
Introduction to OpenACC

Oscar Hernandez, Richard Graham
Computer Science and Mathematics (CSM)

Application Performance Tools Group

2 Managed by UT-Battelle
 for the U.S. Department of Energy

What is OpenACC?

• Accelerator programming API standard to program
accelerators
– Portable across operating systems and various types of host

CPUs and accelerators.
– Allows parallel programmers to provide simple hints, known

as “directives,” to the compiler, identifying which areas of
code to accelerate, without requiring programmers to modify
or adapt the underlying code itself.

– Aimed at incremental development of accelerator code

• Effort driven by vendors with the input from users/
applications

3 Managed by UT-Battelle
 for the U.S. Department of Energy

OpenACC Vendor Support

• The current vendors support OpenACC are:
– Cray: High-Level GPU directives
– PGI: PGI accelerator directives
– CAPS Enterprise: HMPP
– NVIDIA: CUDA, OpenCL
– Others: As this defacto standard gains traction

• Strong interaction with the OpenMP accelerator
subcomittee with input from other institutions
(including the above): Texas Instruments, Intel, AMD,
IBM, Oracle, ORNL, LLNL, Compunity, UH, BSC, EPCC,
TACC, and TU-Dresden.

4 Managed by UT-Battelle
 for the U.S. Department of Energy

Impact of OpenACC

• Phase 1: First Standardization of High-Level GPU
directives. [Short-term, Mid-term]
– Heavily influenced by NVIDIA hardware.

• Phase 2: Experiences from OpenACC will drive the
effort of OpenMP for Accelerators
– More general solution
– Might take years to develop
– Better interoperability with OpenMP

5 Managed by UT-Battelle
 for the U.S. Department of Energy

Overview of the OpenACC directives

• Directives facilitate code development for accelerators
• Provide the functionality to:

– Initiate accelerator startup/shutdown
– Manage data or program transfers between host (CPU) and

accelerator
– Scope data between accelerator and host (CPU)
– Manage the work between the accelerator and host.
– Map computations (loops) onto accelerators
– Fine-tune code for performance

6 Managed by UT-Battelle
 for the U.S. Department of Energy

Execution Model
• Bulk of computations executed in CPU, compute

intensive regions offloaded to accelerators
• Accelerators execute parallel regions:

– Use work-sharing and kernel directives
– Specification of coarse and fine grain parallelization

• The host is responsible for
– Allocation of memory in accelerator
– Initiating data transfer
– Sending the code to the accelerator
– Waiting for completion
– Transfer the results back to host
– De-allocating memory
– Queue sequences of operations executed by the device

7 Managed by UT-Battelle
 for the U.S. Department of Energy

Execution Model

• Parallelism:
– Support coarse-grain parallelism

• Fully parallel across execution units
• Limited synchronizations across
• coarse-grain parallelism

– Support for fine-grain parallelism
• Often implemented as SIMD
• Vector operations

– Programmer need to understand the differences between
them.
• Efficiently map parallelism to accelerator
• Understand synchronizations available

– Compiler may detect data hazards
• Does not guarantee correctness of the code

Accelerator Architecture

8 Managed by UT-Battelle
 for the U.S. Department of Energy

Memory Model

• Host + Accelerator memory may have completely
separate memories
– Host may not be able to read/write device memory that is not

mapped to a shared virtual addressed.

• All data transfers must be initiated by host
– Typically using direct memory accesses (DMAs)

• Data movement is implicit and managed by compiler
• Device may implement weak consistency memory

model
– Among different execution units
– Within execution unit: memory coherency guaranteed by

barrier

9 Managed by UT-Battelle
 for the U.S. Department of Energy

Memory Model (2)

• Programmer must be aware of:
– Memory bandwidth affects compute intensity
– Limited device memory
– Assumptions about cache:

• Accelerators may have software or hardware managed cache
• May be limited to read only data

• Caches are managed by the compiler with hints by the
programmer

• Compiler may auto-scope variables based on static
information or enforce runtime checks.

