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Key Challenges to Get to an Exascale

/ Concurrency
/ Power

* A billion operations per

* Traditional voltage clock
scaling is over * Billions of refs in flight
* Power now a major at all times

design constraint * Will require huge

* Cost of ownership problems
* Driving significant * Need to exploit all
changes in architecture \available parallelism

/ Programming

Difficulty Resiliency
* Concurrency and new * Many more components
micro-architectures will * Components getting less
significantly complicate reliable
software * Checkpoint bandwidth
* Need to hide this not scaling

\complexity from the users/ \ /
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Improving Processor Efficiency

e Multi-core was a good first response to power issues
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Performance through parallelism
Modest clock rate

Exploit on-chip locality

* However, conventional processor architectures are optimized for single thread
performance rather than energy efficiency

Fast clock rate with latency(performance)-optimized memory structures
Wide superscalar instruction issue with dynamic conflict detection
Heavy use of speculative execution and replay traps

Large structures supporting various types of predictions

Relatively little energy spent on actual ALU operations

* Could be much more energy efficient with multiple simple processors,
exploiting vector/SIMD parallelism and a slower clock rate

» But serial thread performance is really important (Amdahl’s Law):

If you get great parallel speedup, but hurt serial performance, then you end up with
a niche processor (less generally applicable, harder to program)
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Conclusion: Heterogeneous Computing |

» To achieve scale and sustained performance per {S,watt}, must adopt:
...a heterogeneous node architecture
e fast cores for serial code
e many power-efficient cores for parallel code
...a deep, explicitly managed memory hierarchy
e to better exploit locality, improve predictability, and reduce overhead
...a microarchitecture to exploit parallelism at all levels of a code

e distributed memory, shared memory, vector/SIMD, multithreaded
e (related to the “concurrency” challenge—Ileave no parallelism untapped)

®  Sounds a lot like GPU accelerators...

= NVIDIA Fermi™ has made GPUs feasible for HPC
= Robust error protection and strong DP FP, plus programming enhancements

Expect GPUs to make continued and significant inroads into HPC
* Compelling technical reasons
= High volume market

* |t looks like they can credibly support both masters (graphics and compute)

P A ﬂ
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= Two issues w/ GPU acceleration: STRUCTURAL and PROGRAMMING
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Structural Issues with Accelerated Computing

Memory 32GB Memory
Capacity ——>| SDRAM Bandwidth
~42 GB/s ~170 GB/s
: Flops
main() —— { GPU
PCle-2 ~665 GF
8 GB/s
Bandwidth

and Synchronization

e This is a short-lived situation
NVIDIA Denver and AMD Fusion

* Try to keep kernel data structures resident in GPU memory
Avoids copying b/w CPU and GPU; work on GPU-network communication

* May limit breadth of applicability over next 2-3 years

Cray Inc. Titan Workshop Jan 23-27



Structural Issues with Accelerated Computing e

Even with fused products

<16 GB
GDDR

GPU-
CPU

Lower GF

GPU
Higher GF
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Programming Issues with Accelerated Computing

e Primary issues with programming for GPUs:
Learn new language/programming model

Maintain two code bases/lack of portability
Tuning for complex processor architecture (and split CPU/GPU structure)

* Need a single programming model that is portable across machine types,
and also forward scalable in time
Portable expression of heterogeneity and multi-level parallelism

Programming model and optimization should not be significantly difference for
“accelerated” nodes and multi-core x86 processors

Allow users to maintain a single code base

* Need to shield user from the complexity of dealing with heterogeneity
High level language with good complier and runtime support
Optimized libraries for heterogeneous multicore processors

* Directive-based approach makes sense (OpenACC)

e Getting the division of labor right:
User should focus on identifying parallelism (we can help with good tools)
Compiler and runtime can deal with mapping it onto the hardware

Cray Inc. Titan Workshop Jan 23-27
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Nvidia Fermi
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Intel MIC NVIDIA Fermi
MIMD Parallelism 32 32
SIMD Parallelism 16 16
Instruction-Level Parallelism |2 1
Thread Granularity coarse fine
Multithreading 4 24
Clock 1.2GHz 1.1GHz
L1 cache/processor 32KB 64KB
L2 cache/processor 256KB 24KB
programming model posix threads/ Directives CUDA kernels/Directives
virtual memory yes no
memory shared with host [no no
hardware parallelism
support no yes
mature tools yes yes

From Michael Wolfe’'s HPC Article r
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Short Term Petascale Systems — Node Architecture

Cores on the | Total Vector Length | Programming
node threading Model
Blue Waters 16 32 8 OpenMP/MPI/
Vector
Blue Gene Q 16 32 8 OpenMP/MPI/
Vector
Magna-Cours | 24 24 4 OpenMP/MPI/
Vector
Titan 16 32 (768%*) 16 Threads/Cuda
/Vector
Intel MIC 32 128 8 OpenMP/MPI/
Vector
Interlagos 32 64 8 OpenMP/MPI/
Vector

* Nvidia allows oversubscription to SIMT units
11
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Hybrid Multi-core Architecture

e Massively Parallel System with high powered nodes
that exhibit

e Multiple levels of parallelism

e Shared Memory parallelism on the node
e SIMD vector units on each core or thread

e Potentially disparate processing units

e Host with conventional X86 architecture
e Accelerator with highly parallel = SIMD units

e Potentially disparate memories

e Host with conventional DDR memory
e Accelerator with high bandwidth memory

. 12




Hybrid Multi-core Architecture

e All MPI may not be best approach
e Memory per core will decrease
* Injection bandwidth/core will decrease
e Memory bandwidth/core will decrease

e Hybrid MPI + threading on node may be able to
e Save Memory
e Reduce amount of off node communication
required
e Reduce amount of memory bandwidth required

. 13
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Accelerated Performance through Integration

NVIDIA Tesla GPU
6GB GDDR5; with 665GF DPFP

138 GB/s \
| "’]

sssssssss
AMDZ

& AMD Series
6200 CPU

1600 MHz DDR3;

Cray Gemini High
16, 32 or 64 GB

Speed Interconnect

Cray Inc. Titan Workshop Jan 23-27 14
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And then there is Intel’s MIC processor

e Current MICs have 32 Intel processors moving to 50
processors, both of these systems have vector length of 512
bits (8 — 64 bit words of 16-32 bit words)

e While Intel is saying that codes can be compiled directly for
the MIC (Including MPI), one has to be concerned about
e The scalar performance of one of those cores
e The amount of memory on the MIC
e |f there is too much scalar code and/or too much memory

required, then the MIC will necessarily be treated like the
other accelerators

e Two disparate memories
* Two disparate computational engines

e Remember if you cannot outperform the best of class X86
node, then why go to a new architecture?

