatibility changes include:

• mangled names
• run time type information
• virtual function tables
• subobject creation
• exception handling
• complex types
• gnu header file support

PGI’s new PGC++ compiler

There are currently some limitations to our link compatibility with GCC code:

 * Our long double size is not compatible. Users who call functions with
 long double parameters should compile all of that code with the same compiler.

 * pgc++ supports pthreads except for code compiled -mp (OpenMP).

 * Some GNU builtins introduced in 4.4.0 are not yet supported.

 * We use our math routines. We recommend users link with pgc++.

 * (C99) tgmath.h is not supported.

 * pgc++ objects are not compatible with pgcpp objects/libraries.

pgc++ supports gcc versions 4.1 through 4.5. The compiler installation process determines
which g++ version is installed on your machine, and configures your localrc file
accordingly. If you upgrade your gcc compiler, you will have to reinstall the PGI compilers.

We are currently at EDG release 4.1, and plan to have full C++11 support by mid 2013.

PGI OpenCL Framework for
Multi-core ARM

Build

PGCL unified compiler driver

OpenC
L

C/C99
C++

Host Code

GCC/G++
Android NDK-
r7b
API Level 10

PGI OpenCL
Compiler
Cortex-A9 +Neon
OpenCL builtins lib
LLVM 3.0 Backend
Custom Android
GAS

Device
Code

Execute

PGRUN remote execution script

ARM
Kernels

ARM
Binary

Data
Env

PGI OpenCL
Framework

PGCLSERV

OpenCL 1.1
Runtime

OpenC
L

ARM
Kernels

Dynamic
Compilation
Only

PGI OpenCL compiler features
  All OpenCL 1.1 embedded profile language features implemented

–  new vector/scalar data types
–  vector literals & components
–  Neon/SIMD code generation for operations on vector data types
–  function / addr space qualifiers
–  built-ins

  ATI and NVIDIA OpenCL SDK examples
–  21 NVIDIA SDK examples and 26 ATI SDK examples compile and run correctly with PGCL on Android/

ARM

  24 of 24 OpenCL 1.1 Conformance Test Suites passing on Android/
ARM; working on a formal compliance submission

  Supports both static compilation of OpenCL kernels, and native
dynamic compilation of kernels on Android/ARM devices

  DWARF generation for OpenCL kernels and basic debugging using
gdb/gdbserver

PGI OpenCL compiler driver
pgcl compiler driver

–  cmd-line interface to compile both OpenCL host code and statically
compiled OpenCL kernels

–  Minimizes changes to makefiles
–  Pre-configured to use GCC as OpenCL host compiler &

PGI OpenCL compiler for Multi-core ARM as a compute device
–  From the command line you can specify host compiler to use, pass

compile/link options, no need to specify location for OpenCL lib/
include

–  From command line you can specify options to be passed to the
OpenCL language compiler

% pgcl –-opencl-flags –O2 –o kernel.so –- kernel.cl
% pgcl -hostcomp=g++ -O1 –c hostcode.cpp
% pgcl –O2 –c hostcode.c

OpenCL compiler development approach
PGI OpenCL Front End & Optimizing Core

Cortex-A9 x86 Accelerators

Pre-production For validation purposes only

LLVM IR assembly file .ll

Potential development

PGI Optimizing Compilers infrastructure

Global Optimization InterProcedural Optz Auto-Parallel
OpenMP Parallel
Function Inlining

Dependence
Analysis
SIMD Vectorization
Loop Tiling/
Unrolling
Loop Interchg/
Fusion
Loop Peeling/
Altcode

OpenCL Intrinsics
DSP Intrinsics
SSE/AVX Intrinsics
Heterogeneous Targets
PGI Unified Binary

Profile Feedback
SW Prefetching
Alignment Optz
CCFF

C++ OpenCL C/C99 F95/03

PGI ILI LLVM IR

Local Regs
Global Regs
SIMD Vector
Peephole
32-bit only

x86
Local Regs
Global Regs
SIMD Vector
Peephole
32/64-bit

x64
Device
Mgmt
Kernel Gen
Data Ld/St
Local Alloc
AutoPar
AutoSIMD

x64+GP
U

Local Regs
VLIW
SW Pipe
AutoSIMD
Predication
16- & 32-bit

ST100
Local Regs
Global Regs
Scheduling
Peephole
AutoSIMD
Code Sel

ARM
Any other
LLVM target

Others

…

Cray provides some excellent tools for profiling using hardware counters.

