PGI° Compilers and Tools on the
ORNLTitan System

16 APR 12
OLCF Spring Training and Users' Meeting

Dave Norton
dave.norton@pgroup.com
530.544.9075

WWW.pgroup.com

ol Portland Grou -

T ———
PGl ACC Workstation / Server / CDK

Linux, Windows, MacOS, 32-bit, 64-bit, AMDG64, Intel 64, Nvidia
UNIX-heritage Command-level Compilers + Graphical Tools

Compiler Language Command

PGFORTRAN™ | Fortran 77, Fortran 95, pgfortran
Fortran 2003, CUDA pgfo0
Fortran 0gf77

PGCC® ANSI C99, K&R C and pgcc
GNU gcc Extensions

PGC++® ANSI/ISO C++ pgCC
GNU compatible C++ pgc++

PGDBG® MPI1/OpenMP debugger pgdbg

PGPROF® MP1/OpenMP/ACC profiler | pgprof

~

. pGI WORKSTATION

“ Parallel Fortran, C and C++

Self-contained OpenMP/MPI/Accelerator
Parallel SW Development Solution

Session Edit View Bookm DEpro BE

grandcanyon:%

File Settings Processes Yiew Sort Search Help
baroclinic. = G
) 1B S8 @ <~ - [Fing: F] & @ [Hotspot:Seconds 7] & % &°
PGDB e Portland Group rof.4p.out ini
File Settings Data Window Control . X o
o= > f_'l a F3 f.'ﬂ a Line compilefbaroclinic.f90 Scale Seconds
.J 0 p v ra T
. . ®© 1303| FT=c0 =
(iThread Grid | summary | ¢ 1304
= 1305 hid = this_block¥local_id
A Line n 1306
1307 |mmm . =
1308 |L —
1308 |l horizontal diffusion HDiff(T)
1310 |t e
1311 (e e e
= 1312
1313 call hdifft{k, WORKN, TMIX, UMIX, WMIX, this_block) -
1314
@© 1315 | FT = FT + WORKN | 0.5 W 0.024242 -
1316
@ 1317 it (1diag_glohal) then
- ® 1318 it (partial_hottom_cells) then
®© 1319 do n=1,nt
®©® 1320 where (k <= KMT(:,:,hid)) & - -
1321 DIAG_TRACER_HDIFF_2D(:,:,n,hid) = & -
1322 DIAG_TRACER_HDIFF_2D(:,:,n,hid}) & hdll N
[[l [»]
Sort By Lin
R
1. Intensity = 0.40
! 2. Loop notwvectorized: multiple blocks
% bor - Vectorization Hint: Try splitting the loops or converting conditional blocks into a simpler form
: yclinic_tracer_update_ in file compile/baroclinic.f90
|| #s44: .
compiled
|podby € -
|| #s44: - - -
{lcraa Parallelism 1 Histogram m System Information J D
= “3233:[Profiled: ./pop on Tue Jun 30 12:27:16 PDT 2009 | Profile: ./pgprof.4p.out
] I F | 7 Eiff=-¢° SSCESES SSenEes SNeRSes SKERSeS SespSas e
-] lﬁ:} . podhg [al1] O> vI

| Stopped at line 544 {address 0x4148e0) in file fhome/miles/P6/demos/POP_WS_Linux/pop/pai/demo_pgdba/compile/baroclinic.f90 I @

‘g POP {Debugging) - Microsoft Yisual Studio {Administrator)

File Edit Vew Project Build Debug Tools Test Window Help

B-rggtaiEm-SHdd 2R (9-0-8-5) ow

b ou @ @ SE(E % Hex %@ B : Process: [3272] POP.exe

solvers.fo0.” grid.f0 | “baroclinic.F90 | 'POP.Fa0 |

-|[win32

-||

~ Thread: [3080]0

L 4 StackFrame: horiz_grid_internal{) Line 958 in ~

=] B3

| [/ BEE-

Solution Explore

942
943 do j = 1,ny_global
944 ULAT G(:,3) = (-90.0_r8 + j*dlat)/radian
945 enddo
946
947 e e
945; !
949 | gcalculate grid spacings and other guantities
950: ! compute here to avoid bad ghost cell wvalues due to dropped land
951: ! blocks
as5z2; !
L B T Tt et
954
955 else ! not latlon only
956
957 '$OMP PARALLEL DO PRIVATE(this block, i, j, ig, jg, lathalf)
@ 958 do n=1,nblocks_clinic
959
960 this block = get_block(blocks_clinic(n),n)
961
962 do j=1,ny_block
963 Jjg = this_bhlock%]_globi])
964 Jrwl = jg - 1
965 if (jwl < 1) jml = ny global
966
967 do i=1,nx_block
968 15%%
969 t#*% palcoulate grid lengths
970 15%%
971
972 HTN (i, j,n) = dlon*radius/radian ! convert to cum
973 HTE(i,j,n) = dlat*radius/radian ! convert to cm
‘I ~mma TTTITO 22 PORRP Y PRSP [, RSP PR PP NP PR 1 - mams

D Solutlon 'POP' (3 projects) -
= netedf_c
[Header Files
[Resource Files
[source Files
= a netcdf_fa0
3 Include Files
[C1 Resource Files
[[Source Files
- £ad netedf.f90
fa typesizes.Fo0
= (2 POP
[Include Files
[Resource Files
[=l- [Source Files
----- 7ad advection.f90
----- 7aq baroclinic.F90
----- 7ad barotropic.f90
»»»»» 7aq blacks.f90
vvvvv 7ad boundary.f90
----- raq broadcast.fao
----- 7ad communicate.f30
----- 7ad constants.f90
vvvvv fad current_meters.fo0
----- Fgﬂ diagnostics.fa0
..... raq distribution.F90
----- rad domain.fo0
- Fag domain_size.F30
----- rad drifters.fo0
----- rad exit_mod.f90
----- rad forcing.f90
»»»»» faq forcing_ap.fo0
vvvvv faq forcing_coupled.fan
----- faq forcing_pt_interior.f90

Fan

£ad Farcina_c_inkari

| i | | 1D | Category | MName | Location | Priority | Suspend ~ | | MName Language =
= 3080 || worker Thread 1] horiz_arid_internal Mormal 0 @ horiz_grid_internal() Line 958 in "grid.F90" address: 0x48DSEA Fortran
3804 || Worker Thread 1 horiz_grid_internal Mormal 0 init_grid2() Line 400 in "grid.F90" address: 0x487CC1 Fortran
> 4092 || worker Thread 2 Mormal 0 initialize_pop() Line 146 in "initial.F90" address: 0x4F1498 Fortran
4040 || Worker Thread 3 Mormal 0 pop() Line 79 in "POP.F90" address: 0xS1E94F Fortran

|EAutos Ia Locals IgProcesses | 15} Threads |] Watch 1

Ready

|&Call Stack |a Breakpoints ID Command Window IEImmediate Window |E Output |

Ln 951

Col2 ch2

T
PGI® Compilers & Tools Positioning

U PGI compilers & tools are dedicated to scientific computing,
where utilization of latest architecture features and speed on
generated code is #1 criteria

* Not intended to replace infrastructure compilers (GCC/VC++)
O HPC-focused compilers & tools technologies

= State of the art local, global and inter-procedural optimizations
» Automatic vectorization and SIMD/SSE code generation

» Support of OpenMP 3.0 standard

= Automatic loop parallelization

» Profile-guided optimization

= PGI Unified Binary technology to target different ‘flavors’ of same
architecture or heterogeneous architectures

» Graphical tools to debug/profile multithreaded/multiprocess hybrid
applications

I ——
Compiling codes with PGI

To load the PGI compiler on the ORNL systems

> Module load PrgEng-pgi/4.0.30

Cray supplies wrappers to all of the compilers on the system so that the Fortran
compiler is always invoked as “ftn”, the C compiler as “cc”, and C++ as “CC”
regardless of the actual compile vendor being used.