: ‘ Cray Inc. Titan Workshop Jan 23-27 15
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» Pre Upgrade Configuration
D LB F < Py Name Jaguar
DAk RIDGE LEADERSHIP COMPUTING FACILITY 3 Architecture XT5
Processor 6-Core AMD
Cabinets 200

Nodes 18,688
Cores/node 12

Total Cores 224,256

) Memory/Node 16 GB
Memory/Core 1.3 GB
Interconnect SeaStar2+
GPUs 0

Cray Inc. Titan Workshop Jan 23-27 17
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. 2011 Configuration

OLCF =2 wm o

Architecture XK6

OAk RIDGE LEADERSHIP COMPUTING FACILITY \

Processor 16-Core AMD
Cabinets 200
Nodes 18,688

Cores/node 16

Total Cores 299,008
) Memory/Node 32 GB
Memory/Core 2 GB
Interconnect Gemini
GPUs 960

Cray Inc. Titan Workshop Jan 23-27 18



And Why is it call an XK6?

TZ's Sixth-daguar

Cray Inc. Titan Workshop Jan 23-27

THE SUPERCOMPUTER COMPANY



»

ULOCF

OAKk RIiDGE LEADERSHIP CoMPUTING FAcCILITY

N\
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Final Configuration

Name
Architecture
Processor
Cabinets
Nodes
Cores/node

Total Cores

) Memory/Node

Memory/Core
Interconnect
GPUs

Cray Inc. Titan Workshop Jan 23-27

Titan

XK6

16-Core AMD
200

18,688

16

299,008

32 GB

2 GB

Gemini

TBD

20



Back to the Futures — Combining different levels of Ao Lo
parallelism

e Fact e Fact
e For the next decade all e Current petascale
HPC system will basically applications are not
have the same structured to take
architecture advantage of these
e Message passing between nodes architectures
e Multi-threading within the node — e Current —80-90% of application

MPI will not do use a single level of parallelism,
e \ectorization at the lower level - message passing between the

cores of the MPP system

e Looking forward, application
developers are faced with a
significant task in preparing their
applications for the future
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Cray’s Programming Environment

e Tools for identifying e Tools for maintaining
additional parallel structures performance portable
within the application applications

e |Investigation of looping e Supply compiler that
structures within a accepts directives from
complex application OpenACC and the

e Scoping tools for OpenMP sub-committee
investigating the formulating extensions to
parallelizability of high target companion
level looping structures accelerators

e Application developer able to
develop a single code that can run
efficiently on multi-core nodes
with or without accelerator

F.
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Hybridization* of an All MPI
Application

* Creation of an application that exhibits three levels of
parallelism, MPIl between nodes, OpenMP** on the node and

vectorized looping structures

** Why OpenMP? To provide performance portability. OpenMP is
the only threading construct that a compiler can analyze
sufficiently to generate efficient threading on multi-core nodes
and to generate efficient code for companion accelerators.
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CAUTION!!

e Do not read “Automatic” into this presentation, the
Hybridization of an application is difficult and efficient code
only comes with a thorough interaction with the compiler to
generate the most efficient code and

e High level OpenMP structures
e Low level vectorization of major computational areas

e Performance is also dependent upon the location of the data.
Best case is that the major computational arrays reside on the

accelerator. Otherwise computational intensity of the
accelerated kernel must be significant

Cray’s Hybrid Programming Environment
supplies tools for addressing these issues
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Three levels of Parallelism required

e Developers will continue to use MPI between nodes or sockets

e Developers must address using a shared memory
programming paradigm on the node

e Developers must vectorize low level looping structures

e While there is a potential acceptance of new languages for
addressing all levels directly. Most developers cannot afford
this approach until they are assured that the new language will
be accepted and the generated code is within a reasonable

performance range




Possible Programming Models for the Node

e Cuda
e OpenCL

e Existing Fortran, C and C++ with extensions
e Pthreads, Thread Building Blocks
e Comment line directives

e OpenMP extensions for Accelerators

All of these programming models require the
application developer to replace MPI within

the node — to develop Hybrid versions of the
application



comparisons between Cuda and OpenMP accelerator
extensions

e Cuda

e Widely used programming model for effectively
utilizing the accelerator

e Flexibility to obtain good performance on the
accelerator
e OpenMP accelerator extensions — things to prove

* Are the directives powerful enough to allow the
developer to pass information on to the compiler

» Can the compiler generate code that get
performance close to Cuda.



Consider the following kernel

do k =
do j=1,ny
SPECIES: do n=1,n_ spec-1
do i = 1,nx
diffFlux(i,Jj, k,n,1) = -

1,nz

diffFlux(i,j,k,n,2)

diffFlux(i,j,k,n,3) = -

enddo
do i = 1,nx
diffFlux(i,Jj,k,n_spec,1)
diffFlux(i,Jj,k,n_spec,2)
diffFlux(i,Jj,k,n_spec, 3)
enddo
enddo SPECIES
do i = 1,nx
grad_T(i,3,k,1)
grad T(i,j, k,2) =
grad T(i,Jj,k,3)
enddo
do n=1,n spec
do i = 1,nx
grad T(i,j,k,1)
grad T(i,j,k,2)
grad T(i,Jj,k,3)
enddo
enddo
enddo
enddo

-lambda (i, j, k)
-lambda (i, 3, k)
-lambda (i, 3, k)

= grad T(i,j,k,1)
= grad T(i,j,k,2)
grad T(i,j,k,3)

THE EUPERCOMPUTER COMPANY

Ds mixavg(i,Jj,k,n) * ( grad Ys(i,Jj,k,n,1) &
yspecies(i,Jj,k,n) * grad mixMW(i,Jj, k,1) )
Ds mixavg(i,Jj,k,n) * ( grad Ys(i,Jj,k,n,2) &
yspecies(i,Jj,k,n) * grad mixMW(i,Jj, k,2) )
Ds mixavg(i,Jj,k,n) * ( grad Ys(i,Jj,k,n,3) &
yspecies(i,Jj,k,n) * grad mixMW(i,Jj, k,3) )