PGI also provides some mechanisms for profiling of code. The simplest
method is to use pgcollect. No special build process is needed, although
compiling with –Minfo=ccff may provide useful feedback. This imbeds the
–Minfo messages into the executable which can then be viewed with the
performance profile.

Run your code as:

> pgcollect a.out!

Then view the results with the GUI tool - pgprof

> pgprof -exe a.out!

!

!

Profiling code

To get a general profile for an MPI code, you may wish to just profile one of
the MPI processes. Running the code is where things change. Instead of
launching the executable via mpiexec, launch a script instead:
 
 > mpiexec -np 2 ./doit  
 
The doit script for code compiled and linked with MPICH2 might look like the
following:
 
#!/bin/csh  
 
if ($PMI_RANK == 0) then  
 pgcollect ./test  
else  
 ./test  
endif  

After the run is complete, there will be only one pgprof.out file which can be
viewed using:
> pgprof -exe ./test pgprof.out

Profiling code

49

SMP Parallelization
  –Mconcur for auto-parallelization on multi-core

 Compiler strives for parallel outer loops, vector SSE inner loops

 –Mconcur=innermost forces a vector/parallel innermost loop

 –Mconcur=cncall enables parallelization of loops with calls

•  –mp to enable OpenMP parallel programming model

 OpenMP programs compiled w/out –mp “just work”

  –Mconcur and –mp can be used together!

50

Miscellaneous Optimizations (1)

  –Mfprelaxed – single-precision sqrt, rsqrt, div performed
 using reduced-precision reciprocal approximation

  –lacml and –lacml_mp – link in the AMD Core Math Library

  –Mprefetch=d:<p>,n:<q> – control prefetching distance,
 max number of prefetch instructions per loop

  –tp k8-32 – can result in big performance win on some
 C/C++ codes that don’t require > 2GB addressing;
 pointer and long data become 32-bits

51

Extending Host-side x64 Compilers to
Enable Incremental use of GPGPUs

  NVIDIA TESLA C1060
  Lots of available performance ~1 TFlops peak SP
  Programming is a challenge
  Getting high performance is lots of work

  NVIDIA CUDA programming model and C for
CUDA simplify GPGPU programming
  Much easier than OpenGL/DirectX, still challenging
  PGI CUDA Fortran simplifies it even further

  PGI Accelerator compilers do for GPU
programming what OpenMP did for Posix
Threads

Emerging Cluster Node Architecture
Commodity Multicore x86 + Commodity Manycore GPUs

CPU Cores GPU/Accelerator Cores

Abstracted x64+Fermi Architecture

1-54

NVIDIA Streaming Multiprocessor
features

  One Control Unit per SM
  SM operates in SIMT fashion by « Warps » of 32 threads
  Up to 32 Warps in flight
  Computation structured in 1D, 2D or 3D blocks of threads
  Blocks are organized in a 1D or 2D Grid

  16384 32-bits registers per SM
  No cost to tolerate heavily multi-threaded computations
  Hide long access time to device memory

  SM can execute up to 8 blocks
  Block execution can’t migrate from one SM to another

  16 KB of shared memory
  Must be managed as a software cache by the programmer

Today’s architectures

 Chip cores vector length
Sandybridge 12 4
Interlagos 8/16 2/4

MIC 32 8
Fermi 32 16

 (2 cycle instruction latency makes effective
 vector length 32)

CUDA Fortran
Implicit (through the language syntax) rather
then explicit (through an API)

As with CUDA-C, requires both host code and GPU code

(Almost) all Fortran 2003 language features are
Accessible through CUDA Fortran

Understanding of CUDA-C kernel launch mechanism
and underlying hardware architecture helpful*

*”Supercomputer is computing which requires the programmer to have an
intimate understanding of the underlying hardware architecture”