> module list
pgi/12.2.0

> ftn -V foo.f -0 foo

OrREEHHA the - Ddrdpifd-Ri&SARAREp S AR Bur F8u B L84S €4ay
library wrappers for use in the ONRL system

“"The PortlndGroup

e ——
Using a different version of PGI

On the Cray, to change the version of the PGI compiler, you need to switch
modules:

> module switch pgi/10.2.0 pgi/12.2.0
> ftn -V foo.f -o foo

pgf90 12.2-0 64-bit target on Linux -tp bulldozer

On your workstation, if you have multiple versions of PGI installed, you can
invoke a different version of the compiler through the compile driver:

> pgfortran -V9.0-4 hello.f -o hello

pgfortran 9.0-4 64-bit target on Linux -tp bulldozer

"The Portland Group

T —
Changing target processors

The PGI compile driver by default compiles for the processor on which the
compilation takes place. The driver allows you to easily cross compile for
another target processor:

> pgfortran -V foo.f -o foo -tp istanbul-64

pgfortran 10.4-0 64-bit target on Linux -tp istanbul-64

The Cray compile driver now also allows this capability.
> pgfortran -V -c foo.f -tp istanbul-64

> ftn -V foo.o0 -o foo -tp istanbul-64

“ The Portland Grou -

Basic levels of scalar optimization

> ftn foo.f -o foo

Invoking the compiler with no flags for optimization will set the scalar
optimization level to 1 if —g is not specified.

> ftn -g foo.f -o foo

Invoking the compiler with no flags for optimization will set the scalar
optimization level to 0 if —g 1s specified.

> ftn -0 foo.o0 -0 foo

Invoking the compiler with the -O flag for optimization will set the scalar
optimization level to 2 regardless of whether —g 1s also specified.
Optimization levels O0 through O4 perform increasing aggressive scalar

Basic levels of vector optimization

> ftn -fast foo.f -o foo

Invoking the compiler with the —fast (or —fastsse) flag sets common
optimizations which include:

-02

-Munroll=c:1

-Mnoframe (gives the compiler another register)
-Mlre

-Mautoinline

-Mvect=sse <= this is the vectorizer
-Mscalarsse

-Mcache align

-Mflushz

-Mpre

The PortlandGroup

T ——
Basic levels of vector optimization

Vectorization is the key to getting the best performance out of floating point intense
codes. Current processors are capable of operating on 128 bits at a time. This
means they can do 2 — double precision operations or 4 — single precision operations
at the same time — as long as those operations can all be described by a single
instruction (i.e. a vector operation).

AVX —used on Bulldozer and Sandybridge - increases this to 256 bit wide units

The vectorizer performs the following operations:

Loop interchange and loop splitting

Loop fusion

Memory-hierarchy (cache tiling) optimizations
Generation of SSE instructions and prefetch instructions
Loop peeling to maximize vector alignment

Alternate code generation

T
What is AVX?

Before VEX 255 128 127 0
movsd (%rax, %r9), %xmmO o S
movsd (%rax, %r8), Y%oxmm-1 ymme
movsd %xmm1, %xmm2 00 ___________________ ” mm1 _________
addsd %xmm0, %xmm?2 ymm!
After VEX:
0.0 xmm14

vmovsd (%rax, %r9), %oxmmO0 | _____ | .

mm14
vmovsd (%rax, %r8), Yoxmm11 ’
vaddsd %xmmO0, %xmm1, %xmm?2 o S

"~ The Portland Group

vbroadcast
vmovapd

vmulpd

vmovapd

vaddpd
vmovapd

a

x[3]

x[2]

x[1]

x[0]

a*x[3]

a*x[2]

a*x[1]

a*x[0]

y[3]

y[2]

y[1]

y[@]

a*x[3]+y[3]

a*x[2]+y[2]

a*x[1]+y[1]

a*x[0]+y[@]

y[3]

y[2]

y[1]

y[@]

I ——
Know Your Target Processors

AMD Bulldozer PGl target processor flag : —tp bulldozer
Specify size of SIMD instructions : -Mvect=simd:[128]|256]

Enable/Disable generation of FMA instructions: -[no]Jfma

Running FMA4 code on anything but Bulldozer will yield:
lllegal instruction (core dumped)

Make use of PGI Unified Binary technology to produce optimal code
paths for multiple x64 architectures within a single executable.

‘The Portland Group

I
vzeroupper instruction generation

This instruction zeroes out the upper 128 bits of all the ymm registers
and marks them as clean.

If you mix 256-bit AVX instructions with legacy SSE instructions that
use xmm registers, you will incur performance penalties of roughly
one hundred cycles at the transition points.

The PGI compiler currently generates the vzeroupper instruction right
before a call is made. This is because we cannot be sure how the
callee has been compiled.

When compiling functions that perform AVX instruction sequences, the
PGl compiler generates a vzeroupper instruction right before
returning, again because we cannot make assumptions about how
the caller was compiled.

ix{ PGDBG Program I/0

PGDBG Rel Dew-r71625 xB86-64 (Cluster, 256 Process}
Copyright 1989-2000, The Portland Group, Inc, All Rights Reserwved,

=10l x|

Eash—4.1$ pgdbg ./swim

Copyright 2000-2011, STHicroelectronics, Inc., All Rights Reserved, ‘.‘
SR by A73 o ~10lx]
NUMBER OF POINTS IM THE ¥ DIRE File Edit “iew Data Debug. He|p
NUMEER OF POINTS IN THE ¥ DIRE — — = = = , :
CRID SPACING IN THE X TIRECTIC) i () Y3 |3 2 = Current Thread: (0] ~] Appiy: [An |- pispray: [an -] Fite:| [-]
TIME STEP ‘
TIME FILTER PARAMETER Thread 0 Call Stack
NUMBER OF ITERATIONS Source | Disassembly | Mixed =» 0 calc3 line 417 in /home/brent] tmy~
Pcheck = 0,8998E+11 e G BBEescl Pocales 1 shalow Tine 146 in /home/brentl tn
Ucheck = 0,1353E+06 40adb7 F 18 83 (0 1A (I D prefetchto 231283392 (%rcx) s
Yeheck = 0.1359E+0B 40adbe F 18 89 20 59 52 EB prefetchtd -346924768 (%rcx) =
40a4cs F 18 89 40 E6 36 F2 prefetcht0 -231283136(%rcx)
Pcheck = 0,8898E+11 40adcc 83 (28 add] $0x8, %edx
Ucheck = 0,1359E+06 40adct 83 E8 8 subl $0x8,%eax
Wcheck = 0,1353E+08 40a4d2 C5 DD 5C EA vsubpd %ymm2,%ymnd, %ymns =
0 40a4d6 o C5 DS 58 31 vaddpd {%rcx), %ymmS, Symms
40a4da (5 CD 58 E1 wmulpd %ymml, %ymneG , %ymmng
=50 CONTINIE 40adde (5 ED 58 EC vaddpd %ymmd, %ymn2, %ymmns
40ade2 =» (5 FD 10 Al CO ES 36 F2 vmovupd -231283264 (%rcx) , %ynnd
C 40adea C5 FD 11 29 vmovupd %ymns, (%rcx)
(2 PERIODIC CONTI 40adee C5 FD 10 91 60 3E 89 DD vmovupd -578208160 (¥%rcx), %ymmn2
E 402416 C5 DD 5C EA vsubpd %ymm2, %ymmnd, %ymnS
DO 320 J=1,N 40adfa C5 D5 5C F2 vsuhpd %ymm2, %ymms, %ymne
UOLD{M+1,J) = 40adfe C5 FD 11 A1 60 3E 89 DD vmovupd %ymmd, -578208160(%rcx)
YOLD{M+1,J) = 40a506 (5 CD 58 B9 20 8D E4 6 vaddpd 115641632 (%rcx) , %ymnG , %ymn7
POLD(M+1,J) = 40a50e C5 C5 59 E9 wymulpd %ymnl,%ymn7 , %ymns ||
UiM+1,J) = U(1 403512 C5 D5 58 F2 vaddpd %ymn2 , %ynms , %ynnG ~| I~
ggm+i,j; = ggi <] il I [»] ||[&] i |]|
+ =
320 CDNTII:IUE Events | Command Groups Locals | Memory MPI Messages | Procs & Threads | Registers | Status
Bng%? Iﬂ:};"t RGeS TEUGRUTLATCRT AL GP | FLAGS | X87 | XMM | YMM | MXCSR| ARGS
VOLD(I :N+1) = |pgdbg [211] O> [0] Stopped at 0x4084D4, function calc3, fi Format: lfluat 64 vl Mode: lvector vI
POLD{I,N+1) = 0x4084D4: (5 CD 59 E1 vmulpd 2ymml, %ymne
U(I,N+1) = U(I) ! BOL TSI TTTTTY ST OO e
gg%:mg = gg% pggggogz;;]: 025[2% g;"g?ea A5 RRA0RA0E ::gg;;”;y;ﬂcfym;; ymmz_[0] 0.008426885437 7916036 0.00005327453838655 0.007541—
395 CONTINUE [1] -0.0093132371534296651 0.00005953820523446 0.00842
UOLD(M+1,N+1) ||[podbg [a11] 0> [0] Stopped at Ox4084E2, function calc3, Ti [21 -0.010199382260663501 0.00006580055128394 0.00931[
YOLD(M+1 ,N+1) Ox4084E2: C5 FD 10 &1 €O ES 36 F2 vmovupd -231283264 [3] -0.011085201100917173 0.00007206143761838 0.01019
POLD (M+1 ,N+1) ynn3 [0] -0.011870974333152876 0.00007832041238963 0.01108|=
U(M+1,N+1) = U [pgdbg [211] 0> [0] Breakpoint at Ox4084D6, function calc3, [1] -0.012856381683845898 0.00008457796297557 0.01197
Y(M+1 ,N+1) = Y | Ox4084D6: (5 DS 58 31 vaddpd (%rcid, %ymm 21 -0.01374150382364563 0.00008083363729420 0.01285(|
P{M+1,N+1) = P 31 -0.014626321116673032 0.000037087 29656704 0.01374
C pgdbg [al1] 0> [0] Stopped at 0x4084D&, function calc3, fi ynmd_[0] 1.7347234750768071e-21 -1.7896112109588858e-20 -5.82086462
RETURN 0x4084DA: (5 CD 39 E1 wmulpd 2ymml, %ymme — [1] 5.8199972619021878e-18 -2.001030634593559e-20 5.81999726
END [21 5.8109972610021878e-18 -2.2117724318704292e-20 -5.82173198
pgdbg [al1] O> [O] Stopped at Ox40A4DE, function calc3, Ti 2] 5.8217319853781644e-18 -5.8449745604508228e-18 -5.82173198
bash=4.1$ export OMP|| Ox40A4DE: (5 ED 58 EC vaddpd ymnd,%ynn2) | | ouns o] -0.008426885437 7916036 0.00005327453838655 0.00754
bash-4.1% 1s) . I 1 ~0.0083132371534296599 0.00005953820523446 0.00842
Files gaEsapodbg [alll 0> 0] Stopped at OXA0AAEZ, fTunctlon calcs, fi [-0.010199382260663496 0.00006530055128394 0.00931
SWIMZ UEES Al -Ox0niEe:. 03 FRUIOGAL COLRT:30.Re yMowtpd “oalegaend [-0.011085301100917168 0.00007206143761837 0.01019
ti’;;ut or ::2::2‘:; bgdbg [a11] O> =l | _ymmé [0] 1.73472347509768071e-18 -1.7896112108588858e-17 -5.82086462| |
input.test output [<] i I [»] < i [»]
input = train output Stopped at line 417 {address 0x40ade2) in file fhome/brentl/tmpspec/swim_omp/./srcfswim.f
makefile output,
makefile-wb4 pgdbg_errlog_2011_5_13_12_15_38

