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Deep Dive into GPU Programming

» Experience with Optimizing Tensor Contractions

» How to think about programming GPUs
m CUDA, OpenCL, ...

» Lessons Learned
» Computer scientist perspective
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Tensor Contraction Expressions — CCSD(T)
Rla,b,c,1,]J,k] —= TIlLl,k,c,b]*V[1l,a,1,]]

sd2_1::3[h3, h2, k1, p6, pS, pdl— =t2[p7, p4, h1, h2] x v2[p7, h3, p6, p5]
sd2_2::3[h2, k1, k3, p6, pS, p4dl— = t2[p7, p4, h1, h2] x v2[p7, h3, p6, p5]
sd2_3::3[h2, h3, k1, p6, p5, p4dl+ =t2[p7, p4, h1, h2] x v2[p7, h3, p6, p5]
sd2_4::3[h3, h2, k1, p6, p4, pS1+ = t2[p7, p4, h1, h2] x v2[p7, h3, p6, p5]
sd2_5:13[h2, h1, h3, p6, p4, pS1+ = t2[p7, p4, h1, h2] x v2[p7, h3, p6, p5]
sd2_6::3[h2, h3, k1, p6, p4, p5]— = t2[p7, p4, h1, h2] x v2[p7, h3, p6, p5]
sd2_7:t3[h3, h2, k1, p4, p6, p5]— = t2[p7, p4, k1, h2] x v2[p7, h3, p6, pS]
sd2_8:13[h2, hl, k3, p4, p6, p5]— = t2[p7, p4, hl, h2] x v2[p7, h3, p6, p5]
sd2_9::3[h2, h3, k1, p4, pb, pS]+ =t2[p7, p4, k1, h2] x v2[p7, h3, p6, pS]
o
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Matrix Multiplication Formulation

I{[arkhlzrirjf}{] - = qulrkrchjj]*vmlwiirirj]

\

T’ [k,c,b,1]1=T[k,1,c,b]
v'[l,a,i,j]1=V[a,1,1,]]
R’[k,c,b,a,1,3]1=T"[k,c,b,1]1*V'[1,a,1,]]

R[afbfcliljlk]_=R’[kfcfbfafifj]

o
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Direct GPU Implementation
(Tesla T10)
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Steps

» Manage GPU memory

» Transfer data between CPU and GPU
» Map work to thread blocks and threads
» Decode mapping in each thread

» Execute concurrently

> ...

» Party!

"

Pacific Northwest
NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965



R[arb!crirj!k] -= T[l!kfcrb]*v[lrarirj]

Host Code Aspects

Avoid frequent allocation/deallocation (pool allocator)

double *devR=allocGPUmem(size_of R); //similarly devT,
devV

CPU does work common to all threads (dimension offset for C arrays)
inline int offsetR(a,b,c,1i,3.k) {
return Rld_a*a + Rld_b*b + .. + R1ld_k*k;

}
inline int offsetT(1l,k,c,b) {
return T1d_1*1 + Tld_k*k + Tld_c*c + Tld_b*b;
}
inline int offsetV(l,a,i,j) {
return V1d_1*1 + V1d a*a + V1d_i*1i + V1d_j*3j;
}
Rld_k = ad*bd*cd*id*jd; //similarly R1d_*,Tld_*,Vvid_*
kernel code<<<dimGrid,dimBlock, 0,streams[1]>>> (devR,

devT,devV,k,ad, ..,1d,R14 K, ..,Rld_a,T1d_b, . .T1ld_1, ,
vid_j,..,V1d_1); %/
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R[arblcrirj!k] -= T[l!k:crb]*v[lrarirj]

Parallelization Across Thread Blocks

Tile one dimension of each tensor
dim2 dimGrid(ceil (cd/16)*bd,ceil (ad/16)*id*jd) ;

16x16 work for each thread block
dim2 dimBlock (16, 16);

Decode work to be done on each thread

const int tidx=threadIdx.x, tidy=threadIdx.vy;

//below: determine indices to compute

c=restl%cd; restl=restl/cd; b=restl%bd; restl=restl/
bd; kT=restl*1l6;

j=rest2%jd; rest2=rest2/jd;

i=rest2%id; rest2=rest2/id; aT=rest2*16;

k = kT+tidy;

a = aT+tidx; ‘367///
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10

R[arb!crirj!k] -= T[l!kfcrb]*v[lrarirj]