- diffFlux(i,j,k,n,1)
- diffFlux(i,j,k,n,2)
- diffFlux(i,j,k,n,3)

diffFlux(i,Jj, k,n_spec,1)
= diffFlux(i,Jj, k,n_spec,2)
diffFlux(i,j, k,n_spec, 3)

* grad T(i,3,k,1)
* grad T(i,3J,k,2)
* grad T(i,3J,k,3)

+ h spec(i,j,k,n)*diffFlux(i,j, k,n,1)
+ h spec(i,j,k,n)*diffFlux(i,Jj, k,n,2)
+ h spec(i,j,k,n)*diffFlux(i,Jj, k,n,3)



A rewrite for Cuda Fortran CRRANY
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First extract to kernel and call

! transfer

CRa RSN =Neirad Ys h
diffFlux d = diffFlux h
yspecies d = yspecies h
s PC RGNS Spee h

ds mixavg d = ds mixavg h
grad t d = grad t h

grad mixMW d = grad mixMW h
lambda d = lambda h

grid = dim3 ((nxyz-1)/512+1,1,1)
threadBlock = dim3(512,1,1)

call calcDiffFlux<<<grid, threadBlock>>>(lambda d, grad T d, grad mixMW d, diffFlux d, &
Ds mixavg d, yspecies d, grad Ys d, h spec d)
ierr = cudaThreadSynchronize ()



A rewrite for Cuda Fortran
And now the kernel (1)

i =
if

(blockIdx%x-1) *blockDim%x + threadIldx%x

(1 <= nxyz) then

! move first part of grad T here
lambda r = lambda (i)

grad T 1 = -lambda r*grad T(i,1)
grad T 2 = -lambda r*grad T(i,2)
grad T 3 = -lambda r*grad T (i, 3)

! now diffFlux
diffFlux n spec 1 = diffFlux
diffFlux n spec 2 = diffFlux

i,n_spec,1)
i,n_spec,2)

(
(

diffFlux n spec 3 = diffFlux(i,n_spec, 3)

grad mixMW
grad mixMW
grad mixMW

1 =
=

3

grad mixMW (i, 1)
grad mixMW (i, 2)
grad mixMW (i, 3)

do n=1, n spec-1

Ds mixavg r
r
diffFlux
diffFlux

yspecies

diffFlux

diffFlux n spec 2

1
2
3

(

(

i (i
diffFlux n spec 1 = diffFlux n spec 1
2

3

= Ds mixavg(i,n)

= yspecies (i, n)

= - Ds mixavg r *(grad Ys
= - Ds mixavg r *(grad Ys
= - Ds mixavg r *(grad Ys

i,n
llnl
i,n,

14

r 1)
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1) Unrolled all dir loops

2) Combined two n_spec loops
3) Moved around computation
4) Assigned most arrays to temps

+ yspecies r*grad mixMWw 1)
+ yspecies r*grad mixMW 2)
+ yspecies r*grad mixMW 3)

dlffFlux 1
= diffFlux n spec - diffFlux 2
diffFlux n spec 3 = diffFlux n spec 3 - diffFlux 3

h spec r = h spec(i,n)

grad T 1 = grad T 1 + h spec r*diffFlux 1
grad T 2 = grad T 2 + h spec r*diffFlux 2
grad T 3 = grad T 3 + h spec r*diffFlux 3
diffFlux(i,n,1l) = diffFlux 1
diffFlux(i,n,2) = diffFlux 2

diffFlux (i, n, 3)

enddo

diffFlux 3



A rewrite for Cuda Fortran
And now the kernel (2)

do n = n spec iteration and write out final data

A SigEen e =

grad T 1
grad T 2
grad T 3

grad T(i,1)
grad T(i,2)
grad T (i, 3)

diffFlux(i,n spec,1)
diffFlux(i,n spec,2)

h spec(i,n spec)

grad T 1 + h spec r*diffFlux n spec 1
grad T 2 + h spec r*diffFlux n spec 2
grad T 3 + h spec r*diffFlux n spec 3

= grad T 1
= grad T 2
= grad T 3

diffFlux(i,n spec,3) =

endif

= diffFlux n spec 1

diffFlux n spec 2
diffFlux n spec 3

CRANY
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Or Add directives

!Sacc parallel private (i, j,k,n)
!Sacc loop
o k = 1,nz

do j=1,ny
SPECIES: do n=1,n_ spec-1
do i = 1,nx

diffFlux(i,j,k,n,1) = -

diffFlux(i,j,k,n,2) = -

diffFlux(i,j,k,n,3) = -

enddo

do i = 1,nx
diffFlux(i,j,k,n_spec,1)
diffFlux(i,Jj,k,n_spec,2)
diffFlux(i,Jj,k,n_spec, 3)

enddo
enddo SPECIES
do i = 1,nx

Ds mixavg(i,Jj,k,n) * ( grad Ys(i,Jj,k,n,1) &

yspecies(i,j,k,n) * grad mixMW(i,Jj, k,1) )

Ds mixavg(i,Jj,k,n) * ( grad Ys(i,Jj,k,n,2) &

yspecies(i,Jj,k,n) * grad mixMW(i,Jj, k,2) )

Ds mixavg(i,Jj,k,n) * ( grad Ys(i,Jj,k,n,3) &
( )

yspecies (i, j, k,n)

diffFlux(i,Jj, k,n_spec,1)
= diffFlux(i,Jj, k,n_spec,2)
diffFlux(i,j, k,n_spec, 3)

* grad mixMW

grad T(i,j,k,1)
grad T(i,j,k,2) =
grad T(i,Jj,k,3)

enddo
do n=1,n spec
do i = 1,nx

grad T(i,j,k,1)
grad T(i,Jj,k,2)
grad T(i,Jj,k,3)
enddo
enddo
enddo
enddo
!Sacc end loop
!Sacc end parallel

-lambda (i, 3, k)
-lambda (i, 3, k)
-lambda (i, 3, k)

|
Q
[
©
Q.
H

Il
Q
I
©
Q.
H

* grad T(i,3j,k,1)
* grad T(i,j,k,2)
* grad T(i,3J,k,3)

S5 8B

i/j/kIS)

- diffFlux(i,j,k,n,1)
- diffFlux(i,j,k,n,2)
- diffFlux(i,j, k,n,3)

)*diffFlux(i,j,k,n, 1)
) *diffFlux(i,j, k,n,2)
) *diffFlux (i, j, k,n, 3)