 - Paul Anderson

CUDA Fortran VADD Host Code

subroutine vadd(A, B, C)
 use cudafor
 use kmod
 real, dimension(:) :: A, B
 real, pinned, dimension(:) :: C
 real, device, allocatable:: Ad(:), Bd(:), Cd(:)
 integer :: N
 N = size(A, 1)
 allocate(Ad(N), Bd(N), Cd(N))
 Ad = A(1:N)
 Bd = B(1:N)
 call vaddkernel<<<(N+31)/32,32>>>(Ad, Bd, Cd, N)
 C = Cd
 deallocate(Ad, Bd, Cd)
 end subroutine

58

CUDA Fortran VADD Device Code

module kmod
 use cudafor
contains
 attributes(global) subroutine vaddkernel(A,B,C,N)
 real, device :: A(N), B(N), C(N)
 integer, value :: N
 integer :: i
 i = (blockidx%x-1)*32 + threadidx%x
 if(i <= N) C(i) = A(i) + B(I)
 end subroutine
end module

59

Building a CUDA Fortran Program

CUDA Fortran is supported by the PGI Fortran compilers when the filename
uses a CUDA Fortran extension. The .cuf extension specifies that the file is
a free-format CUDA Fortran program;

The .CUF extension may also be used, in which case the program is processed
by the preprocessor before being compiled.

To compile a fixed-format program, add the command line option –Mfixed.
CUDA Fortran extensions can be enabled in any Fortran source file by adding

the –Mcuda command line option.

Most F2003 features should work in CUDA Fortran.

There is a (CUDA-like) API to access features

–  Streams supported through API rather then language

Accelerator Directives for flat
performance profile codes

Source code directives provide a second method
for programming GPU’s.

The goal is to move date to the GPU and compute on
the GPU until off-node communications is required

Directives allow for flexibility “under the hood”

Allow for single program source – similar to OMP

Accelerator VADD Device Code
(two dimensional array example)

module kmod
 contains
 subroutine vaddkernel(A,B,C)
 real :: A(:,:), B(:,:), C(:,:)
!$acc region
 C(:,:) = A(:,:) + B (:,:)

 <lots of other code to do neat stuff>
 <special code to do even neater stuff>

!$acc end region
 end subroutine
end module

62

!$acc region clauses can surround many individual
loops and compute kernels. There is no implicit
GPU/CPU data movement within a region

Compiling the subroutine:
PGI$ pgfortran -Minfo=accel -ta=nvidia -c vadd.F90

vaddkernel:
 5, Generating copyout(c(1:z_b_14,1:z_b_17))
 Generating copyin(a(1:z_b_14,1:z_b_17))
 Generating copyin(b(1:z_b_14,1:z_b_17))
 Generating compute capability 1.0 binary
 Generating compute capability 1.3 binary
 Generating compute capability 2.0 binary
 6, Loop is parallelizable
 Accelerator kernel generated
 6, !$acc do parallel, vector(16) ! blockidx%x threadidx%x
 !$acc do parallel, vector(16) ! blockidx%y threadidx%y
 CC 1.0 : 7 registers; 64 shared, 8 constant, 0 local memory bytes; 100% occupancy
 CC 1.3 : 8 registers; 64 shared, 8 constant, 0 local memory bytes; 100% occupancy
 CC 2.0 : 15 registers; 8 shared, 72 constant, 0 local memory bytes; 100% occupancy

Tuning the compute kernel
Accelerator VADD Device Code

module kmod
 contains
 subroutine vaddkernel(A,B,C) ! We know array size
 real :: A(:,:), B(:,:), C(:,:)! dimension(2560,96)
 integer :: i,j
!$acc region
!$acc do parallel
 do j = 1,size(A,1)
!$acc do vector(96)
 do i = 1,size(A,2)
 C(j,i) = A(j,i) + B (j,i)
 enddo
 enddo
!$acc end region
 end subroutine
end module

 64

Keeping the data on the GPU
Accelerator VADD Device Code

module kmod
 contains
 subroutine vaddkernel(A,B,C)
 real :: A(:,:), B(:,:), C(:,:)
!$acc reflected (A,B,C)
!$acc region
 C(:,:) = A(:,:) + B (:,:)
!$acc end region
 end subroutine
end module

65

The !$reflected clause must be visible to the
caller so it knows to pass pointers to arrays on
the GPU rather then copyin actual array data.

