Linear Algebra Subroutines for
Heterogeneous Environments

Bill Brouwer
Research Computing and Cyberinfrastructure
(RCC), PSU

wjb19@psu.edu

Outline

*Introduction
*Motivation
Applications
* Fractional Quantum Hall Effect
* Image Processing & Radon
» Drug Delivery
» Large Scale MD
‘Implementation
Challenges
 Amdahl's law revisited
 Communication
* Performance
*Solution

wjb19@psu.edu

Introduction

*Research Computing and Cyberinfrastructure (RCC) at PSU
provides high performance computing services :

 Hardware
e Software

* Proprietary/Open Source
e Consultation

* Numerical

» Software development

*PhD's, system admins and programmers work together to provide
these services to academics while performing independent
research

Many users are interested in using newly acquired NVIDIA GPU
cluster for electronic structure and material science, difficult to
leverage resources

wjb19@psu.edu

Motivation

*Scientists like to focus on their research, not necessarily interested
and/or experienced in the GPU architecture

*\We support and use a variety of excellent GPU enabled resources :
* Quantum Espresso (phiGEMM)
 PetaChem
- MAGMA
- LAMMPS
 OpenCV

However many users wish to both scale further & work on unique
subsets of (for example) condensed matter physics

*Frequently users are concerned with :
* Many smaller matrices (eg., FQHE)
« Several large matrices (eg,. DFT)

wjb19@psu.edu

Outline

*Introduction
*Motivation
Applications
* Fractional Quantum Hall Effect
* Image Processing & Radon
» Drug Delivery
» Large Scale MD
‘Implementation
Challenges
 Amdahl's law revisited
 Communication
* Performance
*Solution

wjb19@psu.edu

Applications : FQHE of v=5/2

FQHE at filling fraction v=5/2 is attributed to a 3 particle interaction
between electrons; ground state is the Pfaffian

Believed to support excitations that exhibit non-Abelian statistics, so
far not observed in any other known systems; predictions abound,
experiments inconclusive

One way forward is numerical studies of competing variational wave
functions that contain intricate correlations

Following arrangement emerges at low energy: electrons align in two
sets of orbitals, electrons within same set repel more.

stronger
repulsion

stronger
repulsion

wjb19@psu.edu

Applications : FQHE of v=5/2

« Each layer is a known many body composite fermion function of N/2
particles; difficulty is to combine them into a single antisymmetric
function of N particles

« Each evaluation of the whole wave function requires about N! / (N/2)!
(N/2)! evaluations

« Assign the evaluation of these smaller N/2 particle functions to
different GPU threads —. many small matrices, each thread
assigned complete matrix, performs LU to find determinant

Jastrow

¥ (1,2,3,4,5,6) = [Artisymmetric] » Syummetrization {¢(1,2,3) ¢ (4,5,6)}

Symmetm'zat'ion {¢ (1121 3)¢(4151 6)} = ¢(1721 3) X ¢(4: 57 6) +¢(47 2: 3) X ¢(1:5a 6)
"'+¢(214a3) X ¢(1’576)+¢(1?2’4) X ¢(3’5’6)
-+ ¢(5,2,3) x¢(4,1,6) + ¢(1,5,3) x ¢(4,2,6)...

wjb19@psu.edu

Applications : Radon Transform

* A fundamental, geometric transform relevant in coherent noise

removal, spectral editing and other domains eg., computed
tomography

« Used In this case to filter figure images, extracted from documents,
for incorporation/indexing of figure data in search engine (CiteSeerX)

« (Beylkin) [a image can be viewed as the superposition of different
events concentrated along straight lines; RT maps events into points]

+o0o p4oo)
f f d(x,y)o[ysin(f) + x cos(#) — pldxdy
— O — 0

wjb19@psu.edu

Applications : Radon Transform

Noisy Image Radon transform

10 20 30 40 50 0 70 a0 10 20 20 40 2] B0 70 a0 El

Results of square Results of rectangular
window & iradon window & iradon wjb19@psu. edu

Applications : Radon Transform

 (Beylkin) algorithms for numerical evaluation of transform & inverse,
based on linear algebra and FFT, consider a simple representation of
three sequences & slopes:

Slope -1 0 +1
* * oL *\ /*/ _____ *
* * _ _ .- * * | -
* % _ oo /V \ _____
\
01 ----- nnI n n+l ----- N-1

e Then a transformed point:
y(n)=R_*x(n-1) + R, *x(n) + R_ *x(n+1)