THE EUPERCOMPUTER COMPANY
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218, 1 Ge=====o=—c < !Sacc parallel private(i,j,k,n)
219. 1 G !Sacc loop
220, 1 G C==—====—= < do k = 1,nz
221, 1 G € g=—==—=== < do j=1,ny
222. 1 G € g H===== < SPECIES: do n=1,n spec-1
223, 1 G € g 5 @giE—=< do i = 1,nx
224. 1 G C g 5 gf ! driving force is just the gradient in mole fraction:
225. 1 G C g 5 gf diffFlux(i,j,k,n,1) = - Ds mixavg(i,Jj,k,n) * ( grad Ys(i,j,k,n,1) &
2265 1 G € g 5 @ + yspecies(i,Jj,k,n) * grad mixMw(i,j,k,1) )
227. 1 G C g 5 gf diffFlux(i,j,k,n,2) = - Ds mixavg(i,Jj,k,n) * ( grad Ys(i,j,k,n,2) &
228. 1 G C g 5 gf + yspecies(i,Jj,k,n) * grad mixMw(i,j,k,2) )
229. 1 G C g 5 gf diffFlux(i,j,k,n,3) = - Ds mixavg(i,Jj,k,n) * ( grad Ys(i,j,k,n,3) &
230. 1 G C g 5 gf + yspecies (i, Jj,k,n) * grad mixMw(i,j, k,3) )
231. 1 GC g 5 gf-—> enddo
232. 1 GC g b5 f---< do i = 1,nx
MR G C g 5 £ diffFlux(i,j,k,n_spec,1l) = diffFlux(i,j,k,n_spec,1l) - diffFlux(i,Jj, k,n,1)
234. 1 G C g b5 f diffFlux(i,j,k,n_spec,2) = diffFlux(i,j,k,n_spec,2) - diffFlux(i,Jj, k,n,2)
B G C g 5 £ diffFlux(i,j,k,n_spec,3) = diffFlux(i,j,k,n_spec,3) - diffFlux(i,Jj,k,n,3)
236. 1 GC g5 f-———> enddo
ZEYVISINS G C g 5-—-—-—- > enddo SPECIES
ZEISMINIE G C g g-————- < do i = 1,nx
239. 1 GCgg grad T(i,j,k,1) = -lambda(i,j, k) * grad T(i,Jj,k,1)
240. 1 G C g g grad T(i,j,k,2) = -lambda(i,j, k) * grad T(i,J,k,2)
241. 1 G C g g grad T(i,j,k,3) = -lambda(i,j, k) * grad T(i,J,k,3)
242. 1 G C g g————- > enddo
243. 1 G C g 5-——-—- < do n=1,n_ spec
244, 1 G C g 5 g-——--< do i = 1,nx
245. 1 G C g b5 g grad T(i,j,k,1) = grad T(i,Jj,k,1) + h spec(i,j,k,n)*diffFlux(i,j,k,n,1)
246. 1 G Cgbg grad T(i,j,k,2) = grad T(i,Jj,k,2) + h spec(i,]j,k,n)*diffFlux(i,j,k,n,2)
247. 1 GCgb5g grad T(i,j,k,3) = grad T(i,Jj,%k,3) + h spec(i,j,k,n)*diffFlux(i,j,k,n,3)
248. 1 G C g 5 g—> enddo
249, 1 € € g === > enddo
250, 1 @ € g > enddo
251, 1 6 C—- > enddo
252, iINe !Sacc end loop
ZEERERENCES > !Sacc end parallel



Legend to compiler Notes

Primary Loop Type

=< H G H O O

Pattern matched

Collapsed
Deleted
Cloned
Accelerated
Inlined
Multithreaded

Vectorized

Modifiers

S W B0 B 3 P-Q Hh
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atomic memory operation
blocked
conditional and/or computed

fused

partitioned

interchanged

partitioned

non-blocking remote transfer
partial

unrolled

shortloop

unwound



And a little restructuring

!Sacc parallel private(t 1,t 2,t 3,I,Jj,k,n)
!Sacc loop collapse (3)

do k =1,

nz

do j=1,ny
do i = 1,nx

grad T(i,3j,%k,1)

-lambda (i, j, k)

grad T(i,j,k,2) = -lambda (i, ], k)

grad T(i,3,%k,3)

-lambda (i, j, k)

t 1=diffFlux(i,j,k,n_spec,1)

t 2=diffFlux(i,j,k,n_spec,2)

t 3=diffFlux(i,j,k,n_spec, 3)
SPECIES: do n=1,n spec

if(n < n_spec) then

* grad T(i,j,k,1)
* grad T(i,3],k,2)
* grad T(i,3],k,3)

diffFlux(i,j,k,n,1) = - Ds mixavg(i,j,k,n) * ( grad ¥Ys(i,j,k,n,1) &
+ yspecies(i,Jj,k,n) * grad mixMwW(i,j,k,1) )

diffFlux(i,j,k,n,2) = - Ds mixavg(i,j,k,n) * ( grad ¥Ys(i,j,k,n,2) &
+ yspecies(i,Jj,k,n) * grad mixMW(i,3j, k,2) )

diffFlux(i,j,k,n,3) = - Ds mixavg(i,j,k,n) * ( grad ¥Ys(i,j,k,n,3) &
+ yspecies(i,Jj,k,n) * grad mixMwW(i,3j, k,3) )

t 1 =t 1 - diffFlux(i,j, k,n,1)

t 2 =t 2 - diffFlux(i,j, k,n,2)

t 3 =t 3 - diffFlux(i,j, k,n,3)
end if

grad T(i,j,k,1)

grad T(i,j,k,1)

grad T(i,j,k,2) = grad T(i,Jj,k,2)

grad T(i,Jj,k,3)

grad T(i,j,k,3)

enddo SPECIES

diffFlux(i,j,k,n spec,1)
diffFlux(i,j,k,n spec,2)
oL EEITILwE= (Al 5] Sl 0. Sjeee, )

Il
ct
w N -

enddo
enddo
enddo

!Sacc end loop
!Sacc end parallel

+ h
+ h
+ h

spec(i,J,k,n)*diffFlux(i,j,k,n,1)
spec(i,J,k,n)*diffFlux(i,j, k,n,2)
spec(i,J,k,n)*diffFlux(i,j, k,n,3)

