

Debugging Essentials
via Allinea DDT

Ian Lumb

Senior Systems Engineer, Allinea Software Inc.

ilumb@allinea.com

OLCF Spring Training 2012

mailto:ilumb@allinea.com

Agenda

● Bugs and Debugging
● Debugging Essentials via Allinea DDT
● Live Demo

"Debugging is twice as hard as writing the code in
the first place. Therefore, if you write the code as

cleverly as possible, you are, by definition, not
smart enough to debug it."

Brian Kernighan

Software Challenges in HPC

● The relentless march towards larger machines ...
● Does your application scale?

– Can it perform efficiently/effectively – or does it crash?

● Hardware flux – multicore, GPU, Intel MIC, ARM, …
● Developing and maintaining code for many targets
● New execution models

– Are software changes introducing bugs?
● If so, how can they be fixed?

● Debugging is a vital piece of HPC development

Bugs in Practice

Some Types of Bugs

● Bohr bug
● Steady, dependable bug

● Heisenbug
● Vanishes when you try to debug (observe)

● Mandelbug
● Complexity and obscurity of the cause is so great that it

appears chaotic

● Schroedinbug
● First occurs after someone reads the source file and

deduces that it never worked, after which the program
ceases to work

A `New' Vernacular for Bugs

● Defect
● An incorrect program code

– A bug in the code

● Infection
● An incorrect program state

– A bug in the state

● Failure
● An observable incorrect program behaviour

– A bug in the behaviour

Zeller A., “Why Programs Fail”, 2nd Edition, 2009

TRAFFIC

● Debugging
● Transforming a broken program into a working one

● How?
● Track the problem
● Reproduce
● Automate - (and simplify) the test case
● Find origins – where could the “infection” be from?
● Focus – examine the origins
● Isolate – narrow down the origins
● Correct – fix and verify the testcase is successful

Zeller A., “Why Programs Fail”, 2nd Edition, 2009

How to Focus and Isolate

● A scientific process?
● Hypothesis, trial and observation, ...

● Requires the ability to understand what a program is doing
● Printf
● Command-line debuggers
● Graphical debuggers

● Other options
● Static analysis
● Race detection
● Valgrind
● Manual source code review

What are Debuggers?

● Tools to inspect the insides of an application whilst it is
running
● Ability to inspect process state

– Inspect process registers, and memory

– Inspect variables and stacktraces (nesting of function calls)

– Step line by line, function by function through an execution

– Stop at a line or function (breakpoint)

– Stop if a memory location changes

● Ideal to watch how a program is executed
– Less intrusive on the code than printf

– See exact line of crash – unlike printf

– Test more hypotheses at a time

How Debuggers Work

● Multiple methods of operation/implementation
● Interpreted interactive environments – Ruby, Perl, etc.

– Everything is under control of the implementation – easy access to the
state of the system

– Relatively easy extension to any interpreter

● Virtual/managed environments – eg. Java
– Public protocols hook into the virtual machine (ie. JDWP API)

● Insert breakpoint, inspect classes and data

● Native executables
– A harder challenge – binaries run wild under operating system control

● Examples: Eclipse, DDT, GDB, Allinea DDT

Debugging Parallel Applications

● The same need: observation, control, ...
● A complex environment – with complex problems

– More processes, more data
– More Heisenbugs – MPI communication library

introduces potential non-determinism
● Few options ...

– Cannot use printf or command line debuggers
● Some bugs only occur at scale

– Need to handle thousands of threads/processes
– Needs to be fast to use and easy to understand

● The same need: observation,
control, ...

● A complex environment –
with complex problems

– Explicit data transfer
between host and GPU

– Hierarchy of memory levels

– Grid/block layout and thread
scheduling

– Synchronization

– Massively fine-grained
parallel model

● Debugging options ...

Debugging Parallel GPU Applications

About Allinea

● HPC development tools company
● Flagship product Allinea DDT

– Now the leading debugger in parallel computing
– The scalable debugger

● Record holder for debugging software on largest machines
● Production use at extreme scale – and desktop

– Wide customer base
● Blue-chip engineering, government and academic research
● Strong collaborative relationships with customers and partners

● Graphical source level debugger
for
● Parallel, multi-threaded, scalar or

hybrid code

● C, C++, F90, Co-Array Fortran,
UPC

● Strong feature set
● Memory debugging

● Data analysis

● Managing concurrency
● Emphasizing differences

● Collective control

“Make as simple as possible, no
more”

Allinea DDT in a nutshell

Demo

● Crashes
● Memory errors and leaks
● Deadlocks
● Incorrect results
● GPU support

http://www.olcf.ornl.gov/kb_articles/software-jaguar-ddt/

http://www.allinea.com/downloads/ddt_training.tar.gz

http://www.olcf.ornl.gov/kb_articles/software-jaguar-ddt/
http://www.allinea.com/downloads/ddt_training.tar.gz

● Current status

– Software complexity
reflects hardware
complexity

● cuda-gdb
– Direct use

challenging
– Indirect use via a

debugger

Debugging Parallel CUDA Applications

• Supports
● CUDA toolkits 3.1 -- 3.2 – 4.0 -- 4.1

• Makes use of

– NVIDIA C/C++ compiler - nvcc

– NVIDIA debugger - cuda-gdb

• Execution model is unusual

– GUI work required to support 32-thread
units (warps) in blocks and grids

• Mixed GPU/CPU in one interface

– Interaction with CPUs

– Easy to switch between contexts (stacks,
threads, data...)

– Support multiple nodes

Allinea DDT and CUDA

• The first graphical debugger for NVIDIA CUDA

‒ Simple and easy to use

‒ As easy as debugging ordinary (i.e., non-GPU) code

• Core debugging capability

‒ Breakpoints

‒ Stepping warps

‒ Viewing data and thread stacks within the GPU

• Supports advanced features

‒ CUDA memcheck – memory debugging for CUDA

Allinea DDT and CUDA
Core Debugging Capabilities

• View all existing threads in parallel stack view

‒ At one glance, see all GPU and CPU threads together

‒ Links with thread selection

‒ Pick a tree node to select one of the CUDA threads at that location

• Full MPI support

– See GPU and CPU threads from multiple nodes

Allinea DDT and CUDA
Seamless Integration within the GUI

• Has my thread calculated the output yet ? Is it to be
scheduled ?

‒ Contrast with scalar programming

• Keep an eye on your kernel progress across processes

Allinea DDT and CUDA
Kernel Progress

Array Visualization Support

● Browse arrays
● 1, 2, 3, … dimensions
● Table view

● Filtering
● Look for an outlier

● Export
● Save to a

spreadsheet

Summary

● Bugs and Debugging
● Debugging Essentials via Allinea DDT
● Live Demo

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	CUDA Programming Where do bugs come from ?
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	CUDA Debugging Existing options
	Allinea DDT and CUDA Successful rework
	Allinea DDT and CUDA Core debugging capabilities
	Allinea DDT and CUDA Seamless integration within the GUI
	Allinea DDT and CUDA Kernel progress
	Slide 23
	Slide 24