« Many small R matrix multiplies (CUDA 4.1/GEMM)

wjb19@psu.edu

Applications : Lennard Jones
Fluid/MD

«Calculation of interactions between all particles through a
traditional LJ 6-12 potential, for simulation of combustion properties
In propulsion elements :

12 6
))
Vi = 4 <(a-) ‘(a))

Fij — _VVU
*Using the Verlet algorithm to find new positions and velocities
(

Poiq =Ty + Dy AL + E&nAtz

< an+1 = Z Fij(Fn+1)

Lﬁn+1 — 1_7)11 + E (Ein + an+1)At

wjb19@psu.edu

Applications : Drug Delivery

*Pyrimidine and purine base chemical
analogs have long been used in cancer
treatment, interfering with DNA synthesis

Much work has been devoted to
understanding exact mechanism of
interference, but also delivery methods
eg., surface attachment to biomaterials

*The latter can be highly : :
disordered/glassy like; requires very large X e
numbers of atoms in DFT or CP " '

L arge Matrix evaluations/algorithms
needed, particularly diagonalization

XCrySDen: ;:n'lilrIZ)(51'.)(51"_1»l.i‘l‘.''.k

Click-and-hold
Click-andclick |||

Rotation ’—
Step: Lt
10

| -180 0) 180 |

(==

wjb19@psu.edu

Outline

*Introduction
*Motivation
*Applications
* Fractional Quantum Hall Effect
* Image Processing & Radon
* Drug Delivery
» Large Scale MD
‘Iimplementation
Challenges
 Amdahl's law revisited
 Communication
* Performance
*Solution

wjb19@psu.edu

Distributed Heterogeneous
Hardware

e Given the performance and scaling required by these applications,

Ideally we seek to use all ~ three levels of parallelism across clusters
at PSU

wjb19@psu.edu

Compute Elements

- FERMI + CUDA 4.1 _
 Unified Virtual Addressing

 GPUDirect
 Pinned Memory _

. allows third party driver(s) to share pinned
memory

« Configurable L1 Cache/Shared Memory
* NVVP profiler
 LLVM compiler
« Mellanox IB + OpenMPI
 GPUdirect support
 x86 + OpenMP/pThreads/SSE

wjb19@psu.edu

Outline

*Introduction
*Motivation
*Applications
* Fractional Quantum Hall Effect
* Image Processing & Radon
* Drug Delivery
» Large Scale MD
‘Implementation
Challenges
 Amdahl's law revisited
 Communication
* Performance
*Solution

wjb19@psu.edu

Amdahl's Law revisited

*No less relevant for GPU; in the limit as processors N - oo we find the
maximum performance improvement :

1/(1-P)
*It is helpful to see the 3dB points for this limit ie., the number of processing
elements N__ required to achieve (1/V2)*max = 1/(v¥2*(1-P)); equating with

Amdabhl's law & after some algebra :
N, = 1/((1-P)*(vV2-1))

1/

300
250

200

1/2

Z 150

100

[|
50 - H
m u =

0
0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

Parallel code fraction P wjb19@psu.edu

Amdahl's law : implications

*Points to note from the graph :
P~ 0.90, we can benefit from ~ 20 elements
P~ 0.99, we can benefit from ~ 256 elements
« P - 1, we approach the “embarrassingly parallel” limit
P~ 1, performance improvement directly proportional to elements
P ~ 1 implies independent or batch processes

*Want at least P ~ 0.9 to justify work of porting code to accelerator
*For many problems in sciences, as characteristic size increases, P
approaches 1 and scaling benefits outweigh cost of porting code (cf

weak vs strong scaling)

* Regardless, doesn't remove the need to profile and clearly target
suitable sections of serial code

wjb19@psu.edu

Profiling w/ Valgrind

[wibl9@lionxf scratch]$ valgrind —--tool=callgrind ./psktm.x
[wjbl9@lionxf scratch]$ callgrind_annotate —--inclusive=yes callgrind.out.3853

Profile data file 'callgrind.out.3853'" (creator: callgrind-3.5.0)

I1 cache:
D1 cache:
L2 cache:

Parallelizable worker

Timerange: Basic block 0 — 2628034011 function is 99.5% of

Trigger: Program termination i i

Profiled target: ./psktm.x (PID 3853, part 1) tOtal Instructions
executed ,

20,043,133,545 2?272:0x0000003128400a70 [/1lib64/1d-2.5.s0]
20,042,523,959 ?272?7:0x0000000000401330 [/gpfs/scratch/wjbl9/psktm.x]
20,042,522,144 ?7?7?: (below main) [/1lib64/libc-2.5.s50]
20,042 ,493+687—/gpfs/scratch/wjbl9/demoA. c:main
20,042,473,687 demoA.c:main [/gpfs/scratch/wjbl9/psktm.x]
934,044,644 psktmCPU.c:ktmMigrationCPU [/gpfs/scratch/wjbl9/ Tx]
19, 934,047, 644—Fgpfeitseratch/wible/psktmCRUerkEmMigrat TonCPU
6,359,083,826 ???:sqrtf [/gpfs/scratch/w3bl9/psktm.x]
4,402,442,574 ?272:sqrtf.L [/gpfs/scratch/wjbl9/psktm.x]
104,966,265 demoA.c:fileSizeFourBytes [/gpfs/scratch/wjbl9/psktm.x]

If we wish to scale outside a single node, we must use some form of interprocess

communication eg., MPI
wjb19@psu.edu

Outline

*Introduction
*Motivation
Applications
* Fractional Quantum Hall
* Image processing & Radon
* Drug Delivery
» Large Scale MD
‘Implementation
Challenges
 Amdahl's law revisited
 Communication
* Performance
*Solution

wjb19@psu.edu

Communication : MPI Grid

« MPI allows one to associate different addressing schemes to processes
within a group, necessary for anything but modest tiling schemes

« Either a graph structure or a (Cartesian) grid; need to express:
« Dimensions {size,period}
« Option to have processes reordered optimally within grid
« Method to establish Cartesian grid cart_comm :

int MPI_Cart_create (MPI_Comm old_comm, int number_of dims,
int dim_sizes[], int wrap_around[], int reorder, MPI_Comm¥*
cart_comm)

 Remains to be seen how this optimal reordering works with GPUdirect,
however bandwidths for simple transactions look promising...

wjb19@psu.edu

Communication : Inifiniband/MPI

« Initial results encouraging for performing network transfers on simple payloads:

[wjbl9@lionga scratch]$ mpicc -I/usr/global/cuda/4.1/cuda/include

-L/usr/global/cuda/4.1/cuda/1ib64 mpi_pinned.c -lcudart

[wijbl9@lionga scratch]$ gsub test_mpi.sh
2134 .lionga.rcc.psu.edu

[wijbl9@lionga scratch]$ more test_mpi.sh.o02134

Process 3 is
Process 0 is
Process 1 is
Process 2 is
Host—->device
Host—>device
Host->device
Host—>device

on lionga7.hpc.rcc.psu.edu
on lionga8.hpc.rcc.psu.edu
on lionga8.hpc.rcc.psu.edu
on lionga8.hpc.rcc.psu.edu
bandwidth for process 3: 2369.949046 MB/sec
bandwidth for process 1: 1847.745750 MB/sec
bandwidth for process 2: 1688.932426 MB/sec
bandwidth for process 0: 1613.475749 MB/sec

MPI send/recv bandwidth: 4866.416857 MB/sec

« Single IOH supports 36 PCle lanes, NVIDIA recommend 16 per device;
however IOH doesn't currently support P2P between GPU devices on different

chipsets

wjb19@psu.edu

Communication : P2P

*For this reason, difficult to achieve peak transfer rates between GPU's
separated by QPI eqg.,

>cudaMemcpy between GPUO and GPUl: 316.54 MB/s
>cudaMemcpy between GPUO and GPU2: 316.55 MB/s
>cudaMemcpy between GPUl and GPUO: 316.86 MB/s
>cudaMemcpy between GPU2 and GPUO: 316.93 MB/s
>cudaMemcpy between GPUl and GPU2: 3699.74 MB/s
>cudaMemcpy between GPU2 and GPUl: 3669.23 MB/s

[wjbl9@liongal ~]$ lspci —-tvv
—+-[0000:12] —+-01.0-[1d] -

| +-02.0-[1le]—-

| +-03.0-[17-1b]----00.0-[18-1b]--+-04.0-[19]—-

| | +-10.0-[1la]—--

| | \-14.0-[1b]--+-00.0 nVidia Corporation Device 1091

| | \-00.1 nvVidia Corporation GF11l0 High...