Compiling the subroutine:

PGI$ pgfortran -Minfo=accel -ta=nvidia -c vadd.F90
vaddkernel:
 5, Generating reflected(c(:,:))
 Generating reflected(b(:,:))
 Generating reflected(a(:,:))
 6, Generating compute capability 1.0 binary
 Generating compute capability 1.3 binary
 Generating compute capability 2.0 binary
 7, Loop is parallelizable
 Accelerator kernel generated
 7, !$acc do parallel, vector(16) ! blockidx%x threadidx%x
 !$acc do parallel, vector(16) ! blockidx%y threadidx%y
 CC 1.0 : 11 registers; 80 shared, 8 constant, 0 local memory bytes; 66% occupancy
 CC 1.3 : 11 registers; 80 shared, 8 constant, 0 local memory bytes; 100% occupancy
 CC 2.0 : 17 registers; 8 shared, 88 constant, 0 local memory bytes; 100% occupancy

Allocating/Deallocating GPU Arrays
Accelerator VADD Device Code

subroutine vadd(M,N,C)
 use kmod ! Visibility of !$acc reflected
 real, dimension(:,:) :: A, B, C
 integer :: N
!$acc mirror(A,B) !device resident clause in 1.3
 allocate(A(M,N),B(M,N))
! C has been mirrored and allocated previously
 A = 1.0
 B = 2.0
!$acc update device(A,B,C)
 call vaddkernel (A,B,C)
 call kernel2 (A,B,C)
 call kernel3 (A,B,C)
 call kernel4 (A,B,C)
!$acc update host(C)
 deallocate(A, B)
 end subroutine

 67

subroutine timestep(Input,Result,M,N)
 use kmod ! Make reflected var’s visible
 real, dimension(M,N) :: Input,Result
!$acc reflected (Input,Result)
 integer :: M,N
 real, allocatable :: B,C,D
 dimension(:,:) :: B,C,D
!$acc mirror(B,C,D)
 allocate(B(M,N),C(M,N),D(M,N))
 B = 2.0
!$acc update device(Input,B)
 call vaddkernel (Input,B,C)
 ...
 call kernel2 (C,D)
 ...
 call kernel3 (D,Result)
!$acc update host(Result)
 deallocate(B,C,D)
end subroutine

module kmod
Contains
!
 subroutine vaddkernel(A,B,C)
 real :: A(:,:),B(:,:),C(:,:)
!$acc reflected (A,B,C)
!$acc region
 C(:,:) = A(:,:) + B (:,:)
!$acc end region
 end subroutine
!
 subroutine kernel2(C,D)
 real :: C(:,:),D(:,:)
!$acc reflected (C,D)
!$acc region
 < compute-intensive loops >
!$acc end region
 end subroutine
 ...
end module

Using GPU device-resident data
across subroutines

CPU Code GPU Code

% pgfortran -help -ta
-ta=nvidia:{analysis|nofma|[no]flushz|keepbin|keepptx|keepgpu|maxregcount:<n>|
 c10|cc11|cc12|cc13|cc20|fastmath|mul24|time|cuda2.3|cuda3.0|
 cuda3.1|cuda3.2|cuda4.0|[no]wait}|host
 Choose target accelerator
 nvidia Select NVIDIA accelerator target
 analysis Analysis only, no code generation
 nofma Don't generate fused mul-add instructions
 [no]flushz Enable flush-to-zero mode on the GPU
 keepbin Keep kernel .bin files
 keepptx Keep kernel .ptx files
 keepgpu Keep kernel source files
 maxregcount:<n> Set maximum number of registers to use on the GPU
 cc10 Compile for compute capability 1.0
 ...
 cc20 Compile for compute capability 2.0
 fastmath Use fast math library
 mul24 Use 24-bit multiplication for subscripting
 time Collect simple timing information
 cuda2.3 Use CUDA 2.3 Toolkit compatibility
 ...
 cuda4.0 Use CUDA 4.0 Toolkit compatibility
 [no]wait Wait for each kernel to finish; overrides nowait clause
 host Compile for the host, i.e. no accelerator target