e —
Common impediments to vector

optimization
There are several common coding issues that may prevent vectorization.

The programmer may have enough knowledge to provide additional
information to the compiler to work around these issues.

In C and C++ the compiler may not have enough information about the
pointers passed into a subroutine to be able to determine that those pointers
don’t overlap. (-Msafeptr option or pragma or restrict keyword)

Function calls can be inlined to allow vectorization (-Minline)

Constants may be of the wrong type (-Mfcon)

Loops may be too long or too short. In both cases, additional options to the
vectorizer may be successful in generating vector code.

-Msafeptr Option and Pragma

—M|[no]safeptr[=all | arg | auto | dummy | local | static | global]

all All pointers are safe

arg Argument pointers are safe
local local pointers are safe
static static local pointers are safe

global global pointers are safe

#pragma [scope] [no]safeptr={arg | local | global | static | all},...

Where scope 1s global, routine or loop

" The Portland Grp

T ——
Which level of optimization to start?

If you are just starting with a new code, we suggest that you try a short run
of the code with optimization level —O2.

If the answers look good, then try the same run with the —fast flag.

If the answers are the same as the first run, use —fast as the basis for further
optimizations. If the answers differ, try turning of optimizations one at a
time until you find the optimization that 1s causing the difference. You can
then track down in your code where that difference occurs and determine if
it can be fixed, or if the optimization needs to be left turned off.

T
Turning off optimizations

Optimization flags are processed on the command line in the order in which
they occur. For example - to turn on all —fast optimizations except loop
redundant elimination:

> ftn -fast -Mnolre foo.o -o foo
Most optimizations can be turned on with the syntax -Moptimization

Most optimizations can be turned off with the syntax -Mnooptimization

" The Portland Grp

e ——
Optimizations and debugging

Optimizations and debugging don’t always go hand in hand, however...

> ftn -fast -gopt foo.f -0 foo

-gopt inserts debugging information without disabling optimizations. It is
often helpful for tracking down a code bug that only appears in optimized
code, or a bug that occurs far enough into a code that running the code with
no optimizations takes a painful amount of time.

" The PortlndGroup

Generating tracebacks

Linux uses the backtrace system call to create the stacktrace when a fault or error
occurs. The only requirement is to link with the -Meh_frame option:

> pgfortran -Meh_ frame -o x x.f90

Then before running the program, the following environment variable is set as
follows:

> export PGI_TERM=trace

Sl i Group

I ——
Generating tracebacks

Here 1s a sample traceback from within the PGI runtime.
(An attempt to deallocate an allocatable array more than one time):

O: DEALLOCATE: memory at (nil) not allocated
./x(_hpf abort+0x7d) [0x40bb8d]
./x(_hpf dealloc+0xeb) [0x40b57b]
./x(MAIN +0x217) [0x408177]
./x(main+0x40) [0x407£40]
/1ib64/libc.so.6(__libc_start main+0xf4) [0x2b877285el154]

./x [0x407e69]

“"The PortlndGroup

Here is a sample traceback from a SEGV 1n user code:

Error: segmentation violation, address not mapped to object
rax 0000000005£45908, rbx 0000000000000001, rcx 00000000000187f£9
rdx 00000000000187£f9, rsp 00007fffcdaef9al0, rbp 00007fffcdaef9al
rsi 00007fffcdaef9c4, rdi 00002ab2dd77e020, r8 O0O0000000ffffffff
r9 0000000000000000, r10 0000000000000022, rl1l 0000000000000246
rl2 0000000000000001, rl1l3 00007fffcdaefael0, rl4 0000000000000000
rl5 0000000000000000

/1ib64/libpthread.so.0 [0x2ab2ddlebcl0]

./y(init_ +0x1f) [0x4081bf]

./y(MAIN +0x9b) [0x407£ffb]

./y(main+0x40) [0x407£40]
/1ib64/libc.so.6(__libc_start main+0xf4) [0x2ab2dd468154]
./y [0x407e69]

T
What does this flag do?

There are too many compiler flags to remember all of their options. You can
get help in several places:

> man pgfortran

> pgfortran -fast -help — gives help on -fast
Full PDF manuals are online in (€.g)
/opt/pgi/12.2.0/linux86-64/2012/doc

Manuals are also available at:

http://www.pgroup.com/resources/docs.htm

The PortlandGroup

T —
What exactly is being optimized?

Optimization 1s as much a user exercise as it 1s a compiler exercise. To see
what the compiler thinks of your code, compile using the —-Minfo flag.

> pgfortran -fast -Minfo foo.f -o foo

Use the information generated by —Minfo to help i1dentify coding issues and
locate places where code can be improved so the compiler can do an optimal

job on it.

> pgfortran -Minfo -help

‘The Portland Group

e —
Use —Minfo to see which loops vectorize

> ftn -fast -Mipa=fast -Minfo -S graphRoutines.f90

localmove:
334, Loop unrolled 1 times (completely unrolled)
343, Loop unrolled 2 times (completely unrolled)
358, Generating vector sse code for inner loop
364, Generating vector sse code for inner loop
Generating vector sse code for inner loop
392, Generating vector sse code for inner loop
423, Generating vector sse code for inner loop

Use —Mneginfo to see why things don’t vectorize

e —
Additional compiler optimizations

The —fast flag 1s the 90/90 solution for code optimization. That is, it
achieves about 90% of the possible performance for about 90% of the codes.

That means there are some additional areas that can be explored.

Interprocedural analysis can be helpful for C codes and Fortran codes
without interface blocks. (Interface blocks are to the language specification
what IPA 1s to the compiler)

> ftn -fast -Minfo -Mipa=fast foo.f -o foo

**[f compiling and linking are done in separate steps, you must be sure to
pass the IPA flag to the linker too.

LPA involves an additional pass of the compiler.

e
Additional IPA optimizations

The suggested usage for IPA 1s to apply —Mipa=fast globally

The —Mipa flag has a large number of options that may be helpful in certain
circumstances. These options are generally best applied to a specific
subroutine to address a specific issue.

