Optimizing Tensor Contraction
Expressions for Hybrid CPU-
GPU Execution

February 2012
Sriram Krishnamoorthy

Wenjing Ma, Oreste Villa, Karol Kowalski, Gagan Agrawal

o

Pacific Northwest
NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965

Deep Dive into GPU Programming

» Experience with Optimizing Tensor Contractions

» How to think about programming GPUs
m CUDA, OpenCL, ...

» Lessons Learned
» Computer scientist perspective

Pacific Northwest
NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965

NWChem-TCE

= N=no+nu
X

Q@

3 Phase ________| Complexity

3 Hartree—Fock N~4

g 4-index transformation NA5

S CCSD - Iterative no™2 * nu™4

é’ N CCSD(T)— Not iterative no™3 * nut4

o

@)

Pacific Northwest
NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965

Tensor Contraction Expressions — CCSD(T)
Rla,b,c,1,]J,k] —= TIlLl,k,c,b]*V[1l,a,1,]]

sd2_1::3[h3, h2, k1, p6, pS, pdl— =t2[p7, p4, h1, h2] x v2[p7, h3, p6, p5]
sd2_2::3[h2, k1, k3, p6, pS, p4dl— = t2[p7, p4, h1, h2] x v2[p7, h3, p6, p5]
sd2_3::3[h2, h3, k1, p6, p5, p4dl+ =t2[p7, p4, h1, h2] x v2[p7, h3, p6, p5]
sd2_4::3[h3, h2, k1, p6, p4, pS1+ = t2[p7, p4, h1, h2] x v2[p7, h3, p6, p5]
sd2_5:13[h2, h1, h3, p6, p4, pS1+ = t2[p7, p4, h1, h2] x v2[p7, h3, p6, p5]
sd2_6::3[h2, h3, k1, p6, p4, p5]— = t2[p7, p4, h1, h2] x v2[p7, h3, p6, p5]
sd2_7:t3[h3, h2, k1, p4, p6, p5]— = t2[p7, p4, k1, h2] x v2[p7, h3, p6, pS]
sd2_8:13[h2, hl, k3, p4, p6, p5]— = t2[p7, p4, hl, h2] x v2[p7, h3, p6, p5]
sd2_9::3[h2, h3, k1, p4, pb, pS]+ =t2[p7, p4, k1, h2] x v2[p7, h3, p6, pS]
o
Pacific Northwest

NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965

Matrix Multiplication Formulation

I{[arkhlzrirjf}{] - = qulrkrchjj]*vmlwiirirj]

\

T’ [k,c,b,1]1=T[k,1,c,b]
v'[l,a,i,j]1=V[a,1,1,]]
R’[k,c,b,a,1,3]1=T"[k,c,b,1]1*V'[1,a,1,]]

R[afbfcliljlk]_=R’[kfcfbfafifj]

o

Pacific Northwest
NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965

Direct GPU Implementation
(Tesla T10)

Pacific Northwest

AAAAAAAAAAAAAAAAAA

Proudly Operated by Battelle Since 1965

Steps

» Manage GPU memory

» Transfer data between CPU and GPU
» Map work to thread blocks and threads
» Decode mapping in each thread

» Execute concurrently

> ...

» Party!

"

Pacific Northwest
NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965

R[arb!crirj!k] -= T[l!kfcrb]*v[lrarirj]

Host Code Aspects

Avoid frequent allocation/deallocation (pool allocator)

double *devR=allocGPUmem(size_of R); //similarly devT,
devV

CPU does work common to all threads (dimension offset for C arrays)
inline int offsetR(a,b,c,1i,3.k) {
return Rld_a*a + Rld_b*b + .. + R1ld_k*k;

}
inline int offsetT(1l,k,c,b) {
return T1d_1*1 + Tld_k*k + Tld_c*c + Tld_b*b;
}
inline int offsetV(l,a,i,j) {
return V1d_1*1 + V1d a*a + V1d_i*1i + V1d_j*3j;
}
Rld_k = ad*bd*cd*id*jd; //similarly R1d_*,Tld_*,Vvid_*
kernel code<<<dimGrid,dimBlock, 0,streams[1]>>> (devR,

devT,devV,k,ad, ..,1d,R14 K, ..,Rld_a,T1d_b, . .T1ld_1, ,
vid_j,..,V1d_1); %/

Pacific Northwest
NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965

R[arblcrirj!k] -= T[l!k:crb]*v[lrarirj]