CRANY
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What the compiler Shows
280N NG == — —— — ——— < !Sacc parallel private(t 1,t 2,t 3,I,3,k,n)
220. 1 G !Sacc loop collapse (3)
221, 1 G Coomom=—s < do k = 1,nz
222, 1 G C© Co===== < do j=1,ny
223, 1 G C C g===== do i = 1,nx
224, 1 G € € g grad T(i,j,k,1) = -lambda(i,j, k) * grad T(i,3],
225, 1 G € € g grad T(i,j,k,2) = -lambda(i,j, k) * grad T(i,3],
226. 1 GCCg grad T(i,j,k,3) = -lambda(i,j, k) * grad T(i,3],
228, 1 G € C g t 1=diffFlux(i,Jj,k,n spec,1)
229, 1 G € € g t 2=diffFlux(i,Jj,k,n_spec,2)
230, 1 G € € i t 3=diffFlux(i,Jj,k,n_spec, 3)
232. 1 G CC g 6--< SPECIES: do n=1,n_ spec
ZE/PENING € C g 6 if(n < n_spec) then
ZBISPINING € C g 6 diffFlux(i,j,k,n,1) = - Ds mixavg(i,j,k,n) *
236. 1 GCC g6 + yspecies(i,j,k,n) *
Bl G C C g 6 diffFlux(i,j,k,n,2) = - Ds mixavg(i,j,k,n) *
RIS G C C g 6 + yspecies(i,j,k,n) *
RISl G C C g 6 diffFlux(i,j,k,n,3) = - Ds mixavg(i,j, k,n) *
ZZIOMIS G C C g 6 + yspecies (i, Jj,k,n) *
242. 1 G C C g 6 t1l=1t1-diffFlux(i,j,k,n,1)
243. 1 G C C g 6 t 2=t 2 - diffFlux(i,Jj,k,n,2)
244, 1 G C C g 6 t 3=t 3 - diffFlux(i,Jj,k,n,3)
246. 1 G C C g 6 end 1if
2EIBERNl G € C g 6 grad T(i,Jj,k,1) grad T(i,j,k,1) + h spec(i,]
2PN G € C g 6 grad T(i,Jj,k,2) = grad T(i,Jj,k,2) + h spec(i,]
250, 1L € GGG grad T(i,Jj,k,3) = grad T(i,Jj,k,3) + h spec(i,]
251. 1 GCCg 6
ZEVFEER RGECHC g 6=—> enddo SPECIES
254, 1 €6 € @ diffFlux(i,j, k,n_spec,1) t 1
ZOSHNS G C C g dafE I (55,5, k,nispec, 2 = £ 12
256. 1 G CCg el Erlusx (i, 3, kk, m gpee, d) = € 3
256, 1 € € © g enddo
259, 1 € € G > enddo
260, 1 € Commaaas > enddo
261. 1 G !Sacc end loop
IO G —————— > !Sacc end parallel

4

4
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( grad Ys
grad mixMw
( grad _Ys
grad mixMw
( grad _Ys
grad mixMW

k,n)*diffFlux (i, j, k,n,
yk,n)*diffFlux (i, j, k,n,
k,n)*diffFlux (i, j,k,n

)
)
)

w N =

4 14 4 4 4



And the timings f\ E.m
lgnoring Data Transfer* .

Original OpenMP Cuda Fortran Directive Directive

Across entire node Approach Approach
Restructured

Kernel .0417 Seconds .0061 Seconds .0113 Seconds .0067 Seconds
Only

* In S3D all of the arrays used in this computation will reside on the
Accelerator prior to the invocation of the kernel.

Cray Inc. Titan Workshop Jan 23-27



R —
Ease of Use -

Lines of Cuda lines of Lines of Code Directive lines
Code Code Added or | added or of Code added
changed changed for
directives

comp_heat 65 45 0 4
comp_heat (opt) 65 45 9 4
Getrates 5869 6362 0 4
Divergent_sphere 89 44 0 4
Gradient_sphere 45 42 0 4

Cray Inc. Titan Workshop Jan 23-27
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Converting the MPI application to a Hybrid OpenMP/MPI AN
a p p | icat i O n THE GBUPERCOMPUTER COMPANTY

Task 1 — Identification of potential accelerator kernels

e |dentify high level computational structures that account for a significant
amount of time (95-99%)
e To do this, one must obtain global runtime statistics of the application

e High level call tree with subroutines and DO loops showing inclusive/exclusive time, min, max,
average iteration counts.

e Tools that will be needed
e Advanced instrumentation to measure

e DO loop statistics, iteration counts, inclusive time
e Routine level sampling and profiling



Gathering High Level looping statistics

Table 1: Profile by Function Group and Function
Time% | Time | Imb. |  Imb. | Calls |Group
| | Time | Time% | | Function
| | | | | PE=HIDE
100.0% | 15.310111 | == | --— | 6301416.2 |Total
| ________________________________________________________________________
| 88.4% 13.535874 | == -- | 6300424.0 |USER
==
|| 25.3% | 3.875405 | 0.028876 | 0.8% | 2362500.0 |parabola
|| 15.3% | 2.338122 | 0.014399 | 0.7% | 262500.0 |remap
[ 10.0% | 1.531963 | 0.778900 | 36.0% | 262500.0 |riemann
| | 8.5% | 1.298146 | 0.009031 | 0.7% | 262500.0 |ppmlr
| | 6.3% | 0.972150 | 0.008129 | 0.9% | 262500.0 |evolve
| | 3.9% | 0.595926 | 0.002998 | 0.5% | 525000.0 |paraset
| | 3.6% | 0.545528 | 0.003813 | 0.7% | 787500.0 |volume
| | 3.2% | 0.485573 | 0.006530 | 1.4% | 262500.0 |states
| | 2.3% | 0.357749 | 0.341922 | 52.1% | 1.0 |vhone
| | 2.3% | 0.351647 | 0.008985 | 2.7% | 262500.0 |[flatten
| | 2.0% | 0.309701 | 0.009954 | 3.3%5 | 787500.0 |forces
| | 1.7% | 0.265953 | 0.002577 | 1.0% | 140.0 |sweepy
| | 1.7% | 0.259623 | 0.001554 | 0.6% | 70.0 |sweepz
|l
| 6.8% 1.037510 | == == 501.2 |MPI
B Tt Te oo
|| 5.0% | 0.771153 | 0.754015 | 52.7% | 2.0 |mpi comm split
| | 1.7% | 0.263760 | 0.034015 | 12.2% | 420.0 |mpi alltoall
|l
| 4.8% 0.736727 | == == 491.0 |MPI SYNC
e
|| 3.4% | 0.523624 | 0.514661 | 98.3% | 420.0 |mpi alltoall (sync)
Il 1.4% | 0.213103 | 0.211751 | 99.4% | 71.0 |mpi allreduce (sync)
Il
| 0.0% 0.000000 | == == 0.0 |ETC
I