A couple of the more interesting flags include:

-Mipa=libopt This allows recompiling and optimization of routines from
libraries using IPA information. If you make extensive use of libraries in
your code, try compiling those libraries with —-Mipa=fast so that you have
the option of using IPA when you link your application to that library

-Mipa=safeall This declares that all unknown procedures are safe.

T ——
Additional compiler optimizations

Several memory management options are available and may be beneficial
depending on how your code accesses memory. Smartalloc tends to do a
better job managing memory then standard Unix malloc.

Smartalloc can make use of “big pages”. Using big pages helps to minimize
the number to TLB misses. This option tends to be helpful for codes that do
a big initial allocate and then manage their own memory.

> ftn -fast -Minfo -Mipa=fast -Msmartalloc=huge foo.f -o foo

*#*_Msmartalloc must be used to compile main, and also to link the
program

T —
Additional compiler optimizations

Inlining can have a significant impact on application performance. It's most
dramatic effects tend to be on C++ codes which have many many small
functions.

Inlining can be done at several different points in the compilation.
-Minline/autoinline - during the regular compilation phase
-Mipa=inline - during the recompile for [PA

Inline libraries - created during the “make” process

‘The Portland Group

with the inline attribute. The suboptions control how the auto inliner
operates.

-M[no]Jautoinline
Enable inlining of functions with the inline attribute.
-Mautoinline 1s implied with the -fast switch. The options are:

levels:n Inline up to n levels of function calls; the default
1s to inline up to 10 levels.

maxsize:n Only inline functions with a size of n or less. The
size roughly corresponds to the number of statements
in the function, though the correspondence 1s not
direct. The default 1s to inline functions with a
size of 100 or less.

totalsize:n
Stop inlining when this function reaches a size of n.
- The default is to stop inlining when a size of 8000

The Poiiiand Group

T ——
Creating and Using Inline Libraries

Use of -Minline/-Mextract to create an inline library. This works for
all languages(C/C++/FORTRAN). To create an inline library with
-Mextract do the following:

pgfortran -Mextract=lib:libfloat.il -c add.f90
pgfortran -Mextract=lib:libfloat.il -c sub.f90
pgfortran -Mextract=lib:libfloat.il -c mul.£90
pgfortran -Mextract=lib:libfloat.il -c div.f£f90

This creates an inline library name libfloat.i1l which can be used
during compliation as follows:

pgf90 -fast -Minline=libfloat.il -c -Minfo -Mneginfo
driver. £f90

The -Minfo messages for this compile are:

test:
14, Generated an alternate loop for the loop
Generated vector sse code for the loop
21, Generated an alternate loop for the loop
Generated vector sse code for the loop
22, add inlined, size=2, file add.f90 (2)
33, Generated an alternate loop for the loop
Generated vector sse code for the loop
34, sub inlined, size=2, file sub.f90 (2)
45, Generated an alternate loop for the loop
Generated vector sse code for the loop
46, mul inlined, size=2, file mul.f90 (2)
57, Generated an alternate loop for the loop
Generated vector sse code for the loop
58, div inlined, size=2, file div.£f90 (2)

As a result of inlining the functions add, sub, mul, and div the
ompiler w en . ori oops that contained those

Use of -Mipa=inline to inline functions/subroutines. This works for all
languages(C/C++/FORTRAN). Create the library using the -Mipa=inline
option as follows:

pgfortran -Mipa=fast,inline -Minfo -Mneginfo -c add.f90
pgfortran -Mipa=fast,inline -Minfo -Mneginfo -c sub.f90
pgfortran -Mipa=fast,inline -Minfo -Mneginfo -c mul.f90
pgfortran -Mipa=fast,inline -Minfo -Mneginfo -c div.f90

ar cr libfloat.a add.o sub.o mul.o div.o

This creates a library named libfloat.a which can be used during compliation
as follows(need to use the libinline suboption):

pgf90 -fast -Mipa=fast,inline,libinline -c -Minfo -Mneginfo
driver.£f90

pgf90 -fast -Mipa=fast,inline,libinline -o d driver.o
libfloat.a

The -Minfo messages for this compile are:

test:
14, Generated an alternate loop for the loop
Generated vector sse code for the loop
21, Loop not vectorized/parallelized: contains call
33, Loop not vectorized/parallelized: contains call
45, Loop not vectorized/parallelized: contains call
57, Loop not vectorized/parallelized: contains call
IPA: Recompiling driver.o: stale object file
test:
0, Pointer c is only set via allocate statements
Pointer b is only set via allocate statements
Pointer a is only set via allocate statements
Function add does not write to any of its arguments
Function add does not reallocate any of its arguments
Function add does not reassociate any of its pointer arguments
Function add does not reallocate any global variables
Function add does not reassociate any global pointers
Function add does not read any global (common/module) variables
Function add does not write any global (common/module) variables
Function sub does not write to any of its arguments
Function sub does not reallocate any of its arguments
sub does not reassociate any of its pointer arguments
ubwdoe,wnot_;eallﬂfﬁte any global variables

T —
Compiler optimizations and accuracy

There are a number of compiler options that offer the possibility of
significant performance improvement at the expense of accuracy. If you are
having numerical 1ssues, you might tighten some restrictions.

-Kieee — floating point strictly conforms to IEEE 754 standard. (off by default)
-Ktrap - turns on the behavior of the processor when exceptions occur
-Mdaz — mode to treat IEEE denormalized input numbers as zero

-Mflushz - set SSE to flush-to-zero mode (on with —fast)

-Mfprelaxed - perform certain floating point operations using relaxed precision when it
improves the speed. (This is the default mode on most other vendor’s compilers)

T —
Using more then one core

There are three general techniques for using more then one core for a
computation. Of course, on large XT6 machines, all codes implement
parallelism through MPI.

While most codes are MPI everywhere, some codes benefit by using the
shared memory on the node through either automagic parallelizing by the
compiler or/and OpenMP. OpenMP compilation is invoked with the —mp
flag, automagic parallelization with the -Mconcur flag.

Environment variables which can effect OpenMP performance include:

OMP_ SCHEDULE - can be static, dynamic, guided or auto

OMP NUM_ THREADS — specifies the number of threads to use

PGl's new PGC++ compiler

We developed Gnu compatible pgc++ (PGl's current C++ compiler is call “pgcpp”
or “pgCC”) to become link compatible with the growing number of Gnu compiled
libraries available, including the Gnu STL and Boost.

The link compatibility changes include:
*mangled names
run time type information
evirtual function tables
*subobject creation
sexception handling
scomplex types
*gnu header file support

The PortlandGroup

There are currently some limitations to our link compatibility with GCC code:

* Our long double size is not compatible. Users who call functions with
long double parameters should compile all of that code with the same compiler.

* pgc++ supports pthreads except for code compiled -mp (OpenMP).
* Some GNU builtins introduced in 4.4.0 are not yet supported.
* We use our math routines. We recommend users link with pgc++.
* (C99) tgmath.h is not supported.
* pgc++ objects are not compatible with pgcpp objects/libraries.
pgc++ supports gcc versions 4.1 through 4.5. The compiler installation process determines

which g++ version is installed on your machine, and configures your localrc file
accordingly. If you upgrade your gcc compiler, you will have to reinstall the PGl compilers.

We are currently at EDG release 4.1, and plan to have full C++11 support by mid 2013.