10 Managed by UT-Battelle
 for the U.S. Department of Energy

Categories of OpenACC APIs

• Accelerator Parallel Region / Kernels Directives
• Loop Directives
• Data Declaration Directives
• Data Regions Directives
• Cache directives
• Wait / update directives
• Runtime Library Routines
• Environment variables

11 Managed by UT-Battelle
 for the U.S. Department of Energy

Directives Format

• C/C++:
 #pragma acc directive-name [clause [,clause]…] new-line

• Fortran:
 !$acc directive-name [clause [, clause]…]
 c$acc directive-name [clause [, clause]…]
 *$acc directive-name [clause [, clause]…]

12 Managed by UT-Battelle
 for the U.S. Department of Energy

OpenACC Parallel Directive

• Starts parallel execution on accelerator
• Specified by:

– #pragma acc parallel [clause [,clause]…] new-line
 structured block

• When encountered:
– Gangs of workers threads are created to execute on

accelerator
– One worker in each gang begins executing the code following

the structured block
– Number of gangs/workers remains constant in parallel region

Accelerator Parallel Region

CPU
thread

CPU
thread

Gangs

Worker
threads

13 Managed by UT-Battelle
 for the U.S. Department of Energy

OpenACC Parallel directive (2)

• The clauses for the !$acc parallel directive are:
– if(condition)
– async [(scalar-integer-expression)]
– num_gangs (scalar-integer-expression)
– num_workers (scalar-integer-expression)
– vector_length (scalar-integer-expression)
– reduction (operator:list)
– copy (list)
– copyout (list)
– create (list)
– private (list)
– firstprivate (list)

14 Managed by UT-Battelle
 for the U.S. Department of Energy

OpenACC Parallel directive (3)

• The clauses for the !$acc parallel directive are:
– present (list)
– present_or_copy (list)
– present_or_copyin (list)
– present_or_copyout (list)
– present_or_create (list)
– deviceprt (list)

• If async is not present, there is an implicit barrier at the
end of accelerator parallel region.

• present_or_copy default for aggregate types (arrays)
• private or copy default for scalar variables

15 Managed by UT-Battelle
 for the U.S. Department of Energy

OpenACC Kernels Directive

• Defines a region of a program that is to be compiled into
a sequence of kernels for execution on the accelerator

• Each loop nest will be a different kernel
• Kernels launched in order in device
• Specified by:

– #pragma acc kernels [clause [,clause]…] new-line
 structured block

16 Managed by UT-Battelle
 for the U.S. Department of Energy

OpenACC Kernels directive (2)
• Kernels directive may not contain nested parallel or

kernel directive
• Configuration of gangs and worker thread may be

different for each kernel
• The clauses for the !$acc kernels directive are:

– if(condition)
– async [(scalar-integer-expression)]
– copy (list)
– copyin (list)
– copyout (list)
– create (list)
– private (list)
– firstprivate (list)

17 Managed by UT-Battelle
 for the U.S. Department of Energy

OpenACC Kernels directive (3)

• The clauses for the !$acc kernels directive are:
– present (list)
– present_or_copy (list)
– present_or_copyin (list)
– present_or_copyout (list)
– present_or_create (list)
– deviceprt (list)

• If async is present, kernels or parallel region will
execute asynchronous on accelerator

• present_or_copy default for aggregate types (arrays)
• private or copy default for scalar variables

18 Managed by UT-Battelle
 for the U.S. Department of Energy

OpenACC Parallel / Kernel Clauses
• if clause

– Optional clause to decide if code should be executed on
accelerator or host

• async clause
– Specifies that a parallel accelerator or kernels regions should

be executed asynchronously
– The host will evaluate the integer expression of the async

clause to test or wait for completion with the wait directive

• num_gangs clause
– Specifies the number of gangs that will be executed in the

accelerator parallel region

• num_workers clause
– Specifies the number of workers within each gang for a

accelerator parallel region

19 Managed by UT-Battelle
 for the U.S. Department of Energy

OpenACC Parallel / Kernel Clauses
• vector_length clause

– Specifies the vector length to use for the vector or SIMD
operations within each worker of a gang

• private clause
– A copy of each item on the list will be created for each gang

• firstprivate clause
– A copy of each item on the list will be created for each gang

and initialized with the value of the item in the host

• reduction clause
– Specifies a reduction operation to be perform across gangs

using a private copy for each gang.
– Support for: +, *, max, min, &, |, &&, ||
– Other operators available in Fortran: .neqv., .eqv.

20 Managed by UT-Battelle
 for the U.S. Department of Energy

OpenACC Data Directive

• The data construct defines scalars, arrays and
subarrays to be allocated in the accelerator memory for
the duration of the region.