CRANY
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Gathering High Level looping statistics

Table 1: Profile by Function and Callers

Time$% Time Calls |Group
| Function
| Caller

| PE=HIDE
100.0% | 305.000390 | 23760615.0 |Total

100.0% | 304.997547 | 23760613.0 |USER

28.1% | 85.696499 | 8910000.0 |parabola
| _____________________________________________________
18.3% | 55.915878 | 5940000.0 |remap
| | | ppmlr
I ___________________________________________________
6.1% 18.737583 1710000.0 |sweepy .LOOP.2.11i.34

| sweepy .LOOP.1.1i.33
| sweepy .LOOPS

| sweepx2 .LOOP.1.11.29
| sweepx2 .LOOPS

| sweepx2

| vhone

— W ®© J Oy Ul © 0 Jo) Ul o Joy U VW ow-Joy Ul —dbdWwWw——— —

|
|l | |
|l | |
|l | |
|l | | I sweepy_
|l | | | vhone
| 6.0% | 18.156965 | 855000.0 |sweepz .LOOP.06.1i.50
I | | | sweepz .LOOP.05.11.49
I | | | sweepz_ .LOOPS
|| | | | sweepz
|l | | | vhone
| | 3.2% | 9.830210 | 1687500.0 |sweepxl .LOOP.2.11i.30
|l | | | sweepxl .LOOP.1.1i.29
I | | | sweepxl .LOOPS
|l | | | sweepxl
|l | | | vhone
| 3.0% | 9.191120 | 1687500.0 |sweepx2 .LOOP.2.1i.30
[l | |
[ | |
[ | |
[ | |
| |

vhone
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Converting the MPI application to a Hybrid OpenMP/MPI application
Task 2 Parallel Analysis, Scoping and Vectorization

e |Investigate parallelizability of high level looping structures

e Often times one level of loop is not enough, must have
several parallel loops

e User must understand what high level DO loops are in fact
independent.

e Without tools, variable scoping of high level loops is very
difficult

e Loops must be more than independent, their variable usage must adhere to
private data local to a thread or global shared across all the threads

e Investigate vectorizability of lower level Do loops

e Cray compiler has been vectorizing complex codes for over
30 years

Tidias:
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Task 2 Parallel Analysis and Scoping

e Tools that will be needed
* Whole program analysis scoping tool with User interaction

e The compiler performs an initial parallelization analysis to identify obvious inhibitors
to parallelization

e The User instructs the compiler to ignore various inhibitors if possible

e The compiler performs an initial scoping analysis and presents the User with
concerns with array usage

e The User works with the environment to trace variables through the high level
looping structure, works with the compiler to scope the variables in question.

* \ectorization Feedback from the compiler

e Tremendous experience from years of vector architectures
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Lets scope out the potential OpenMP loops

-— Loop starting at line 221

auto shared(cell,local 1x,local ly,1z,rho,uxyz)

-— Loop starting at line 262

auto shared(b,cell,local 1x,local ly,1lz,r,rho,uxyz)

-— Loop starting at line 438

auto shared(b,cell,local 1x,local ly,1lz,r,rho,uxyz)

-— Loop starting at line 558

auto shared(cell,grad,local 1x,local ly,1lz,rho,wet)

-- Loop starting at line 572

auto shared(cell,grad,local 1x,local ly,lz,wet)

-— Loop starting at line 591

auto

shared (b,cell,cil,cil0,cill,cil2,cil3,cil4,ci2,ci3,cid4,cib5,ci6,ci7,ci8,ci9,grad,
local 1x,local 1ly,1z)

-— Loop starting at line 712

auto firstprivate(crit,icrit)

auto shared(b,cell,cix,ciy,ciz,local 1x,local ly,1lz,r,rho,uxyz)

msg-obj: fi FAIL -- Value/Shared Scope Conflict.

—-- Loop starting at line 784

auto shared (b, index, index max, r)

—-- Loop starting at line 812

auto shared(b,cell,local 1x,local ly,1z,r)

-— Loop starting at line 965

Bllseclhared (b,cell, local 1x,local ly,l1z,r,rho,uxyz)

-- Loop starting at line 1125

Blsaaliared (b, bbar, blue,cell,local 1x,loecal 1ly,1z,r,rbar, red, rho, surf)
auto reduction (+:bbar, +:rbar)
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Using directives to give the compiler information

e Developing efficient OpenMP regions is not an easy task;
however, the performance will definitely be worth the effort

e compilation of OpenMP regions to accelerator by the compiler
is approaching the performance of hand-coded CUDA or
OpenCL with the advantage that it results in portable code.
And it will only get better.

e With OpenMP extensions targeting accelerators, data
transfers between multi-core socket and the accelerator
can be optimized. Utilization of registers and shared
memory can also be optimized

e With OpenMP extensions targeting accelerators, user can
control the utilization of the accelerator memory and
functional units.

.
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Task 3 Correctness Debugging

e Run transformed application on the accelerator and investigate the
correctness and performance

e Run as OpenMP application on multi-core socket

e Use multi-core socket Debugger - DDT

e Run as Hybrid multi-core application across multi-core socket and
accelerator
e Tools That will be needed

* Information that was supplied by the directives/user’s interaction with
the compiler




Task 4 Fine tuning of accelerated program

e Understand current performance bottlenecks

e |s data transfer between multi-core socket and accelerator a
bottleneck?

e |sshared memory and registers on the accelerator being used
effectively?
e |s the accelerator code utilizing the MIMD parallel units?
e Isthe shared memory parallelization load balanced?

e |sthe low level accelerator code vectorized?

e Are the memory accesses effectively utilizing the memory bandwidth?