“=""The Portland Group

PGl OpenCL Framework for
Multi-core ARM

= The Portland Group |

Build [cice9 OpenC <
C++ L

@ v

PGCL unified compiler driver

@ @ Device

Host Code Cada
PGI OpenCL T
GCC/G++ Compiler
Android NDK- Cortex-A9 +Neon
r7b OpenCL builtins lib
LLVM 3.0 Backend

Custom Android
GAS

PGI OpenCL
Framework

= E

OpenC
L

Execute | ARM ARM Data
Blnary Kernels Env

PGRUN remote execution script

ARM
M >

Dynamic
Compilation

@ Only

PGCLSERV

OpenCL 1.1

» H ~
advin (]]

—-'-'——'-—'""--''-— '''''

T —
PGI OpenCL compiler features

= All OpenCL 1.1 embedded profile language features implemented
new vector/scalar data types

vector literals & components

Neon/SIMD code generation for operations on vector data types

function / addr space qualifiers

built-ins

= ATI and NVIDIA OpenCL SDK examples

— 21 NVIDIA SDK examples and 26 ATI SDK examples compile and run correctly with PGCL on Android/
ARM

= 24 of 24 OpenCL 1.1 Conformance Test Suites passing on Android/
ARM; working on a formal compliance submission

= Supports both static compilation of OpenCL kernels, and native
dynamic compilation of kernels on Android/ARM devices

» DWARF generation for OpenCL kernels and basic debugging using
gdb/gdbserver

PGl OpenCL compiler driver

pgcl compiler driver

cmd-line interface to compile both OpenCL host code and statically
compiled OpenCL kernels

Minimizes changes to makefiles

Pre-configured to use GCC as OpenCL host compiler &
PGl OpenCL compiler for Multi-core ARM as a compute device

From the command line you can specify host compiler to use, pass
compile/link options, no need to specify location for OpenCL lib/
include

From command line you can specify options to be passed to the
OpenCL language compiler

% pgcl —opencl-flags —O2 —o kernel.so — kernel.cl
% pgcl -hostcomp=g++ -O1 —c hostcode.cpp

% pgcl —02 —c hostcode.c

B2 &l | . D\ - SN

OpenCL compiler development approach
PGl OpenCL Front Iﬁ & Optimizing Core

LLVM IR assembly file .lI

"4 | \

Cortex-A9 Accelerators

@ Pre- production B For validation purposes only

- The Portland Group

I —
PGl Optimizing Compilers infrastructure

U U ¢ U

Saprﬁ%zation Dependence Profile Feedback
Blt?rProcedural Analysis DSP Intrinsics SW Prefetching
ptz SIMD Vectorization = SSE/AVX Intrinsics Alignment Optz
Auto-Parallel Loop Tiling/ Heterogeneous Targets CCFF
OpenMP Parallel Unrolling PGI Unified Binary
Function Inlining Loop Interchg/
Fusion
Loop Peeling/ @
rari X04+GP LLVM IR
x86 x64 U ST100 ARM Others
Local Regs Local Regs Device Local Regs Local Regs Any other
Global Regs Global Regs Mgmt VLIW Global Regs LLVM target
SIMD Vector SIMD Vector Kernel Gen SW Pipe Scheduling
Peephole Peephole Data Ld/St AutoSIMD Peephole
32-bit only 32/64-bit Local Alloc Predication AutoSIMD
ftho V ' ~ | AutoPar | 16- & 32-bit Code Sel

e ——
Profiling code

Cray provides some excellent tools for profiling using hardware counters.

PGI also provides some mechanisms for profiling of code. The simplest
method is to use pgcollect. No special build process is needed, although
compiling with —-Minfo=ccff may provide useful feedback. This imbeds the
—Minfo messages into the executable which can then be viewed with the
performance profile.

Run your code as:

> pgcollect a.out

Then view the results with the GUI tool - pgprof

> pgprof -exe a.out

‘The Portland Group

Profiling code

To get a general profile for an MPI code, you may wish to just profile one of

the MPI processes. Running the code is where things change. Instead of
launching the executable via mpiexec, launch a script instead:

> mpiexec -np 2 ./doit

The doit script for code compiled and linked with MPICH2 might look like the
following:

#1/bin/csh

if ($PMI_RANK == 0) then
pgcollect ./test

else
./test

endif

After the run is complete, there will be only one pgprof.out file which can be

cxe ./ est | paprot lout | |

T —
SMP Parallelization

(d —Mconcur for auto-parallelization on multi-core
Compiler strives for parallel outer loops, vector SSE inner loops
—Mconcur=innermost forces a vector/parallel innermost loop
—Mconcur=cncall enables parallelization of loops with calls
 —mp to enable OpenMP parallel programming model

OpenMP programs compiled w/out —mp “just work”

(1 —Mconcur and —mp can be used together!

Miscellaneous Optimizations (1)

J —Mfprelaxed — single-precision sqrt, rsqrt, div performed
using reduced-precision reciprocal approximation

1 —lacml and —lacml_mp - link in the AMD Core Math Library

d —Mprefetch=d:<p>,n:<q> — control prefetching distance,
max number of prefetch instructions per loop

1 —tp k8-32 — can result in big performance win on some
C/C++ codes that don’t require > 2GB addressing;
pointer and long data become 32-bits

Extending Host-side x64 Compilers to
Enable Incremental use of GPGPUs

= The Portland Group

O NVIDIA TESLA C1060

y % » Lots of available performance ~1 TFlops peak SP
= Programming is a challenge
= Getting high performance is lots of work

U NVIDIA CUDA programming model and C for
CUDA simplify GPGPU programming

» Much easier than OpenGL/DirectX, still challenging
= PGI CUDA Fortran simplifies it even further
0 PGI Accelerator compilers do for GPU

programming what OpenMP did for Posix
Threads

Emerging Cluster Node Architecture
Commodity Multicore x86 + Commodity Manycore GPUs

Thread Execution Control Unit

2 3 29

Thread Thread Thread Thread Thread

Processors Processors Processors Processors o 0 O Processors

Special Special Special Special Special
Function Unit Function Unit Function Unit Function Unit Function Unit

L L L L
Local Local Local Local
Memory Memory Memory Memory

Device Memory

— e Portland Group

EI
CPU

— Execution Queue)

—

4)
Host
Memory

.

©2010The Portland Group, Inc.

DMA

Thread Processors

! Dual Warp Issue |

4

| Dual Warp Issue !

Rbctn | [eton

Function Function

+
| Dual Warp Issue !

Level 2 Cache

3 3

Device Memory

e ———
NVIDIA Streaming Multiprocessor

features
0 One Control Unit per SM
Thread = SM operates in SIMT fashion by « Warps » of 32 threads
= Up to 32 Warps in flight
Processors = Computation structured in 1D, 2D or 3D blocks of threads

= Blocks are organized in a 1D or 2D Grid

0 16384 32-bits registers per SM

= No cost to tolerate heavily multi-threaded computations
= Hide long access time to device memory

o SM can execute up to 8 blocks
Special = Block execution can’t migrate from one SM to another

Function Unit

0 16 KB of shared memory
= Must be managed as a software cache by the programmer

T
Today’s architectures

Chip cores vector length

Sandybridge 12 4
Interlagos 8/16 2/4
MIC 32 8
Fermi 32 16

(2 cycle instruction latency makes effective
vector length 32)

The PortlandGroup

CUDA Fortran

Implicit (through the language syntax) rather
then explicit (through an API)

As with CUDA-C, requires both host code and GPU code

(Almost) all Fortran 2003 language features are
Accessible through CUDA Fortran

Understanding of CUDA-C kernel launch mechanism
and underlying hardware architecture helpful®

**Supercomputer is computing which requires the programmer to have an

intimate understanding of the underlying hardware architecture”
- Paul Anderson

"~ The Portland Group

T ——
CUDA Fortran VADD Host Code

subroutine vadd(A, B, C)
use cudafor
use kmod
real, dimension(:) :: A, B
real, pinned, dimension(:) :: C
real, device, allocatable:: Ad(:), Bd(:), Cd(:)
integer :: N
N =size(A, 1)
allocate(Ad(N), Bd(N), Cd(N))
Ad = A(1:N)
Bd = B(1:N)
call vaddkernel<<<(N+31)/32,32>>>(Ad, Bd, Cd, N)
cC=Cd
deallocate(Ad, Bd, Cd)
end subroutine

The PortlandGroup

T ——
CUDA Fortran VADD Device Code

module kmod

use cudafor

contains

attributes(global) subroutine vaddkernel(A,B,C,N)
real, device :: A(N), B(N), C(N)
integer, value :: N
integer :: i
i = (blockidx%x-1)*32 + threadidx%Xx
if(i<=N) C(i) = A(i) + B(l)

end subroutine

end module

- WThe Porttand Grp

T
Building a CUDA Fortran Program

CUDA Fortran is supported by the PGI Fortran compilers when the filename
uses a CUDA Fortran extension. The .cuf extension specifies that the file is

a free-format CUDA Fortran program;

The .CUF extension may also be used, in which case the program is processed
by the preprocessor before being compiled.

To compile a fixed-format program, add the command line option —Mfixed.

CUDA Fortran extensions can be enabled in any Fortran source file by adding
the —Mcuda command line option.

Most F2003 features should work in CUDA Fortran.

There is a (CUDA-like) API to access features
— Streams supported through API rather then language

Accelerator Directives for flat
performance profile codes

Source code directives provide a second method
for programming GPU's.