Parallelization Across Thread Blocks

Tile one dimension of each tensor
dim2 dimGrid(ceil (cd/16)*bd,ceil (ad/16)*id*jd) ;

16x16 work for each thread block
dim2 dimBlock (16, 16);

Decode work to be done on each thread

const int tidx=threadIdx.x, tidy=threadIdx.vy;

//below: determine indices to compute

c=restl%cd; restl=restl/cd; b=restl%bd; restl=restl/
bd; kT=restl*1l6;

j=rest2%jd; rest2=rest2/jd;

i=rest2%id; rest2=rest2/id; aT=rest2*16;

k = kT+tidy;

a = aT+tidx; ‘367///

Pacific Northwest
NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965

10

R[arb!crirj!k] -= T[l!kfcrb]*v[lrarirj]

Baseline Host Implementation

Copy inputs, invoke kernel, copy output

{

double*devR=allocGPUmem(size_of_R);//similarly devT,

devV
int R1d k

int Tld b =

int Vvld_i

void tcHost (R, T, V,
double *R,

*

*V; int ad, bd, cd,

ad*bd*cd*id*jd;
ld*kd*cd;
ad*1ld;

memcpyHosttoDevice (devR, R);

kernelCode<<<dimGrid, dimBlock>>> (devR, devT,devV, k, ad
,..,1d,R1d_k,..,Rld_a,Tld_b,..,T1ld_1,vld_i, ..,

vlid 1) ;
memcpyDeviceToHost (R,devR) ;
//release allocated memory

ad, bd, cd, id, 3jd, kd, 14d)

id, jd, kd, 1d;

//similarly RI1d_ 1, ...
//similarly R1d_c, ...
//similarly Vvid_a, ...
//similarly devT,devV

Pacific Northwest

NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965

11

R[a;b;c:irj!k] -

Kernel Code (l)

Set things up for each thread

- T[l!klc.fb] *V[lfa’i’j]

void kernelCode(devR,devT,devV,ad, .., 1d,
Rl1d_k,..,Rld_a,Tld_b,..Tld_1,v1ld_3j,..,v1ld_1)
int ad,..,1d,Rld k,..Rld_a,Tld b, ..Tld_1,v1ld_j,
double *devR, *devT, *devV;
{
_ shared_ double shmT[1l6][1l6], shmV[1l6][1l6];
int restl=blockIdx.x, restZ2=blockIdx.vy;
double tlocal=0;
const int tidx=threadldx.x, tidy=threadIdx.y:;
//below: determine indices to compute

bd; kT=restl*1l6;
j=rest2%jd; rest2=rest2/jd;
i=rest2%id; restZ=rest2/id; aT=rest2*16;
k = kT+tidy;
a = aT+tidx;

c=restl%cd; restl=restl/cd; b=restl%bd; restl=restl/

..V1ld_1;

Pacific Northwest
NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965

12

Kernel

R[a;b;c:irj!k]

Code (ll)

Execute the loop

fo

}
if

r(int 1T=0; 1T<ld; 1T+=16) {
//below: copy input into shared memory
if (k < kd) {
Tl=tidx+1T;
if (Tl<1ld)
shmT[tidy] [tidx]=devT[offsetT (1T, k,c,b)];
}
if (a < ad) {
Tl=tidy+1T;
if (Tl<1ld)
shmv[tidy] [tidx]=devV[offsetV(1T,a,1i,3)]1;
}
__syncthreads () ;
//below: compute
if (k<kd && a<ad)
tlocal += shmT([tidy,:] * shmV[:,tidx];
__syncthreads () ;

(k<kd && a<ad)
devR[offsetR(a,b,c,1,j.,k)] += tlocal;

-= T[l!klc.fb] *V[lfa’i’j]

S

racific Northwest
NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965

R[a:b!c:i!j!k] -= T[l!kfcrb]*v[l:arirj]

Index Combining

x= (i,3)

R[la,b,c,x,k] -= T[1l,k,c,b]l*VI[]l, a,x]