Cray Inc. Titan Workshop Jan 23-27
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Task 4 Fine tuning of accelerated program

e Tools that will be needed:
compiler feedback on parallelization and vectorization of input
application

Hardware counter information from the accelerator to identify
bottlenecks in the execution of the application.

e Information on memory utilization
e Information on performance of SIMT units

Several other vendors are supplying similar performance gathering tools
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Gathering High Level looping statistics

Table 1: Profile by Function and Callers
Time Calls |Group

| Function

| Caller

| PE=HIDE

| Thread=HIDE

100.0% | 124.290353 | 14413778.2 |Total
86.3% | 107.238820 | 14405003.0 |USER
16.6% | 20.5%96195 | 5400000.0 |parabola

10.9% | 13.531857 | 3600000.0 |remap
| | | ppmlr

| 4.373766 | 600000.0 |sweepz .LOOPR@1i.53
| | | sweepz .REGION@1li.51
| | | sweepz
| | | vhone
| 4.348439 | 600000.0 |sweepy .LOOP@1i.35
| | | sweepy .REGION@Li.33
| | | sweepy
| | | vhone
1.9% | 2.407785 | 1200000.0 |sweepxl .LOOP@1i.43
| | | sweepxl .REGION@1i.40
| | | sweepxl
| | | vhone
| | 1200000.0 |sweepx2 .LOOP@1i.31
| | | sweepx2 .REGION@1i.29
| | | sweepx2
| | | vhone

2.401867

— 0 J Oy U1 @ J Oy Ul W J o) U1 W JOoY Ul — bW — — — —
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Gathering High Level looping statistics

Table 1: Profile by Function Group and Function

Time% | Time | Imb. |  Imb. | Calls |Group
| | Time | Time% | | Function
| | | | | PE=HIDE
100.0% | 94.287239 | == | -— | 22122.2 |Total
| ______________________________________________________________________________
| 88.3% | 83.254169 | == | -- | 18559.0 |USER
== L
|| 24.7% | 23.320669 | 0.040706 | 0.2% | 500.0 |sweepy .ACC SYNC WAIT@1i.113
|| 23.9% | 22.580065 | 0.068378 | 0.3% | 250.0 |sweepz .ACC SYNC WAIT@1i.143
[ 11.7% | 11.034601 | 0.036352 | 0.4% | 250.0 |sweepxl .ACC SYNC WAIT@1i.O98
|| 11.6% | 10.975658 | 0.041705 | 0.4% | 250.0 |sweepx2 .ACC SYNC WAIT@1i.95
| | 2.8% | 2.628305 | 0.006066 | 0.2% | 500.0 |sweepy .ACC COPY@1i.113
| | 1.4% | 1.316031 | 0.002970 | 0.2% | 250.0 |sweepx2 .ACC COPY@1i.95
| | 1.4% | 1.313542 | 0.002868 | 0.2% | 250.0 |sweepxl .ACC COPY@1i.98
| | 1.4% | 1.280935 | 0.003241 | 0.3% | 250.0 |sweepz .ACC COPY@1i.143
| | 1.3% | 1.243179 | 0.001617 | 0.1% | 500.0 |sweepy .ACC COPY@1i.120
| | 1.0% | 0.983736 | 0.002562 | 0.3% | 500.0 |sweepy .ACC COPY@1li.37
|l
| 7.7% |  7.214336 | == | -— | 1776.0 |MPI SYNC
[ Rt~ — T ——————
| 6.6% | 6.197997 | 5.631113 | 90.9% | 1500.0 | mpi alltoall (sync)
|l
| 4.1% | 3.818692 | == | -- | 1786.2 |MPI
T
| 3.2% | 2.977898 | 0.460985 | 14.3% | 1500.0 | mpi alltoall
|l
| 0.0%5 | 0.000042 | 0.000005 | 11.4% | 1.0 |OMP
| 0.0% | 0.000000 | == | == 0.0 |ETC
l
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Compiler listing from GPU code

42.
43.
44,
45.
51,
52.
53,
54.
55,
56
57 .
58
59,
60.
B,
62.
63,
64.
69,
66.
&7 -
68.
69,
70
T,
2.
73.
74.
75,
76.
795
80.
CHIe
82.
83.
85.

PP PP PR RPRPRPRRERPRPRPRRRRPRPRRRPRPRRRRPRRRRRRRRRRERER B &

QOO0 nnanennnannonnennnaenannennononoaoonor

QU O UOUUOUUUUOUOUOUUOUOUOOUOOoueuuuuuouuuaoeuuuy

————————— <
————————— <
GRE =T <>
=== <
g
g
g
g
g
g
g
g
g
g
g
g
g
g
il >
gfrd I-->
————————— >
————————— >

!Sacc parallel loop private(i,j,n,radius,xa,dx,xa0,dx0,e,sweep, &
!Sacc flat,para,dvol, q,localsvel, ngeom,nleft,nright,nmin, nmax) &
!'Sacc reduction (max:svel) copyout(r,u,v,w,f,p)copyin(zro,zpr,zux,zuy,zuz,zfl, &
!Sacc zxa,zdx, zxa, zdx) copy(svel)
do j =1, Js
sweep = 1
ngeom = ngeomx
nleft = nleftx
nright = nrightx
nmin =7
nmax = imax + 6
localsvel =-1e9
flat = 0.0
radius = 0.0
do i = 1,imax
n=1+26
r (n,3) = zro(i,J, k)
p (n,j) = zpr(i,j, k)
u (n,3) = zux(i,J, k)
v (n,3j) = zuy(i,J, k)
w (n,j) = zuz(i,j, k)
f (n,j) = zfl(i,3, k)
xal(n) = zxa (i)
dx0(n) = zdx (1)
xa (n) = zxa (i)
dx (n) = zdx (i)
p (n,j) = max(smallp,p(n,Jj))
e (n) = p(n,j)/(r(n,j)*gamm)+0.5* (u(n,J) **2+v (n,J) **24+w(n, J) **2)
enddo
call ppmlr (localsvel, sweep,nmin, nmax, ngeom, nleft, nright,r(1,3), p(1l,3), &
e, 9, u(l,3), v(1,3), w(l,j), xa, xal, dx, &
dx0, dvol,f(1,j), flat,para ,radius)
svel = max (localsvel, svel)
enddo
!Sacc end parallel loop



Compiler listing from GPU code

ftn-6405 ftn: ACCEL File = sweepxl.f90, Line = 42
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A region starting at line 42 and ending at line 85 was placed on the accelerator.