The goal is to move date to the GPU and compute on
the GPU until off-node communications is required

Directives allow for flexibility “under the hood”

Allow for single program source — similar to OMP

“The lioi'tland |

e
Accelerator VADD Device Code

(two dimensional array example)

module kmod
contains
subroutine vaddkernel(A,B,C)
real :: A(:,:), B(:,:), C(:,:)
I1$acc region
C(:,:)=A(:,:) +B ()
<lots of other code to do neat stuff>
<special code to do even neater stuff>
I$acc end region
end subroutine
end module

I$acc region clauses can surround many individual
loops and compute kernels. There is no implicit
GPU/CPU data movement within a region

62

Compiling the subroutine:

PGI$ pgfortran -Minfo=accel -ta=nvidia -¢c vadd.F90

vaddkernel:
5, Generating copyout(c(1:z_b 14,1:z b_17))
Generating copyin(a(1:z_b _14,1:z b _17))
Generating copyin(b(1:z_b _14,1:z b _17))
Generating compute capability 1.0 binary
Generating compute capability 1.3 binary
Generating compute capability 2.0 binary
6, Loop is parallelizable
Accelerator kernel generated
6, !$acc do parallel, vector(16) ! blockidx%x threadidx%x
I$acc do parallel, vector(16) ! blockidx%y threadidx%y
CC 1.0 : 7 registers; 64 shared, 8 constant, 0 local memory bytes; 100% occupancy
CC 1.3 : 8 registers; 64 shared, 8 constant, 0 local memory bytes; 100% occupancy
CC 2.0 : 15 registers; 8 shared, 72 constant, 0 local memory bytes; 100% occupancy

e —
Tuning the compute kernel

Accelerator VADD Device Code

module kmod
contains
subroutine vaddkernel(A,B,C) ! We know array size
real :: A(:,:), B(:,:), C(:,:)! dimension(2560,96)
integer :: i,j
I$acc region
1$acc do parallel
do j = 1,size(A1)
I$acc do vector(96)
do i =1,size(A,2)
C(j,i) = A(j,i) + B (j,i)
enddo
enddo
I$acc end region
end subroutine
end module

‘The Portland Group

T ——
Keeping the data on the GPU

Accelerator VADD Device Code

module kmod

contains

subroutine vaddkernel(A,B,C)
real :: A(:,:), B(:,:), C(:,:)

I1$acc reflected (A,B,C)

I$acc region
C(:,;) =A(:,:) + B (:,2)

I1$acc end region

end subroutine

end module

The 1$reflected clause must be visible to the
caller so it knows to pass pointers to arrays on

Compiling the subroutine:

PGI$ pgfortran -Minfo=accel -ta=nvidia -c vadd.F90
vaddkernel:
5, Generating reflected(c(:,:))
Generating reflected(b(:,:))
Generating reflected(a(:,:))
6, Generating compute capability 1.0 binary
Generating compute capability 1.3 binary
Generating compute capability 2.0 binary
7, Loop is parallelizable
Accelerator kernel generated
7, 1%acc do parallel, vector(16) ! blockidx%x threadidx%x
I$acc do parallel, vector(16) ! blockidx%y threadidx%y
CC 1.0 : 11 registers; 80 shared, 8 constant, 0 local memory bytes; 66% occupancy
CC 1.3 : 11 registers; 80 shared, 8 constant, 0 local memory bytes; 100% occupancy
CC 2.0 : 17 registers; 8 shared, 88 constant, 0 local memory bytes; 100% occupancy

““"The Portland Group

T ——
Allocating/Deallocating GPU Arrays

Accelerator VADD Device Code

subroutine vadd(M,N,C)
use kmod ! Visibility of !$acc reflected
real, dimension(:,:) :: A, B, C
integer :: N
I$acc mirror(A,B) !device resident clause in 1.3
allocate(A(M,N),B(M,N))
! C has been mirrored and allocated previously
A=1.0
B=20
I$acc update device(A,B,C)
call vaddkernel (A,B,C)
call kernel2 (A,B,C)
call kernel3 (A,B,C)
call kernel4 (A,B,C)
I$acc update host(C)
deallocate(A, B)
end subroutine

e

67

T ——
Using GPU device-resident data

across subroutines

subroutine timestep(Input,Result,M,N)
use kmod ! Make reflected var’s visible

real, dimension(M,N) :: Input,Result
integer :: M,N

real, allocatable :: B,C,D
dimension(:,:) :: B,C,D

allocate(B(M,N),C(M,N),D(M,N))
B=2.0

call vaddkernel (Input,B,C)
call kernel2 (C,D)

call kernel3 (D,Result)

448 1 44l 8

deallocate(B,C,D)
end subroutine

CPU Code

- mmnws m wa wal

module kmod

Contains
!

subroutine vaddkernel(A,B,C)
real :: A(:,:),B(:,:),C(:,:)

— C(:,:) = A(:,:) + B (3,)
=) end subroutine
!
subroutine kernel2(C,D)
real :: C(:,:),D(:,:)
— < compute-intensive loops >

end subroutine

end module

% pgfortran -help -ta

-ta=nvidia:{analysis|nofma|[no]flushz|keepbin|keepptx|keepgpu|maxregcount:<n>|
c10|cc11|cc12|cc13|cc20|fastmathjmul24|time|cuda2.3|cuda3.0|
cuda3.1|cuda3.2|cuda4.0|[no]wait}|host

Choose target accelerator

nvidia Select NVIDIA accelerator target

analysis Analysis only, no code generation

nofma Don't generate fused mul-add instructions
[no]flushz Enable flush-to-zero mode on the GPU
keepbin Keep kernel .bin files

keepptx Keep kernel .ptx files

keepgpu Keep kernel source files
maxregcount:<n> Set maximum number of registers to use on the GPU
cc10 Compile for compute capability 1.0

cc20 Compile for compute capability 2.0
fastmath Use fast math library

mul24 Use 24-bit multiplication for subscripting
time Collect simple timing information

cuda2.3 Use CUDA 2.3 Toolkit compatibility

cuda4.0 Use CUDA 4.0 Toolkit compatibility
[no]wait Wait for each kernel to finish; overrides nowait clause
host Compile for the host, i.e. no accelerator target

Compute region directive clauses for tuning data
allocation and movement

if (condition) Execute on GPU conditionally
copy (list) Copy in and out of GPU memory
copyin (list) Only copy in to GPU memory
copyout (list) Only copy out of GPU memory
local (list) Allocate locally on GPU
deviceptr (list) C pointers in list are device pointers
update device (list) | Update device copies of the arrays
update host (list) Update host copies of the arrays

Loop directive clauses for tuning
GPU kernel schedules

parallel [(width)] Parallelize the loop across the multi-
processors

vector [(width)] SIMD vectorize the loop within a multi-
processor

seq [(width)] Execute the loop sequentially on each
thread processor

independent lterations of this loop are data independent
of each other

unroll (factor) Unroll the loop factor times

cache (list) Try to place these variables in shared
memory

private (list) Allocate a copy of each variable in list for

each loop iteration

T
Timing / Profiling

How long does my program take to run?
» time ./myprogram

*How long do my kernels take to run?
» pgfortran —ta=nvidia,time

*Environment variables:

export ACC_NOTIFY=1

export NVDEBUG=1

cuda profiler settings

#export CUDA_PROFILE=1

#export CUDA_PROFILE_CONFIG=cudaprof.cfg

#export CUDA_PROFILE_CSV=1

Compiler-to-Programmer Feedback
Incremental porting/tuning for GPUs

Directives, Options, RESTRUCTURING ==

SRSy |
Code "‘ I
64
" Trace| = [T

Obstacles to GPU code generation

Loop nests to be offloaded to the GPU must be rectangular

At least some of the loops to be offloaded must be fully data parallel with
no synchronization or dependences across iterations

Computed array indices should be avoided
All function calls must be inlined within loops to be offloaded

In Fortran, the pointer attribute is not supported; pointer arrays may be
specified, but pointer association is not preserved in GPU device

memory
In C

— Loops that operate on structs can be offloaded, but those that operate on
nested structs cannot

— Pointers used to access arrays in loops to be offloaded must be declared with
C99 restrict (or compiled w/-Msafeptr, but it is file scope)

ointer arithmetic is not allowed within loops to be offloaded

T ——
The programming model

The directive based models apply to user-directed
accelerator programming, where the user specifies the
regions of a host program to be targeted for offloading to
an accelerator device. The remained of the program will
be executed on the host.

It's important for the programmer to understand where the
data is located that is being computed on. Depending on
how data is allocated on the accelerator, there may be

two copies of the same array — one located on the
accelerator and one on the host.

T ——
The programming model

The accelerator is a slave processor, the host is the
master processor. The host sends work to the
accelerator and waits™ for the accelerator to complete
the work.