Compute region directive clauses for tuning data
allocation and movement

Clause Meaning
if (condition) Execute on GPU conditionally

copy (list) Copy in and out of GPU memory

copyin (list) Only copy in to GPU memory

copyout (list) Only copy out of GPU memory

local (list) Allocate locally on GPU

deviceptr (list) C pointers in list are device pointers

update device (list) Update device copies of the arrays

update host (list) Update host copies of the arrays

Loop directive clauses for tuning
GPU kernel schedules

Clause Meaning
parallel [(width)] Parallelize the loop across the multi-

processors
vector [(width)] SIMD vectorize the loop within a multi-

processor
seq [(width)] Execute the loop sequentially on each

thread processor
independent Iterations of this loop are data independent

of each other
unroll (factor) Unroll the loop factor times

cache (list) Try to place these variables in shared
memory

private (list) Allocate a copy of each variable in list for
each loop iteration

Timing / Profiling
How long does my program take to run?

  time ./myprogram
 How long do my kernels take to run?

 pgfortran –ta=nvidia,time
 Environment variables:
export ACC_NOTIFY=1
export NVDEBUG=1
cuda profiler settings
#export CUDA_PROFILE=1
#export CUDA_PROFILE_CONFIG=cudaprof.cfg
#export CUDA_PROFILE_CSV=1
#export CUDA_PROFILE_LOG=cudaprof.log

Compiler-to-Programmer Feedback
Incremental porting/tuning for GPUs

HPC
Code

PGI
Compiler

x64

CCFF

Trace PGPROF

HPC
User

Acc
+

Directives, Options, RESTRUCTURING

Restructuring for
accelerators will
be more difficult
than vectorization

Performance

HPC
User

Obstacles to GPU code generation
Loop nests to be offloaded to the GPU must be rectangular
At least some of the loops to be offloaded must be fully data parallel with

no synchronization or dependences across iterations
Computed array indices should be avoided

All function calls must be inlined within loops to be offloaded

In Fortran, the pointer attribute is not supported; pointer arrays may be
specified, but pointer association is not preserved in GPU device
memory

In C
–  Loops that operate on structs can be offloaded, but those that operate on

nested structs cannot

–  Pointers used to access arrays in loops to be offloaded must be declared with
C99 restrict (or compiled w/-Msafeptr, but it is file scope)

–  Pointer arithmetic is not allowed within loops to be offloaded

The programming model

The directive based models apply to user-directed
accelerator programming, where the user specifies the
regions of a host program to be targeted for offloading to
an accelerator device. The remained of the program will
be executed on the host.

It’s important for the programmer to understand where the

data is located that is being computed on. Depending on
how data is allocated on the accelerator, there may be
two copies of the same array – one located on the
accelerator and one on the host.

The programming model

The accelerator is a slave processor, the host is the
master processor. The host sends work to the
accelerator and waits* for the accelerator to complete
the work.

Sending work to the accelerator is independent from

sending data to the accelerator.

The programmer must have a mode for managing the

program data as well as the program computation.

*various methods of waiting are defined by the model

The programming model

The device execute parallel regions which typically
contain work sharing loops* or kernel regions**.

The host:

–  Allocates memory on the device
–  Transfers data to the device
–  Sends the code to the accelerator, passes device arguments

to the parallel region, queues the device code, and waits for
completion

–  Transfers the data back to the host
–  Deallocates the device memory

*from the Cray GPU programming mode
**from the PGI Accelerator model

The host+ACC memory model
Accelerator memory may be completely separate from

the host memory, as is the case with most current
GPUs

The host may not be able to read or write device
memory directly because it is not mapped into the
host’s virtual memory space.

All data movement must be done by the host via
runtime libraries

Two primary programmer concerns:
–  Memory bandwidth between host and device memory

determines the amount of computation that must be
available to make running on the accelerator profitable

–  The limited device memory may prohibit offloading regions of
code that operate on very large arrays

The accelerator memory model

Some accelerators implement a weak memory model. The do not
support coherence between operations executed by different
computation units on the accelerator.

Even on the same computation unit, memory coherence is only
guaranteed when the memory operations are separated by an
explicit barrier.

Compilers can warn about some of these situations, but may not be
able to determine all. Programmer beware!