| +-04.0-[1f]—-

| +-05.0-[20]—-

| +-06.0-[21]—--

| +-07.0-[13-16]——--00.0-[14-16]—--+-04.0-[15]-—+-00.0 nVidia Corporation Device 1091

| | | \-00.1 nvVidia Corporation GF11l0 High...
+-05.0-[05]-——=00.0 Mellanox Technologies MT26438 [ConnectX VPI PCIe 2.0 5GT/s ...
+-06.0-[0e]—-
+-07.0-[06-0a]———-00.0-[07-0a]——-+-04.0-[08]—-—-+-00.0 nVidia Corporation Device 1091
| | \-00.1 nVvidia Corporatlon GF 10
| +-10.0-[09] — 19@psu edu
|

\-14.0-[0a]—--

Perf . Optimization

*Powerful profilers available, now providing excellent hints for
Improvements
*Performance and scaling still tied to knowledge of architecture

EX 10:03AM @b

testMD - Compute Visual Profiler - [Session5 - Device_0 - Context_0 [CUDA]] -
View Options Window Help

AARREOD=EE

@ File Session

e @R

= hrofier Output (] sammary wble @]
g o Method [#caiis [Gpu time (us) T [5GPU time [glob mem red ® Progress Information Ty 4)) B9 10:47AM @ubill O
1 |NBL_GPU 289 | 3.7513e+06 76.2 0.00579534 File View Run Help
o — T
o 2 |constr CELL cnt 289 361518 7.34 0.000204654 | i & & |8 ay © I B
o 3_ kernel_comp 2882 |275706 56 0622392 @ *New Session 2@] =0 H. Properties 3 |i# Detail Graphs = O
o 4 |zero NBL 289 32079.3 0.65 0.00462057 s 255 se 755 105 1255 155 1755 ¥ | o e o o o
5 |sum_gpu 6914 31597.6 0.64 0.0119676
& — [=l Process: 2242 a— -
o 6 |kernel_acc_int 1 30064.6 0.61 0.0981705 [l Thread: 329780160
7 Jopu vl scole 2031 16718 0 oosareas Furtme 201 s A A AL | = Bt
- '8 |fused_sum_gpu 576 10956.8 022 1.21822 Driver API Session 20635
=] |
9 [zero0 5185 8285.33 0.16 0.00924815 | =1 [0] Tesla M2090 Timeline 20.526 s
) E kernel_potential 288 7292.38 0.14 6.8587 L Eoiizrt 2 (G |
— ooy e oo 002 - vaorz F MemCpy (HtoD) O | O Kerne 13.233s
110 : : : ¥ MemCpy (DtoH) e A e e e Utilization 64.1%
12|zero_CELL_ent 289 995.488 0.02 0.149514 = Compute sl LLLLLLLLL Invocations 300
EmemcpyHtuD 9546 8680.78 0.17
14 memcpyDtoH 5185 7249.8 0.14 T 14.4% [2999] k...
— F 8.5% [300] cons...
T 1.2% [299] kem...
4 F 1.2% [1] kemel...

@

Analysis

* Memory copy time = 0.3 % of total GPU time

+ Kernel taking maximum time = NBL_GPU (76.2% of total GPU time)
* Memory copy taking maximum time = memcpyHtoD (0.2% of total
+ Total overlap time in GPU = 11.1 micro sec. (0.0% of total GPU time)

Hint(s)

+ Double click on the kernel name in the Summary Table to ana
« Analyze kernel NBL_GPU
* Consider using page-locked memory to attain higher bandwidth betw
performance.
Refer to the "Page-Locked Host Memory"” section in the "CUDA C Runt.

T 0.8% [7194] su...

T 0.3% [598] fuse...
T 0.3% [2999] gp...

F 0.1% [300] zero...
T 0.1% [5391] zer...
T 0.0% [300] binG...
T 0.0% [300] zero...
F 0.0% [36] mem...

=1 Ctrmnmar

L]

[51

]

Output

i@ Analysis |H Details [! Console 5§ ‘. Settings|

firing kernel kernel_comp
kernel result : no error
firing kernel kernel_comp
kernel result : no error
firing kernel NBL_GPU
kernel result : no error

computeprof

W R %[k 6P &2 B rgr =0

viper runhandler [Program] /gpfs/home/wjb19/md_project/MD CUDA/bin/gears

Ll

|

wjb19@psu.edu

Perf : Precision

*Obvious performance differences btwn single and double precision,
much easier to generate fpe in the former

*Solution —» mixed precision, algorithms for correction & error checking,
removing need for oft-times painful debug

#ifndef _FPE DEBUG_INFO
#define _FPE_DEBUG_INFO_ printf ("fpe detected in %s around %d,

dump follows :\n", FILE , LINE);
#endif
#define fpe(x) (isnan(x) || isinf (x))