Sending work to the accelerator is independent from
sending data to the accelerator.

The programmer must have a mode for managing the
program data as well as the program computation.

“The Portland Group

T ——
The programming model

The device execute parallel regions which typically
contain work sharing loops™ or kernel regions**.

The host:

— Allocates memory on the device
— Transfers data to the device

— Sends the code to the accelerator, passes device arguments
to the parallel region, queues the device code, and waits for
completion

— Transfers the data back to the host
— Deallocates the device memory
*from the Cray GPU programming mode

‘The Portiand Group

e —
The host+ACC memory model

Accelerator memory may be completely separate from
the host memory, as is the case with most current

GPUs

The host may not be able to read or write device
memory directly because it is not mapped into the
host’s virtual memory space.

All data movement must be done by the host via
runtime libraries

Two primary programmer concerns:

— Memory bandwidth between host and device memory
determines the amount of computation that must be
available to make running on the accelerator profitable

— The limited device memory may prohibit offloading regions of
- code that operate on very large arrays

e Iortland Lroup

e —
The accelerator memory model

Some accelerators implement a weak memory model. The do not
support coherence between operations executed by different
computation units on the accelerator.

Even on the same computation unit, memory coherence is only
guaranteed when the memory operations are separated by an
explicit barrier.

Compilers can warn about some of these situations, but may not be
able to determine all. Programmer beware!

Some accelerators have memory caches — software managed,
hardware managed, or hardware managed and constrained,
such as read only caches. The accelerative directive model
allows the compiler, with hints from the programmer, the
manage these caches rather then requiring the programmer to
explicit manage them.

e Portlan

Directive format

In C and C++, OpenACC directives are specified with the
#pragma mechanism

#pragma acc directive-name [clause[[,]clause]...] new-line

In Fortran, OpenACC directives in free form source files:
1$acc directive-name [clause][,] clause]...]

* |n Fortran, OpenACC directives in fixed form source
files:

1$acc directive-name [clause][,] clause]...]
c$acc directive-name [clause[[,] clause]...]

“="The Portland Group

S ——
Internal control variables

An OpenACC implementation acts as if there are internal
control variables that control the behavior of the
program.

These can be by queried and set by the program or
programmer.

Ways to modify Ways to retrieve

T —
Primary OpenACC constructs

1$acc parallel

When the program encounters an accelerator parallel construct, gangs
of workers are created and execute the accelerator parallel region.
Once the gangs are created, the number of gangs and the number
of workers in each gang remain constant for the duration of the
region

I$acc kernels

This construct defines a region of the program that is to be compiled
into a sequence of kernels for execution on the accelerator. The
compiler will break the code into a sequence of accelerator kernels.
Typically, each loop nest will be a distinct kernel.

The kernels construct is closely related to the current PGl Accelerator
_directive model.

e —
OpenACC compilers

The OpenACC standard is being implemented by PGl,
Cray, and CAPS.

PGl's current plan is to release an OpenACC compiler
once the complete 1.0 standard is fully implemented in
the compiler.

Until then, users are encouraged to continue with the PGl
Accelerator model as this is very closely related to the
kernels model, and a transition from PGl to OpenACC
should be relatively straight forward.

e ——
Implicit Programming of Accelerators

The PGI Accelerator directive based approach to
programming.

Maximize the work that the compiler is able to do

Concentrate programmer efforts on performance of
kernels rather then management and placement
of data

The OpenACC “parallel” method put more
responsibility on the programmer for data
placement

T
PGl Accelerator -> OpenACC

region -> kernels

region for -> kernels loop
region do -> kernels loop
data region -> data

local() -> create()
parallel() -> gang()

Sl i Group

e —
PGl Accelerator -> OpenACC

PGl Acclerator uses mirror and reflect for data
placement on the GPU. Visibility of these
directives by caller at compile time (compiler
time check)

OpenACC uses present for data placement. There
IS no visibility of present at compile time, so it
requires a runtime check. (IPA may pick this up
in the future to eliminate runtime check?)

T ——
PGl Accelerator -> OpenACC

C subarrays go from [lowerbound:upperbound]
to [lowerbound:length]

Subarrays in data clauses must be contiguous

Add reduction clauses in loops and regions

Remove cache clauses

Replace reflect with present

Remove mirror

““"The Portland Group

Getting started with a real code

Is the code already well structured to take
advantage of an accelerator ? Is there sufficient
parallelism in the code?

What is the performance profile of the code?

What parts of the code can run on the accelerator?

~ "'he Portland Group

Profile the code

® - o pgprof
File Edit View Sort Help
® & ¢~ - [Find: |-] & @ [Hotspot: Seconds [~] @
pgprof.out |
Function Max Seconds v
parabola 0.4316 | 45% |4
remap 0.12630 13%
riemann 0.10530 11%
evolve 0.0632] 7%
paraset 0.0632] 7%
flatten 0.0526| o
ftruncate 0.0316| P
vhone 0.0211| Py
boundary 0.0211| Py
ppmlr 0.0211] 25
volume 0.0105 1% ||
states 0.0105 1% | ™
Sorted By Seconds
e A I I I IR
¥ Processf{Thread Browser for application '.fvh1-starter =
Profile Seconds v
pgprof.out 0.9579 I 100%
» Po 0. 957 NG 100%
¥ Process{Thread Viewer for routine 'parabola’
Routine Seconds v
parabola 0. 4316 NG 45%
$ Po 0. 4316 IIIEGEGEG 45%
Parallelism | Histogram | © Compiler Feedback | System Configuration | Accelerator Performance |

Profiled: ./vhl-starter on Mon Jan 23 10:12:36 PST 2012 | Profile: ./pgprof.out

I'he FPortland Group

N ——
Are the results correct?

How do you determine the correctness of the
original code?

Having a graphical way of evaluating code results
Is highly encouraged

How correct is correct? GPU results will be
different from CPU results. You need to have a
method for determining how big a delta is
acceptable to you

Debug by comparing intermediate output of
original code to the results on the GPU

T
VH-1 code output

® - 0 Gnuplot (window id : 0)

1 AR T T T T
'NCState1000.dat’ —+—
0.9 L 'NCState1001.dat’ —— _
'NCStatel002.dat' —%—
'NCStatel003.dat' —=—

08 - 'NCState1004 dat' — = |

0.7
[.

0.6 {

0.5

0.4 |

0.3

0.2 - -

01 ‘ | | | HHHHHHHHHHHHHHHHHHHHHHHHHHHHH
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 952212, 1.01899

Portland Group

———
Start by modifying the Makefile

Specify search path for subroutines that perform 1D ppmlr

hydrodynamics
VPATH = ../PPMLR
#
System-dependent parameters
#
F90 FORTRAN 90 Compiler
LDR Program to load the objects, typically the same as F90
LDFLAGS Flags to pass to the compiler during linking
LIBS A list of libraries to 1link, normally only netCDF
#
#
F90 = pgf90
FFLAGS = -c -fast -ta=nvidia,nofma -Minfo=accel
LDR= pgf90

LDRFLAGS= -ta=nvidia

The Portland Group

Move most costly routine to GPU

Parabola.F90 contains no I/O, MPI, or subroutine calls

subroutine parabola(nmin, nmax, para, a, deltaa, a6, al, flat)
| GLOBALS

use sweepsize

IMPLICIT NONE

I LOCALS

integer :: n, nmin, nmax

real :: onemfl

real, dimension(maxsweep) :: a, deltaa, a6, al, flat, da, ar, diffa, scrch1,
scrch2, scrch3

real, dimension(maxsweep,9) :: para

1$acc region

1$acc end region
eeturn
end !subroutine parabola

“The lioi'tland |

!ompl‘lng H !e SUEFOU!IHGZ

PGI$ make parabola.o
pgf90 -c -fast -ta=nvidia -Minfo=accel ../PPMLR/parabola.f90
parabola:
23, Generating copyout(deltaa(nmin:nmax))
Generating copyout(a6(nmin:nmax))
Generating copyout(scrch1(nmin:nmax))
Generating copyout(scrch2(nmin:nmax))
Generating copyout(scrch3(nmin:nmax))
Generating copyout(diffa(nmin-2:nmax+1))
Generating copyout(da(nmin-1:nmax+1))
Generating copyout(al(nmin:nmax+1))
Generating copyout(ar(nmin-1:nmax))
Generating copyin(para(nmin-1:nmax+1,1:5))
Generating copyin(a(nmin-2:nmax+2))
Generating copyin(flat(nmin:nmax))
Generating compute capability 1.0 binary
Generating compute capability 1.3 binary
Generating compute capability 2.0 binary
25, Loop is parallelizable
Accelerator kernel generated
25, 1$acc do parallel, vector(256) ! blockidx%Xx threadidx%x
Cached references to size [257] block of 'a'
CC 1.0 : 5 registers; 1092 shared, 4 constant, 0 local memory bytes; 100% occupancy
CC 1.3 : 5 registers; 1092 shared, 4 constant, 0 local memory bytes; 100% occupancy
CC 2.0: 10 registers; 1036 shared, 68 constant, 0 local memory bytes; 100% occupancy