• Can be used to control if data should be copied-in or
out from the host

• Specified by:
– #pragma acc data [clause [,clause]…] new-line
 structured block

21 Managed by UT-Battelle
 for the U.S. Department of Energy

OpenACC data directive (2)
• The clauses for the !$acc data directive are:

– if(condition)
– copy (list)
– copyin (list)
– copyout (list)
– create (list)
– present (list)
– present_or_copy (list)
– present_or_copyin (list)
– present_or_copyout (list)
– present_or_create (list)
– deviceptr (list)

22 Managed by UT-Battelle
 for the U.S. Department of Energy

OpenACC Data Clauses
• copy clause

– Specifies items that need to be copied-in from the host to
accelerator, and then copy-out at the end of the region

– Allocates accelerator memory for the copy items.

• copy-in clause
– Specifies items that need to be copied-in to the accelerator

memory
– Allocates accelerator memory for the copy-in items

• copy-out clause
– Specifies items that need to be copied-out to the accelerator

memory
– Allocates accelerator memory for the copy-out items

23 Managed by UT-Battelle
 for the U.S. Department of Energy

OpenACC Data Clauses (2)
• create clause

– Specifies items that need to allocated (created) in the
accelerator memory

– The values of such items are not needed by the host

• copy-in clause
– Specifies items that need to be copied-in to the accelerator

memory
– Allocates accelerator memory for the copy-in items

• present clause
– Specifies items are already present in the accelerator memory
– The items were already allocated on other data, parallel or

kernel regions. (i.e. inter-procedural calls)

24 Managed by UT-Battelle
 for the U.S. Department of Energy

OpenACC Data Clauses (3)
• present_or_copy clause

– Tests if a data item is already present in the accelerator. If not,
it will allocate the item in the accelerator and copy-in and out
its value from/to the host

• present_or_copyin clause
– Test if a data item is already present in the accelerator. If not,

it will allocate the item in the accelerator and copy-in its value
from the host

• present_or_copyout clause
– Test if a data item is already present in the accelerator. If not,

it will allocate the item in the accelerator and copy-out its
value to the host

• present_or_create clause
– Test if a data item is already present in the accelerator. If not,

it will allocate the item in the accelerator (no initialization)

25 Managed by UT-Battelle
 for the U.S. Department of Energy

OpenACC Loop Directive

• Used to describe what type of parallelism to use to
execute the loop in the accelerator.

• Can be used to declare loop-private variables, arrays
and reduction operations.

• Specified by:
– #pragma acc loop [clause [,clause]…] new-line
 for loop

26 Managed by UT-Battelle
 for the U.S. Department of Energy

OpenACC Loop directive (2)

• The clauses for the !$acc loop directive are:
– collapse (n)
– gang [(scalar-integer-expression)]
– worker [(scalar-integer-expression)]
– vector [(scalar-integer-expression)]
– seq
– independent
– private (list)
– reduction (operator : list)

• collapse directive
– Specifies how many tightly nested loops are associated with

the loop construct

27 Managed by UT-Battelle
 for the U.S. Department of Energy

OpenACC Loop Clauses
• gang clause

– Within a parallel region: it specifies that the loop iteration
need to be distributed among gangs.

– Within a kernel region: that the loop iteration need to be
distributed among gangs. It can also be used to specify how
many gangs will execute the iteration of a loop

• worker clause
– Within a parallel region: it specifies that the loop iteration

need to be distributed among workers of a gang.
– Within a kernel region: that the loop iteration need to be

distributed among workers of a gang. It can also be used to
specify how many workers of a gang will execute the iteration
of a loop

• seq clause
– Specifies that a loop needs to be executed sequentially by the

accelerator

28 Managed by UT-Battelle
 for the U.S. Department of Energy

OpenACC Loop Clauses
• vector clause

– Within a parallel region: specifies that the loop iterations
need to be in vector or SIMD mode. It will use the vector
length specified by the parallel region

– Within a kernel region: specifies that the loop iterations need
to be in vector or SIMD mode. If an argument is specified, the
iterations will be processed in vector strips of that length.

• independent clause
– Specifies that there are no data dependences in the loop

• private clause
– Specifies that a copy of each item on the list will be created

for each iterations of the loop.

• reduction clause
– Specifies that a reduction need to be perform associated to a

gang, worker or vector

29 Managed by UT-Battelle
 for the U.S. Department of Energy

OpenACC Cache Directive

• Specifies array elements or subarrays that should be
fetched into the highest level of the cache for the body
of the loop.