Baseline Host Implementation

Copy inputs, invoke kernel, copy output

{

double*devR=allocGPUmem(size_of_R);//similarly devT,

devV
int R1d k

int Tld b =

int Vvld_i

void tcHost (R, T, V,
double *R,

*

*V; int ad, bd, cd,

ad*bd*cd*id*jd;
ld*kd*cd;
ad*1ld;

memcpyHosttoDevice (devR, R);

kernelCode<<<dimGrid, dimBlock>>> (devR, devT,devV, k, ad
,..,1d,R1d_k,..,Rld_a,Tld_b,..,T1ld_1,vld_i, ..,

vlid 1) ;
memcpyDeviceToHost (R,devR) ;
//release allocated memory

ad, bd, cd, id, 3jd, kd, 14d)

id, jd, kd, 1d;

//similarly RI1d_ 1, ...
//similarly R1d_c, ...
//similarly Vvid_a, ...
//similarly devT,devV
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R[a;b;c:irj!k] -

Kernel Code (l)

Set things up for each thread

- T[l!klc.fb] *V[lfa’i’j]

void kernelCode(devR,devT,devV,ad, .., 1d,
Rl1d_k,..,Rld_a,Tld_b,..Tld_1,v1ld_3j,..,v1ld_1)
int ad,..,1d,Rld k,..Rld_a,Tld b, ..Tld_1,v1ld_j,
double *devR, *devT, *devV;
{
_ shared_ double shmT[1l6][1l6], shmV[1l6][1l6];
int restl=blockIdx.x, restZ2=blockIdx.vy;
double tlocal=0;
const int tidx=threadldx.x, tidy=threadIdx.y:;
//below: determine indices to compute

bd; kT=restl*1l6;
j=rest2%jd; rest2=rest2/jd;
i=rest2%id; restZ=rest2/id; aT=rest2*16;
k = kT+tidy;
a = aT+tidx;

c=restl%cd; restl=restl/cd; b=restl%bd; restl=restl/

..V1ld_1;
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Kernel

R[a;b;c:irj!k]

Code (ll)

Execute the loop

fo

}
if

r(int 1T=0; 1T<ld; 1T+=16) {
//below: copy input into shared memory
if (k < kd) {
Tl=tidx+1T;
if (Tl<1ld)
shmT[tidy] [tidx]=devT[offsetT (1T, k,c,b)];
}
if (a < ad) {
Tl=tidy+1T;
if (Tl<1ld)
shmv[tidy] [tidx]=devV[offsetV(1T,a,1i,3)]1;
}
__syncthreads () ;
//below: compute
if (k<kd && a<ad)
tlocal += shmT([tidy,:] * shmV[:,tidx];
__syncthreads () ;

(k<kd && a<ad)
devR[offsetR(a,b,c,1,j.,k)] += tlocal;

-= T[l!klc.fb] *V[lfa’i’j]

S
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R[a:b!c:i!j!k] -= T[l!kfcrb]*v[l:arirj]

Index Combining

x= (i,3)

R[la,b,c,x,k] -= T[1l,k,c,b]l*VI[]l, a,x]

» Index decoding is expensive
m Duplicated across threads
m Division and modulo arithmetic
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Dimension Flattening

R[la,b,c,x,k] -= T[1l,k,¢c,bl*VI[]1l, a,x]

dim2 dimGrid(ceil(cd/16)*bd,ceil (ad/16)*id*jd);

const int tidx=threadIdx.x,

c=restl%cd;
bd; kT=restl*16;

j=rest2%jd; rest2=rest2/jq4;

i=rest2%id; rest2=rest2/1id;

k = kT+tidy;

a = aT+tidx;

tidy=threadIdx.vy;
//below: determine indices to compute
restl=restl/cd; b=restl%bd;

aT=rest2*16;

restl=restl/

\ 4

Maximize full thread blocks

dim2 dimGrid(ceil (cd*bd/16),

ceil (ad*xd/16)) ;

rest=1d_vy; k=rest%kd;
b = rest;
rest=1d _X; a=rest%ad;

//below: determine indices to compute
rest/=kd;

rest/=ad; x =

c=rest%cd; rest/=cd;

rest;
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R[la,b,c,x,k] -= T[1l,k,¢c,bl*VI[]1l, a,x]