» Index decoding is expensive
m Duplicated across threads
m Division and modulo arithmetic

Pacific Northwest

NATIONAL LABORATORY

13 Proudly Operated by Battelle Since 1965

14

Dimension Flattening

R[la,b,c,x,k] -= T[1l,k,¢c,bl*VI[]1l, a,x]

dim2 dimGrid(ceil(cd/16)*bd,ceil (ad/16)*id*jd);

const int tidx=threadIdx.x,

c=restl%cd;
bd; kT=restl*16;

j=rest2%jd; rest2=rest2/jq4;

i=rest2%id; rest2=rest2/1id;

k = kT+tidy;

a = aT+tidx;

tidy=threadIdx.vy;
//below: determine indices to compute
restl=restl/cd; b=restl%bd;

aT=rest2*16;

restl=restl/

\ 4

Maximize full thread blocks

dim2 dimGrid(ceil (cd*bd/16),

ceil (ad*xd/16)) ;

rest=1d_vy; k=rest%kd;
b = rest;
rest=1d _X; a=rest%ad;

//below: determine indices to compute
rest/=kd;

rest/=ad; x =

c=rest%cd; rest/=cd;

rest;

Pacific Northwest

NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965

R[la,b,c,x,k] -= T[1l,k,¢c,bl*VI[]1l, a,x]

Dimension Flattening

B
Contracted index Baseline approach works
i well only when index
dimensions are multiple
I igher of the thread block
A dimension C+=A*B configuration. We flatten
than A and B
the loops and we
e o recreate them of the
- — |nefficiency €+—————__ . y .
Y right” size, with some

index operations -
increase of index
Thread Blocks operations but better

B H utilization
"

Thread Blocks
C

——BirmeRston C+=A"B

S

Pacific Northwest
NATIONAL LABORATORY

15 Proudly Operated by Battelle Since 1965

R[la,b,c,x,k] -= T[1l,k,¢c,bl*VI[]1l, a,x]

Pipelining

Overlap data transfer and computation
cudaStream t streams[kd];
for (k=0; k<kd; ++k) cudaStreamCreate(&streams[k]):;
for (k=0; k<kd; ++k)
kernelCodeFlat<<<dimGrid,dimBlock, 0, streams [k]>>> (
devR, devT,devV, k,ad, .., 1d,R1d_k, ..,R1d_a,
Tld b, ..Tl1d_1,vld_x,..,vld_1,total_x, total_v);
cudaMemcpyAsync (copyR+R1d_k*k, devR+Rld_k*k, R1ld_k,
cudaMemcpyDeviceToHost, streams[k]);

}
for (k=0; k<kd; k++) {
while (cudaStreamQuery(streams[k]) != cudaSuccess)
{}
//add or subtract copyR into R

}

//destroy streams and release allocated memory

Pacific Northwest

NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965

Pipelining

» We can avoid the O(N®) copy IN and just have the copy
OUT and then accumulate on the host

» We can create “streams” of kernels using one loop
dimension and asynchronously copy out partial data

Execute + acc

Execute
“Host Support”

Host Accumulates

Execute || || || Pipeline of “Host Support

Copy Data Out GPU/PCl express/ and stre@s‘(

|| || Pacific Northwest

NATIONAL LABORATORY

Host Accumulates ||

17

Proudly Operated by Battelle Since 1965

R[la,b,c,x,k] -= T[1l,k,¢c,bl*VI[]1l, a,x]

CPU-GPU Hybrid Execution

Host has more many cores — use them

int count=0;

/*nxtask () gets and increments the "next" value 1in a
global location atomically*/

int next=nxtask/() ;

for (all values of a, b, ¢, 1, j, k) {

if (next==count) {

//calculate and update energy values
next=nxtask() ;

}

count+=1;

Pacific Northwest

NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965

19

What did we do?