• Specified by:
– #pragma acc cache(list) new-line

30 Managed by UT-Battelle
 for the U.S. Department of Energy

OpenACC Combined Directives

• Some directives can be combined into a single one
• Combined directives are specified by:

– #pragma acc parallel loop [clause [,clause]…] new-line
 for loop
– #pragma acc kernels loop [clause [,clause]…] new-line
 for loop

31 Managed by UT-Battelle
 for the U.S. Department of Energy

OpenACC Declare Directive

• Used in the variable declaration section of program to
specify that a variable should be allocated, copy-in/out
in an implicit data region of a function, subroutine or
program .

• If specified within a Fortran Module, the implicit data
region is valid for the whole program.

• Specified by:
– #pragma acc declare [clause [,clause]…] new-line

32 Managed by UT-Battelle
 for the U.S. Department of Energy

OpenACC declare directive (2)
• The clauses for the !$acc data directive are:

– copy (list)
– copyin (list)
– copyout (list)
– create (list)
– present (list)
– present_or_copy (list)
– present_or_copyin (list)
– present_or_copyout (list)
– present_or_create (list)
– deviceptr (list)
– device_resident (list)

33 Managed by UT-Battelle
 for the U.S. Department of Energy

OpenACC Update Directive

• Used within a data region to update / synchronize the
values of the arrays on both the host or accelerator

• Specified by:
#pragma acc update [clause [,clause]…] new-line

• The clauses for the !$acc update directive are:
– host (list)
– device (list)
– if (condition)
– async [(scalar-integer-expression)]

34 Managed by UT-Battelle
 for the U.S. Department of Energy

OpenACC Wait Directive

• It causes the program to wait for completion of an
asynchronous activity such as an accelerator parallel,
kernel region or update directive

• Specified by:
#pragma acc wait [(scalar-integer-expression)] new-line

• It will test and evaluate the integer expression for
completion

• If no argument is specified, the host process will wait
until all asynchronous activities have completed

• Can be specified per CPU/Thread basis.

35 Managed by UT-Battelle
 for the U.S. Department of Energy

OpenACC runtime calls
• int acc_get_num_devices(acc_device_t)

• void acc_set_device_type(acc_device_t)

• acc_device_t acc_get_device_type()

• acc_set_device_num(int, acc_device_t)

• int acc_get_device_num(acc_device_t)

• int acc_async_test(int)

• int acc_async_test_all()

• void acc_async_wait(int)

• void acc_async_wait_all()

• void acc_init(acc_device_t)

• void acc_shutdown (acc_device_t)

• int acc_on_device(acc_device_t)

• void* acc_malloc(size_t)

• void acc_free(void*)

setenv ACC_DEVICE_TYPE NVIDIA
setenv ACC_DEVUCE_NUM 1

Environment Variables

36 Managed by UT-Battelle
 for the U.S. Department of Energy

Availability of OpenACC

• Some vendors will provide implementations of
OpenACC at the end of this year.

• A partial Cray implementation is available at NCCS
– Chester system and it will be available on Titan.

• We will use OpenACC as the standard GPU
programming directives for NCCS and Titan

• ORNL applications are starting to use them

37 Managed by UT-Battelle
 for the U.S. Department of Energy

Questions

• Any Questions?

• OpenACC: www.openacc-standard.org/

	Introduction to OpenACC
	What is OpenACC?
	OpenACC Vendor Support
	Impact of OpenACC
	Overview of the OpenACC directives
	Execution Model
	Execution Model
	Memory Model
	Memory Model (2)
	Categories of OpenACC APIs
	Directives Format
	OpenACC Parallel Directive
	OpenACC Parallel directive (2)
	OpenACC Parallel directive (3)
	OpenACC Kernels Directive
	OpenACC Kernels directive (2)
	OpenACC Kernels directive (3)
	OpenACC Parallel / Kernel Clauses
	OpenACC Parallel / Kernel Clauses
	OpenACC Data Directive
	OpenACC data directive (2)
	OpenACC Data Clauses
	OpenACC Data Clauses (2)
	OpenACC Data Clauses (3)
	OpenACC Loop Directive
	OpenACC Loop directive (2)
	OpenACC Loop Clauses
	OpenACC Loop Clauses
	OpenACC Cache Directive
	OpenACC Combined Directives
	OpenACC Declare Directive
	OpenACC declare directive (2)
	OpenACC Update Directive
	OpenACC Wait Directive
	OpenACC runtime calls
	Availability of OpenACC
	Questions