#ifdef VERBOSE_ DEBUG
if (fpe(FTx)) {
_FPE DEBUG_INFO
printf ("FTx : %f threadIdx %i\n",FTx,threadIdx.x);
asm(“trap;”);

#endif wjb19@psu.edu

Perf : Driver & Kernel

Driver is (for most of us) a black box, signals can elicit undesirous/non-
performant responses

[wjbl9@liongal src]$ strace -p 16576

Process 16576 attached - interrupt to quit

wait4d (-1, Ox7ffflbfbed6c, 0, NULL) = ? ERESTARTSYS (To be
restarted)

——— SIGHUP (Hangup) @ 0O (0) -———

rt_sigaction (SIGHUP, {0x4fac80, [HUP], SA RESTORER|SA_RESTART,
0x3d4d232980}, {0x4fac80, [HUP], SA_RESTORER|SA_RESTART,
0x3d4d232980}, 8) =0

Driver/kernel bugs, conflicts

[wjbl9@teslal bin]$ more /proc/driver/nvidia/version

NVRM version: NVIDIA UNIX x86_64 Kernel Module 285.05.09 Fri Sep
23 17:31:57 PDT 2011

GCC version: gcc version 4.1.2 20080704 (Red Hat 4.1.2-51)
[wjbl9@teslal bin]$ uname -r

2.6.18-274.7.1.el15 *largely due to user install error :) wjb19@psu . edu

Perf : Compiler

o Compiler options (indeed compiler choice : ——nvvm —--open64) can
make huge differences :
e Fastmath (—--use fast math)

e Study output of ptx optimizing assembler eg., for register usage
——ptxas—-options=-v

ptxas info : Compiling entry function '_Z7NBL_GPUPiS_S_S_S_' for
'sm_20'
ptxas info : Function properties for _Z7NBL_GPUPiS_S_S_S_

768 bytes stack frame, 0 bytes spill stores, 0 bytes spill loads
ptxas info : Function properties for _Z9make_int4iijiiiji

40 bytes stack frame, 0 bytes spill stores, 0 bytes spill loads
ptxas info : Function properties for _ _int_as_float

0 bytes stack frame, 0 bytes spill stores, 0 bytes spill loads
ptxas info : Function properties for fabsf

0 bytes stack frame, 0 bytes spill stores, 0 bytes spill loads
ptxas info : Function properties for sqrtf

0 bytes stack frame, 0 bytes spill stores, 0 bytes spill loads
ptxas info : Used 49 registers, 3072+0 bytes smem, 72 bytes cmem[0], 48

bytes cmem[14]

wjb19@psu.edu

Outline

*Introduction
*Motivation
Applications
* Fractional Quantum Hall
* Image processing & Radon
* Drug Delivery
» Large Scale MD
‘Implementation
Challenges
 Amdahl's law revisited
 Communication
* Performance
*Solution

wjb19@psu.edu

Solution/Summary

*Overall a fairly costly process to create a distributed CUDA/GPU
application, particularly unappealing for scientists in other domains with
different (niche) interests

*NVIDIA refer to the overall porting process as APOD -
assess,parallelize,optimize,deploy

*To accomplish this cycle, developers working with scientists must
balance many factors:

 Profiling & readying serial code for porting
« Optimal tiling &communication

* P2P,Network,Host/device
e Compiler and other optimizations
 Memory hierarchy & architecture
» Application/kernel/driver interactions
* Precision etc etc

wjb19@psu.edu

Solution/Summary

*Developers go through these steps countless times, would be nice
to distill the knowledge into automatically tuned libraries, helped
by the fact that :

*Many researchers in electronic/atomic/molecular computational
sciences use linear algebra subroutines, both large and small in
nature, seeking both high performance and scaling in traditional
clusters with co-processors/accelerators

*Given the difficulty of writing applications for scaling new science
from scratch, much more conducive to produce libraries

«Can we augment and extend these in the spirit of ATLAS to tune
automatically, performing numerical experiments to select optimal
tiling, communication patterns, mixtures of precision etc etc??

wjb19@psu.edu

Acknowledgements

PSU Collaborators :

* Lee Giles (CiteSeer)

» Jason Holmes,Michael Fenn (RCC)

» Sreejith Jaya (Physics)

» Jim Adair,Amra Tabakovic (MatScEng)
» Jorge Sofo (Physics)

* Jim Kubicki (Geoscience)

* Pierre-Yves Taunay (Aero)

* Nandhini Chandramoorthy (CSE)

wjb19@psu.edu

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