» Optimized memory allocation

» Offload redundant calculations to CPUs
» Index combining to reduce overhead

» Flatten to maximize full thread blocks

» Pipeline data transfer with computation

7

Pacific Northwest
NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965

20

Single Tile Performance

500

450 -

400 -
350

300 -

250 -

200 -

Time (ms)

150 -

100 -
50 -

0 -
CuBlasDgemm Baseline Flattening Flattening + Pipeline

M 16,16,16,16,16,16 ™17,17,17,16,16,16

» Optimizations help
» Greater improvements for irregular sizes

o

Pacific Northwest
NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965

CCSD(T) - Results for 60 nodes GPU and CPU
— Tesla C1060

120 Two level Hybrid execution
GPUs share the PCI bus

100] \
80 One level Hybrid execution

GPU performs contraction and \

CPU accumulates

Minutes to Completion
(@]
o

40 -
20 -
O i
1 core 2 cores 4 cores 8cores 1 GPU 2 GPUs +
(1 socket) (2 sockets) 6 cores
Double precision calculations for the
chromophore of green fluorescent protein \g/
(GFP) with 284 and 476 basis functions. In Pacific Northwest

NATIONAL LABORATORY

all calculations core electrons were not

21 | correlated.

Proudly Operated by Battelle Since 1965

22

Fermi GPU

Pacific Northwest

NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965

23

Fermi GPU Features

» More FLOPS for the same PCle bandwidth
» Larger register file size

» Larger shared memory

» Cache

» Bi-direction PCle transfer

o

Pacific Northwest
NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965

R[a,b,c,x,k] -= T[1,k,c,bl*VI[]1, a,x]

Performance Estimate

0.61 ms| |3.56ms| 1.69 ms

‘GPU comp C"
Copy OutC" |
CPUAccC |

__

Future GPUs Fermi and PCI Exp 2.0 (estimate for stream version no host support)

0.61 ms 1.69 ms ~0.6 ms 1.69 ms
Copy in A&B .~ concurrent
Copy in C : i — Bi-directional
GPU comp C 5 '

| copies
Copy out C

Minimize PCle Data Transfer

Keep intermediates in memory
for (1) {
/* repeat setup operations as above loop*/
/*but with T3d instead of T3s*/

ccsd_t_doubles_1(); //on GPU
/* ... */
}
for (1) {
/* repeat setup operations as in the above loop*/
ccsd_t doubles 2(); //on GPU
/*¥ L. */

}
energy += compute_energy (hostT3s, hostT3d);

Pacific Northwest

NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965

R[la,b,c,x,k] -= T[1l,k,¢c,bl*VI[]1l, a,x]

Register Tiling

__shared__ double shmT[64] [1l6], shmV[1l6][64];

» Just painful, but mechanical (see reference)
» Improves data reuse

Pacific Northwest

NATIONAL LABORATORY

26 Proudly Operated by Battelle Since 1965

27

R[la,b,c,x,k] -= T[1l,k,¢c,bl*VI[]1l, a,x]

Index Calculation to Favor Output

rest_ y = id_y+stride*16;
bO0=rest_vy%bd;
rest_vy=rest_v/bd;
cO=rest_v%cd;
rest_vy=rest_v/cd;
k_O=rest_v;

rest x = i1d_x+stride*16;
al=rest x%ad;

rest_x = rest_x/ad;

x0 = rest x;

rest_y = id_vy+stride*16;
kO=rest_v%kd;
rest_v=rest_v/kd;
cO=rest_vy%cd;
rest_v=rest_vy/cd;
b_O=rest_v;

rest x = 1d x+stride*16;
al=rest x%ad;

rest x = rest x/ad;
x0 = rest x;

» Access to input arrays optimized by cache

» Global memory coalescing for outputs

Pacific Northwest

NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965

28

Reversed Evaluation of Conditionals

Minimize count of executed conditionals

if (tidx<total x) {
//calculate offset 0
devR[offset 0]+=tlocall;

}

if (tidx+stridex*l<total_x) {
//calculate offset 1
devR|[offset _1]+=tlocall;

}

if (tidx+stridex*2<total_x) {
//calculate offset 2
devR|[offset 2]+=tlocal?2;

}

if (tidx+stridex*3<total_x) {
//calculate offset 3
devR|[offset 3]+=tlocal3;

R[la,b,c,x,k] -= T[1l,k,¢c,bl*VI[]1l, a,x]

if (tidx+stridex*3<total_x) {
//calculate offset_0
devR[offset_0]+=tlocall;
//calculate offset_1
devER[offset_1l]+=tlocall;
//calculate offset_2
devR[offset_2]+=tlocal2;
//calculate offset_3
devR[offset_3]+=tlocal3;

}

else if (tidx+stridex*2<total_x)
//calculate offset_0
devR[offset_0]+=tlocall;
//calculate offset_1
devR[offset_l1l]+=tlocall;
//calculate offset_2
devR[offset_Z2]+=tlocal?;

}

else if (tidx+stridex*l<total_x)
//fecalculate offset_0
devR[offset_0]+=tlocall;
//calculate offset_1
devR[offset_1]+=tlocall;

}

else if (tidx+stridex<total_ x)
//calculate offset_0
devBR[offset_0]+=tlocall;

{

{

{

What did we do?