Some accelerators have memory caches – software managed,
hardware managed, or hardware managed and constrained,
such as read only caches. The accelerative directive model
allows the compiler, with hints from the programmer, the
manage these caches rather then requiring the programmer to
explicit manage them.

Directive format

In C and C++, OpenACC directives are specified with the
#pragma mechanism

 #pragma acc directive-name [clause[[,]clause]…] new-line

In Fortran, OpenACC directives in free form source files:
!$acc directive-name [clause[[,] clause]…]

  In Fortran, OpenACC directives in fixed form source
files:

!$acc directive-name [clause[[,] clause]…]
c$acc directive-name [clause[[,] clause]…]
*$acc directive-name [clause[[,] clause]…]

Internal control variables

An OpenACC implementation acts as if there are internal
control variables that control the behavior of the
program.

These can be by queried and set by the program or
programmer.

 ICV Ways to modify Ways to retrieve

acc-device-type-var ACC_DEVICE_TYPE acc_get_device_type
acc_set_device_type

acc-device-num-var ACC_DEVICE_NUM acc_get_device_num
acc_set_device_num

Primary OpenACC constructs

!$acc parallel
When the program encounters an accelerator parallel construct, gangs

of workers are created and execute the accelerator parallel region.
Once the gangs are created, the number of gangs and the number
of workers in each gang remain constant for the duration of the
region

!$acc kernels
This construct defines a region of the program that is to be compiled

into a sequence of kernels for execution on the accelerator. The
compiler will break the code into a sequence of accelerator kernels.
Typically, each loop nest will be a distinct kernel.

The kernels construct is closely related to the current PGI Accelerator
directive model.

OpenACC compilers

The OpenACC standard is being implemented by PGI,
Cray, and CAPS.

PGI’s current plan is to release an OpenACC compiler

once the complete 1.0 standard is fully implemented in
the compiler.

Until then, users are encouraged to continue with the PGI
Accelerator model as this is very closely related to the
kernels model, and a transition from PGI to OpenACC
should be relatively straight forward.

Implicit Programming of Accelerators

The PGI Accelerator directive based approach to
programming.

Maximize the work that the compiler is able to do
Concentrate programmer efforts on performance of

kernels rather then management and placement
of data

The OpenACC “parallel” method put more
responsibility on the programmer for data
placement

PGI Accelerator -> OpenACC

region -> kernels
region for -> kernels loop
region do -> kernels loop
data region -> data

local() -> create()
parallel() -> gang()

PGI Accelerator -> OpenACC

PGI Acclerator uses mirror and reflect for data
placement on the GPU. Visibility of these
directives by caller at compile time (compiler
time check)

OpenACC uses present for data placement. There
is no visibility of present at compile time, so it
requires a runtime check. (IPA may pick this up
in the future to eliminate runtime check?)

PGI Accelerator -> OpenACC

C subarrays go from [lowerbound:upperbound]
 to [lowerbound:length]
Subarrays in data clauses must be contiguous
Add reduction clauses in loops and regions
Remove cache clauses
Replace reflect with present
Remove mirror

Getting started with a real code

Is the code already well structured to take
advantage of an accelerator ? Is there sufficient
parallelism in the code?

What is the performance profile of the code?

What parts of the code can run on the accelerator?

Profile the code

Are the results correct?

How do you determine the correctness of the
original code?

Having a graphical way of evaluating code results
is highly encouraged

How correct is correct? GPU results will be
different from CPU results. You need to have a
method for determining how big a delta is
acceptable to you

Debug by comparing intermediate output of
original code to the results on the GPU

VH-1 code output

Start by modifying the Makefile
Specify search path for subroutines that perform 1D ppmlr

hydrodynamics
VPATH = ../PPMLR

System-dependent parameters

F90 FORTRAN 90 Compiler

LDR Program to load the objects, typically the same as F90

LDFLAGS Flags to pass to the compiler during linking

LIBS A list of libraries to link, normally only netCDF

F90 = pgf90

FFLAGS = -c -fast -ta=nvidia,nofma -Minfo=accel
LDR= pgf90

LDRFLAGS= -ta=nvidia
LIBS=

Move most costly routine to GPU

94

subroutine parabola(nmin, nmax, para, a, deltaa, a6, al, flat)
! GLOBALS
use sweepsize
IMPLICIT NONE
! LOCALS
integer :: n, nmin, nmax
real :: onemfl
real, dimension(maxsweep) :: a, deltaa, a6, al, flat, da, ar, diffa, scrch1,
scrch2, scrch3
real, dimension(maxsweep,5) :: para
!$acc region
…
!$acc end region
eeturn
end !subroutine parabola