Dimension Flattening

B
Contracted index Baseline approach works
i well only when index
dimensions are multiple
I igher of the thread block
A dimension C+=A*B configuration. We flatten
than A and B
the loops and we
e o recreate them of the
- — |nefficiency €+—————__ . y .
Y right” size, with some

index operations -
increase of index
Thread Blocks operations but better

B H utilization
"

Thread Blocks
C

——BirmeRston C+=A"B

S
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R[la,b,c,x,k] -= T[1l,k,¢c,bl*VI[]1l, a,x]

Pipelining

Overlap data transfer and computation
cudaStream t streams[kd];
for (k=0; k<kd; ++k) cudaStreamCreate(&streams[k]):;
for (k=0; k<kd; ++k)
kernelCodeFlat<<<dimGrid,dimBlock, 0, streams [k]>>> (
devR, devT,devV, k,ad, .., 1d,R1d_k, ..,R1d_a,
Tld b, ..Tl1d_1,vld_x,..,vld_1,total_x, total_v);
cudaMemcpyAsync (copyR+R1d_k*k, devR+Rld_k*k, R1ld_k,
cudaMemcpyDeviceToHost, streams[k]);

}
for (k=0; k<kd; k++) {
while (cudaStreamQuery(streams[k]) != cudaSuccess)
{}
//add or subtract copyR into R

}

//destroy streams and release allocated memory
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Pipelining

» We can avoid the O(N®) copy IN and just have the copy
OUT and then accumulate on the host

» We can create “streams” of kernels using one loop
dimension and asynchronously copy out partial data

Execute + acc

Execute
“Host Support”

Host Accumulates

Execute || || || Pipeline of “Host Support

Copy Data Out GPU/PCl express/ and stre@s‘(

|| || Pacific Northwest

NATIONAL LABORATORY

Host Accumulates ||
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R[la,b,c,x,k] -= T[1l,k,¢c,bl*VI[]1l, a,x]

CPU-GPU Hybrid Execution

Host has more many cores — use them

int count=0;

/*nxtask () gets and increments the "next" value 1in a
global location atomically*/

int next=nxtask/() ;

for (all values of a, b, ¢, 1, j, k) {

if (next==count) {

//calculate and update energy values
next=nxtask() ;

}

count+=1;
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What did we do?

» Optimized memory allocation

» Offload redundant calculations to CPUs
» Index combining to reduce overhead

» Flatten to maximize full thread blocks

» Pipeline data transfer with computation

7
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Single Tile Performance

500

450 -

400 -
350

300 -

250 -

200 -

Time (ms)

150 -

100 -
50 -

0 -
CuBlasDgemm Baseline Flattening Flattening + Pipeline

M 16,16,16,16,16,16 ™17,17,17,16,16,16

» Optimizations help
» Greater improvements for irregular sizes

o
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CCSD(T) - Results for 60 nodes GPU and CPU
— Tesla C1060

120 Two level Hybrid execution
GPUs share the PCI bus

100 ] \
80 One level Hybrid execution

GPU performs contraction and \

CPU accumulates

Minutes to Completion
(@]
o

40 -
20 -
O i
1 core 2 cores 4 cores  8cores 1 GPU 2 GPUs +
(1 socket) (2 sockets) 6 cores
Double precision calculations for the
chromophore of green fluorescent protein \g/
(GFP) with 284 and 476 basis functions. In Pacific Northwest

NATIONAL LABORATORY

all calculations core electrons were not

21 | correlated.
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Fermi GPU
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Fermi GPU Features

» More FLOPS for the same PCle bandwidth
» Larger register file size

» Larger shared memory

» Cache

» Bi-direction PCle transfer

o
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R[a,b,c,x,k] -= T[1,k,c,bl*VI[]1, a,x]

Performance Estimate

0.61 ms| |3.56ms| 1.69 ms

‘GPU comp C"
Copy OutC" |
CPUAccC |

__________________________________________________________

Future GPUs Fermi and PCI Exp 2.0 (estimate for stream version no host support)

0.61 ms 1.69 ms ~0.6 ms 1.69 ms
Copy in A&B .~ concurrent
Copy in C : i — Bi-directional
GPU comp C 5 '

| copies
Copy out C



Minimize PCle Data Transfer

Keep intermediates in memory
for (1) {
/* repeat setup operations as above loop*/
/*but with T3d instead of T3s*/

ccsd_t_doubles_1(); //on GPU
/* ... */
}
for (1) {
/* repeat setup operations as in the above loop*/
ccsd_t doubles 2(); //on GPU
/*¥ L. */