““"The Portland Group

Run the code, check results

® - o Gnuplot (window id : 0)
B PfE@a@QaQ

1 AR T T T T
'NCState1000.dat’ —+—
0.9 L 'NCState1001.dat’ —— _
'NCStatel002.dat' —%—
'NCState1003.dat" —=—

08 - 'NCState1004 dat' — = |

0.7

[.
0.6 {3
0.5

04 b

0.3

0.2 - -

01 ‘ | | | HHHHHHHHHHHHHHHHHHHHHHHHHHHHH
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 952212, 1.01899

Portland Group

T ——
Tuning the compute kernel

Use loop directives
module kmod
contains
subroutine vaddkernel(A,B,C) ! We know array size
real :: A(:,:), B(:,:), C(:,:)! dimension(2560,96)
integer :: i,
I$acc region
I1$acc do parallel
do j = 1,size(A,1)
1$acc do vector(96)
do i =1,size(A,2)
C(j,i) = A(j,i) + B (j,i)
enddo
enddo
I$acc end region
end subroutine
end i odule

The Portland -

97

Loop directive clauses for tuning
GPU kernel schedules

parallel [(width)] Parallelize the loop across the multi-
processors

vector [(width)] SIMD vectorize the loop within a multi-
processor

seq [(width)] Execute the loop sequentially on each
thread processor

independent lterations of this loop are data independent
of each other

unroll (factor) Unroll the loop factor times

cache (list) Try to place these variables in shared
memory

private (list) Allocate a copy of each variable in list for

each loop iteration

Run the code, check results

® - o Gnuplot (window id : 0)
B PfE@a@QaQ

1 AR T T T T
'NCState1000.dat’ —+—
0.9 L 'NCState1001.dat’ —— _
'NCStatel002.dat' —%—
'NCState1003.dat" —=—

08 - 'NCState1004 dat' — = |

0.7

[.
0.6 {3
0.5

04 b

0.3

0.2 - -

01 ‘ | | | HHHHHHHHHHHHHHHHHHHHHHHHHHHHH
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 952212, 1.01899

Portland Group

T —
Can any of the data movement be

optimized?

Look at the —Minfo=accel messages for clues to
see if any of the compiler generated data
movement is non-optimal.

Insert directives to override compiler generated
data movement.

Best solution: keep all data on the GPU and only
move off for |/O and message passing

subroutine timestep(Input,Result,M,N)
ull 2 ke reflected var’s visible
real, dimension(M,N) :: Input,Result
integer :: M,N
=) real, allocatable :: B,C,D
dimension(:,:) :: B,C,D

allocate(B(M,N),C(M,N),D(M,N))
B=2.0

call vaddkernel (Input,B,C)
m=) call kernel2 (C,D)
=) call kernel3 (D,Result)

deallocate(B,C,D)
end subroutine

Contains
|

subroutine vaddkernel(A,B,C)
real :: A(:,:),B(:,:),C(:,:)

— C(:,:) =A(:,:) + B (:,2)
=) ond subroutine
!

subroutine kernel2(C,D)
real :: C(:,:),D(:,:)

m=) < compute-intensive loops >

end subroutine

end module

Compute region directive clauses for tuning data
allocation and movement

reflected (list) Arguments already on GPU
copy (list) Copy in and out of GPU memory
copyin (list) Only copy in to GPU memory
copyout (list) Only copy out of GPU memory
local (list) Allocate locally on GPU

mirror (list) Allocation state on GPU = CPU

update device (list) | Update device copies of the arrays

update host (list) Update host copies of the arrays

Running the rest of the code

Now that all of the arrays live on the GPU, go
through the code and put !$acc region’s in.

Subroutine calls cannot be in regions
Moving data back to host:
— 1/0 cannot be in regions
— MPI| message passing cannot be in regions

Code inside of region must be parallel
— Non-parallel code in !$acc scalar regions

Timing / Profiling

How long does my program take to run?
» time ./myprogram

*How long do my kernels take to run?
» pgfortran —ta=nvidia,time

*Environment variables:

> export ACC_NOTIFY=1

> export NVDEBUG=1

cuda profiler settings

> export CUDA_PROFILE=1

> export CUDA_PROFILE_CONFIG= ~/cudaprof.cfg
> export CUDA PROFILE_CSV=1

> export CUDA_PROFILE_LOG= ~/cudaprof.log

"The Portland Grp

How did we make Vectors Work?

Compiler-to-Programmer Feedback — a classic “Virtuous Cycle”

|
' -
Listing
HPC >
e |- .
Y o
Cray
 Trace| = (LI

Compiler-to-Programmer Feedback
Incremental porting/tuning for GPUs

Directives, Options, RESTRUCTURING ==

-

~ &
Code J‘ I
Xi4 = Trace ‘{ J

Acc

Common Compiler Feedback Format

http://www.pgroup.com/ccff

Source
File pgprof

Linker } { pgextract J

.
v i Y

|
e

CCFF
Object Executable File
File File y

‘ File

T
PGPROF with CCFF Messages

File Settings Processes Wiew Sort Search Help
B8 €~ - [Find: & ¢ [HotSpot: >
| null IM o .
Line . fsrofwsm3. xgpuc. FS0
T B
254 |1 paddint 0 for negative values generated hy dynamics
255 |!
® 256 |1%$acc region do kernel & L
257 |1$acc private{numdt, mstep) & =
258 |1%acc private{rh,gs,denfac, rslope,rslope2,rslope3,rsiopeb) & =
259 |1$acc private{pgen, paut,pacr,pisd,pres,pcon,fall, falk) &
260 |1$acc private(x1,cpm,workl,work2,xni,gs0,n0sfac) &
261 |1%acc private{falkc,worklc,work2c, fallc)
®® 262 do j = jts, jte
® 263 do i = its, ite
® 264 do k = kts, kte
265 t(i,K,3)=th{i,k,3)*pii(i,K,3)
266 qci{i,K,3) = max(qci(i,k,33,0.0)
267 qrs(i,k,3) = max{grs{i,k,3),0.0)
268 enddo L]
269 | B
Sort By Line
oy
-~

1. Intensity = 0.0

2. Generating copy(q(its:ite kts:kte,jts:jte))
3. Generating copyinip(its:ite,kts:kte,jts:jte))
4. Generating copyin{w(its:ite,: jts:jte))

3. Generating copyin{den(its:ite,:;jts:jte))

. Generating copyin{delz{its:ite,: jts:jte))

Parallelism | Histogram Impi k | System Information

Browsing: . fwrf

e ——
General Compiler Feedback

How the function was compiled
nterprocedural optimizations
Profile-feedback runtime data

— Block execution counts

— Loop counts, range of counts
Compiler optimizations, missed opportunities
— Vectorization, parallelization
— Altcode, re-ordering of loops, inlining

— X64+GPU code generation, GPU kernel mapping,
data movement

Compute intensity — important for GPUs & Multi-core

prc)grg)enMP and Accelerator Directives

Main
use accel_lib

ISomp parallel private(ilo, iho, k, flux) num_threads(2)
do iter =1, 100
call acc_set_device_num(omp_get thread num(), ACC_DEVICE_NVIDIA)
if (first) then
dkm = km/omp_get thread num()
ilo = dkm *omp_get thread num() + 1
if (omp_get thread _num() + 1 == omp_get num_threads()) then
iho = km
else
iho = dkm*(omp_get_thread_num() + 1)
endif
endif
I$acc region
do k=ilo,iho

end do
'$acc end reglon

T —
Reference Materials

= PGI Accelerator programming model
— http://lwww.pgroup.com/lit/whitepapers/pgi_accel prog _model 1.3.pdf

= CUDA Fortran
— http://lwww.pgroup.com/lit/whitepapers/pgicudaforug.pdf

= CUDA-x86

— http://www.pgroup.com/resources/cuda-x86.htm

* Understanding the CUDA Threading Model

— http://lwww.pgroup.com/lit/articles/insider/v2n1a5.htm

"The Portland Grp