Parabola.F90 contains no I/O, MPI, or subroutine calls

Compiling the subroutine: PGI$ make parabola.o
pgf90 -c -fast -ta=nvidia -Minfo=accel ../PPMLR/parabola.f90
parabola:
 23, Generating copyout(deltaa(nmin:nmax))
 Generating copyout(a6(nmin:nmax))
 Generating copyout(scrch1(nmin:nmax))
 Generating copyout(scrch2(nmin:nmax))
 Generating copyout(scrch3(nmin:nmax))
 Generating copyout(diffa(nmin-2:nmax+1))
 Generating copyout(da(nmin-1:nmax+1))
 Generating copyout(al(nmin:nmax+1))
 Generating copyout(ar(nmin-1:nmax))
 Generating copyin(para(nmin-1:nmax+1,1:5))
 Generating copyin(a(nmin-2:nmax+2))
 Generating copyin(flat(nmin:nmax))
 Generating compute capability 1.0 binary
 Generating compute capability 1.3 binary
 Generating compute capability 2.0 binary
 25, Loop is parallelizable
 Accelerator kernel generated
 25, !$acc do parallel, vector(256) ! blockidx%x threadidx%x
 Cached references to size [257] block of 'a'
 CC 1.0 : 5 registers; 1092 shared, 4 constant, 0 local memory bytes; 100% occupancy
 CC 1.3 : 5 registers; 1092 shared, 4 constant, 0 local memory bytes; 100% occupancy
 CC 2.0 : 10 registers; 1036 shared, 68 constant, 0 local memory bytes; 100% occupancy

Run the code, check results

Tuning the compute kernel
Use loop directives

module kmod
 contains
 subroutine vaddkernel(A,B,C) ! We know array size
 real :: A(:,:), B(:,:), C(:,:)! dimension(2560,96)
 integer :: i,j
!$acc region
!$acc do parallel
 do j = 1,size(A,1)
!$acc do vector(96)
 do i = 1,size(A,2)
 C(j,i) = A(j,i) + B (j,i)
 enddo
 enddo
!$acc end region
 end subroutine
end module

97

Loop directive clauses for tuning
GPU kernel schedules

Clause Meaning
parallel [(width)] Parallelize the loop across the multi-

processors
vector [(width)] SIMD vectorize the loop within a multi-

processor
seq [(width)] Execute the loop sequentially on each

thread processor
independent Iterations of this loop are data independent

of each other
unroll (factor) Unroll the loop factor times

cache (list) Try to place these variables in shared
memory

private (list) Allocate a copy of each variable in list for
each loop iteration

Run the code, check results

Can any of the data movement be
optimized?

Look at the –Minfo=accel messages for clues to
see if any of the compiler generated data
movement is non-optimal.

Insert directives to override compiler generated
data movement.

Best solution: keep all data on the GPU and only

move off for I/O and message passing

Using GPU device-resident data
across subroutines

subroutine timestep(Input,Result,M,N)
 use kmod ! Make reflected var’s visible
 real, dimension(M,N) :: Input,Result
!$acc reflected (Input,Result)
 integer :: M,N
 real, allocatable :: B,C,D
 dimension(:,:) :: B,C,D
!$acc mirror(B,C,D)
 allocate(B(M,N),C(M,N),D(M,N))
 B = 2.0
!$acc update device(Input,B)
 call vaddkernel (Input,B,C)
 ...
 call kernel2 (C,D)
 ...
 call kernel3 (D,Result)
!$acc update host(Result)
 deallocate(B,C,D)
end subroutine

module kmod
Contains
!
 subroutine vaddkernel(A,B,C)
 real :: A(:,:),B(:,:),C(:,:)
!$acc reflected (A,B,C)
!$acc region
 C(:,:) = A(:,:) + B (:,:)
!$acc end region
 end subroutine
!
 subroutine kernel2(C,D)
 real :: C(:,:),D(:,:)
!$acc reflected (C,D)
!$acc region
 < compute-intensive loops >
!$acc end region
 end subroutine
 ...
end module