}
energy += compute_energy (hostT3s, hostT3d);

Pacific Northwest

NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965



R[la,b,c,x,k] -= T[1l,k,¢c,bl*VI[]1l, a,x]

Register Tiling

__shared__ double shmT[64] [1l6], shmV[1l6][64];

» Just painful, but mechanical (see reference)
» Improves data reuse
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R[la,b,c,x,k] -= T[1l,k,¢c,bl*VI[]1l, a,x]

Index Calculation to Favor Output

rest_ y = id_y+stride*16;
bO0=rest_vy%bd;
rest_vy=rest_v/bd;
cO=rest_v%cd;
rest_vy=rest_v/cd;
k_O=rest_v;

rest x = i1d_x+stride*16;
al=rest x%ad;

rest_x = rest_x/ad;

x0 = rest x;

rest_y = id_vy+stride*16;
kO=rest_v%kd;
rest_v=rest_v/kd;
cO=rest_vy%cd;
rest_v=rest_vy/cd;
b_O=rest_v;

rest x = 1d x+stride*16;
al=rest x%ad;

rest x = rest x/ad;
x0 = rest x;

» Access to input arrays optimized by cache

» Global memory coalescing for outputs
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Reversed Evaluation of Conditionals

Minimize count of executed conditionals

if (tidx<total x) {
//calculate offset 0
devR[offset 0]+=tlocall;

}

if (tidx+stridex*l<total_x) {
//calculate offset 1
devR|[offset _1]+=tlocall;

}

if (tidx+stridex*2<total_x) {
//calculate offset 2
devR|[offset 2]+=tlocal?2;

}

if (tidx+stridex*3<total_x) {
//calculate offset 3
devR|[offset 3]+=tlocal3;

R[la,b,c,x,k] -= T[1l,k,¢c,bl*VI[]1l, a,x]

if (tidx+stridex*3<total_x) {
//calculate offset_0
devR[offset_0]+=tlocall;
//calculate offset_1
devER[offset_1l]+=tlocall;
//calculate offset_2
devR[offset_2]+=tlocal2;
//calculate offset_3
devR[offset_3]+=tlocal3;

}

else if (tidx+stridex*2<total_x)
//calculate offset_0
devR[offset_0]+=tlocall;
//calculate offset_1
devR[offset_l1l]+=tlocall;
//calculate offset_2
devR[offset_Z2]+=tlocal?;

}

else if (tidx+stridex*l<total_x)
//fecalculate offset_0
devR[offset_0]+=tlocall;
//calculate offset_1
devR[offset_1]+=tlocall;

}

else if (tidx+stridex<total_ x)
//calculate offset_0
devBR[offset_0]+=tlocall;

{

{

{




What did we do?

» Register tiling

m Reduce overall work
» Index calculation order

m Favor memory access coalescing for output
» Reverse execution of conditionals

® Minimizing thread divergence

o
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90

80

70

60

Evaluation

Baseline: single core

Not comparing with CPU, just GPU
versions

1

Tesla codes run faster on Fermi

Fermi specific optimizations further
improve performance

More results in references

(16, 16, 15, 19, 20, 20, 20)

20

Rla,b,c,x,k] -= T[1l,k,c,b]l*VI[]l, a,x]
(24,24, 24,24, 24,24, 24)

00

80

60

40

20

1 2 3 4 5 6 7 8

B tlObase M®tlOopt mfermi-tlObase M fermi-t10opt M fermi-opt

1 2 3 4 5 6 7 8 9

W tl0Obase MmMtl0opt M fermi-tl0base M fermi-t10opt M fermi-opt

» Different versions result in different
performance

» Complicate compiler models

o
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Iterative Coupled Cluster

» Just copy-paste? Not really ®
» Cannot eliminate data movement as in CCSD(T)

» Varied tensor contractions
m Often limited FLOP count

> ...

» Back at the drawing board
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Observations

» GPU programming is hard

» Bad news: vectorization is hard

m Even for compilers (PLDI'0O4 — memory copy; PACT 06 —
matrix transpose)

» Non-obvious performance implications

» Let the compiler do the most for you
m They are getting better

» Knowing how to vectorize the code goes a long way
m Get the best out of a compiler

» |solate performance critical code
® You will rewrite it many times

m Keeps relationship good between you and computer |
scientists ~7
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