» Register tiling

m Reduce overall work
» Index calculation order

m Favor memory access coalescing for output
» Reverse execution of conditionals

® Minimizing thread divergence

o

Pacific Northwest
NATIONAL LABORATORY

29 Proudly Operated by Battelle Since 1965

90

80

70

60

Evaluation

Baseline: single core

Not comparing with CPU, just GPU
versions

1

Tesla codes run faster on Fermi

Fermi specific optimizations further
improve performance

More results in references

(16, 16, 15, 19, 20, 20, 20)

20

Rla,b,c,x,k] -= T[1l,k,c,b]l*VI[]l, a,x]
(24,24, 24,24, 24,24, 24)

00

80

60

40

20

1 2 3 4 5 6 7 8

B tlObase M®tlOopt mfermi-tlObase M fermi-t10opt M fermi-opt

1 2 3 4 5 6 7 8 9

W tl0Obase MmMtl0opt M fermi-tl0base M fermi-t10opt M fermi-opt

» Different versions result in different
performance

» Complicate compiler models

o

Pacific Northwest
NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965

31

Iterative Coupled Cluster

» Just copy-paste? Not really ®
» Cannot eliminate data movement as in CCSD(T)

» Varied tensor contractions
m Often limited FLOP count

> ...

» Back at the drawing board

Pacific Northwest

NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965

32

Observations

» GPU programming is hard

» Bad news: vectorization is hard

m Even for compilers (PLDI'0O4 — memory copy; PACT 06 —
matrix transpose)

» Non-obvious performance implications

» Let the compiler do the most for you
m They are getting better

» Knowing how to vectorize the code goes a long way
m Get the best out of a compiler

» |solate performance critical code
® You will rewrite it many times

m Keeps relationship good between you and computer |
scientists ~7

Pacific Northwest
NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965

33

References

» W. Ma, S. Krishnamoorthy, O. Villa, and K. Kowalski. “Optimizing
Tensor Contraction Expressions for Hybrid CPU-GPU Execution”.
Cluster Computing Special Issue, 2011

» W. Ma, S. Krishnamoorthy, O. Villa, and K. Kowalski. “GPU-based
implementations of the non- iterative regularized-CCSD(T)

corrections: applications to strongly correlated systems”. Journal of
Chemical Theory and Computation vol:7(5) pp:1316-1327, 2011

» W. Ma, S. Krishnamoorthy, O. Villa, and K. Kowalski. “Acceleration of
Streamed Tensor Contraction Expressions on GPGPU-based

Clusters”. IEEE International Conference on Cluster Computing,
September 2010

Pacific Northwest

NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965

	Optimizing Tensor Contraction Expressions for Hybrid CPU-GPU Execution
	Deep Dive into GPU Programming
	NWChem-TCE
	Tensor Contraction Expressions – CCSD(T)
	Matrix Multiplication Formulation
	Slide Number 6
	Steps
	Host Code Aspects
	Parallelization Across Thread Blocks
	Baseline Host Implementation
	Kernel Code (I)
	Kernel Code (II)
	Index Combining
	Dimension Flattening
	Dimension Flattening
	Pipelining
	Pipelining
	CPU-GPU Hybrid Execution
	What did we do?
	Single Tile Performance
	CCSD(T) - Results for 60 nodes GPU and CPU�– Tesla C1060
	Slide Number 22
	Fermi GPU Features
	Performance Estimate
	Minimize PCIe Data Transfer
	Register Tiling
	Index Calculation to Favor Output
	Reversed Evaluation of Conditionals
	What did we do?
	Evaluation
	Iterative Coupled Cluster
	Observations
	References