CPU Code GPU Code

Compute region directive clauses for tuning data
allocation and movement

Clause Meaning
reflected(list) Arguments already on GPU

copy (list) Copy in and out of GPU memory

copyin (list) Only copy in to GPU memory

copyout (list) Only copy out of GPU memory

local (list) Allocate locally on GPU

mirror (list) Allocation state on GPU = CPU

update device (list) Update device copies of the arrays

update host (list) Update host copies of the arrays

Running the rest of the code

Now that all of the arrays live on the GPU, go
through the code and put !$acc region’s in.

Subroutine calls cannot be in regions
Moving data back to host:

–  I/O cannot be in regions
– MPI message passing cannot be in regions

Code inside of region must be parallel
– Non-parallel code in !$acc scalar regions

Timing / Profiling
How long does my program take to run?

  time ./myprogram
 How long do my kernels take to run?

 pgfortran –ta=nvidia,time
 Environment variables:
> export ACC_NOTIFY=1
> export NVDEBUG=1
cuda profiler settings
 > export CUDA_PROFILE=1
 > export CUDA_PROFILE_CONFIG= ~/cudaprof.cfg
 > export CUDA_PROFILE_CSV=1
 > export CUDA_PROFILE_LOG= ~/cudaprof.log

How did we make Vectors Work?
Compiler-to-Programmer Feedback – a classic “Virtuous Cycle”

HPC
Code CFT

Cray

Vectorization
Listing

Trace profiler

HPC
User
HPC
User

This Feedback Loop
Unique to Compilers!

Performance

We can use this same methodology to enable effective
migration of applications to Multi-core and Accelerators

Directives, Options, Restructuring

Compiler-to-Programmer Feedback
Incremental porting/tuning for GPUs

HPC
Code

PGI
Compiler

x64

CCFF

Trace PGPROF

HPC
User

Acc
+

Directives, Options, RESTRUCTURING

Restructuring for
Accelerators will
be More Difficult
than vectorization

Performance

HPC
User

Common Compiler Feedback Format

Source
File

Object
File

.CCFF

Executable
File

.CCFF

Compiler Linker pgextract

pgprof

pgprof.out
File

CCFF
File

run
program

http://www.pgroup.com/ccff

PGPROF with CCFF Messages

General Compiler Feedback

How the function was compiled
Interprocedural optimizations
Profile-feedback runtime data

– Block execution counts
–  Loop counts, range of counts

Compiler optimizations, missed opportunities
– Vectorization, parallelization
– Altcode, re-ordering of loops, inlining
– X64+GPU code generation, GPU kernel mapping,

data movement
Compute intensity – important for GPUs & Multi-core

OpenMP and Accelerator Directives
program Main
use accel_lib
 ...
!$omp parallel private(ilo, iho, k, flux) num_threads(2)
 do iter = 1, 100
 call acc_set_device_num(omp_get_thread_num(), ACC_DEVICE_NVIDIA)
 if (first) then
 dkm = km/omp_get_thread_num()
 ilo = dkm *omp_get_thread_num() + 1
 if (omp_get_thread_num() + 1 == omp_get_num_threads()) then
 iho = km
 else
 iho = dkm*(omp_get_thread_num() + 1)
 endif
 endif
!$acc region
 do k=ilo,iho
 ...
 end do
!$acc end region
!$omp end parallel
 end do
end program Main

Reference Materials

  PGI Accelerator programming model
–  http://www.pgroup.com/lit/whitepapers/pgi_accel_prog_model_1.3.pdf

  CUDA Fortran
–  http://www.pgroup.com/lit/whitepapers/pgicudaforug.pdf

  CUDA-x86
–  http://www.pgroup.com/resources/cuda-x86.htm

  Understanding the CUDA Threading Model

–  http://www.pgroup.com/lit/articles/insider/v2n1a5.htm