ftn-6417 ftn: ACCEL File = sweepxl.f90, Line = 42

Allocate memory and copy whole array "zro" to accelerator,

ftn-6417 ftn: ACCEL File = sweepxl.f90, Line = 42

Allocate memory and copy whole array "zpr" to accelerator,

ftn-6417 ftn: ACCEL File = sweepxl.f90, Line = 42

Allocate memory and copy whole array "zux" to accelerator,

ftn-6417 ftn: ACCEL File = sweepxl.f90, Line = 42

Allocate memory and copy whole array "zuy" to accelerator,

ftn-6419 ftn: ACCEL File = sweepxl.f90, Line = 42
Allocate memory for whole array "v" on accelerator,

ftn-6419 ftn: ACCEL File = sweepxl.f90, Line = 42
Allocate memory for whole array "w" on accelerator,

ftn-6419 ftn: ACCEL File = sweepxl.f90, Line = 42
Allocate memory for whole array "f" on accelerator,

ftn-6419 ftn: ACCEL File = sweepxl.f90, Line = 42
Allocate memory for whole array "p" on accelerator,

ftn-6423 ftn: ACCEL File = sweepxl.f90, Line = 42
Private array "xa" was allocated to global memory.

ftn-6423 ftn: ACCEL File = sweepxl.f90, Line = 42
Private array "dx" was allocated to global memory.

ftn-6423 ftn: ACCEL File = sweepxl.f90, Line = 42
Private array "xaO" was allocated to global memory.

copy back

copy back

copy back

copy back

at line

at line

at line

at line

free at line 85 (acc_copyin).

free at line 85 (acc_copyin).

free at line 85 (acc_copyin).

free at line 85 (acc_copyin).

85 (acc_copyout).

85 (acc_copyout) .

85 (acc_copyout) .

85 (acc_copyout) .



Results before next step of tuning

All Done during the four day workshop

totaltime =
beforetimesteploop
aftertimesteploop
timesteploop
sweepxltime =
sweepx2time =
sweepytime =
sweepztime =
timesteploopbidswps=
timesteploopdtcon =
timesteploopend =
timesteploopendl=
timesteploopend2=
timesteploopend3=

Chester
OpenMP

55.4403
6.45E-02
0.215131
55.1607
7.69359
7.710696
19.70721
19.38663
1.08E-04
0.661224
3.34E-04
7.58E-05
5.82E-05
4.28E-05

Chester
OpenACC

39.93815
8.26E-02
0.246678
39.60889
5.896201
5.756214
13.30642
14.14406
7.69E-05
0.406726
9.90E-02
2.25E-05
2.26E-05
9.89E-02
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Chester

43.37071
0.137425
1.453568
41.77971
6.213687
6.140237
14.30337
15.00088
1.30E-04
0.119561
5.27E-04
1.25E-04
9.45E-05
6.95E-05



Cray GPU Programming Environment

e Objective: Enhance productivity related to porting applications to hybrid
multi-core systems
e Four core components
e Cray Statistics Gathering Facility on host and GPU
e Cray Optimization Explorer — Scoping Tools (COE)
e Cray Compilation Environment (CCE)
e Cray GPU Libraries

Cray Inc. Titan Workshop Jan 23-27



Titan: Early Science Applications

WL-LSMS

Role of material disorder,
statistics, and fluctuations in
nanoscale materials and
systems.

S3D

How are going to
efficiently burn next
generation diesel/bio
fuels?

PFLOTRAN

Stability and viability of large
scale CO, sequestration;
predictive containment
groundwater transport

CAM/HOMME

Answer questions about specific
climate change adaptation and
mitigation scenarios; realistically
represent features like
precipitation patterns/statistics
and tropical storms

CRANY"
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LAMMPS

Biofuels: An atomistic model
of cellulose (blue)
surrounded by lignin
molecules comprising a
total of 3.3 million atoms.
Water not shown.

Denovo
Unprecedented high-
fidelity radiation
transport calculations
that can be used in a
variety of nuclear
energy and technology
applications.
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S3D — A DNS solver

e Structured Cartesian mesh flow solver

e Solves compressible reacting Navier-Stokes, energy and species

conservation equations.
8t order explicit finite difference method

— 4% order Runge-Kutta integrator with error estimator / / 7‘
Detailed gas-phase thermodynamic, chemistry and

molecular transport property evaluations / / /
Lagrangian particle tracking
MPI-1 based spatial decomposition and parallelism / / /

Fortran code. Does not need linear algebra, FFT or %
solver libraries. / / /

p=———\

Developed and maintained at CRF, Sandia (Livermore) with BES and ASCR
sponsorship. Pl — Jacqueline H. Chen (jhchen@sandia.gov)



GHAY
Benchmark Problem and Profile asrenasaruiEs scursas

—

e A benchmark problem was defined to closely resemble the target simulation
e 52 species n-heptane chemistry and 483 grid points per node

— 483 * 18,500 nodes = 2 billion
grld pOintS Integrator;

— Target problem would take two
months on today’s Jaguar

Chemistry

e Code was benchmarked and
profiled on dual-hex core XT5

e Several kernels identified and
extracted into stand-alone
driver programs

Thermo
properties;
4%

Core S3D

Ci’ay Inc. Titan Workshop Jan 23-27
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Acceleration Strategy

Team:
Ramanan Sankaran ORNL
Ray Grout NREL
John Levesque Cray
Goals:

Convert S3D to a hybrid multi-core application suited for a multi-core node with
or without an accelerator.
Be able to perform the computation entirely on the accelerator.

Arrays and data able to reside entirely on the accelerator.
Data sent from accelerator to host CPU for halo communication, I/0 and monitoring only.
Strategy:

To program using both hand-written and generated code.
- Hand-written and tuned CUDA*.

- Automated Fortran and CUDA generation for chemistry kernels

- Automated code generation through compiler directives

® S3D is now a part of Cray’s compiler development test cases

Tidias:
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Original S3D

S3D
Time Step Solve_Drive
Time Step  Runge K Integrate

Time Step Runge K RHS

get mass
Time Step  Runge K fraction
Time Step  Runge K get_velocity
Time Step  Runge K calc_inv_avg
Time Step  Runge K calc_temp

Compute
Time Step  Runge K Grads
Time Step  Runge K Diffusive Flux
Time Step  Runge K Derivatives

Time Step  Runge K reaction rates
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Profile from Original S3D

Table 1: Profile by Function Group and Function
Times | Time | Imb. | Imb. | Calls |Group
| | Time | Time% | | Function
| | | | | PE=HIDE
| | | | \ Thread=HIDE
100.0% | 284.732812 | == | -— | 156348682.1 |Total
‘ ________________________________________________________________________________________________
|  92.1% | 262.380782 | == | --— | 155578796.1 |USER
B e~~~ T o
|| 12.4% | 35.256420 | 0.237873 | 0.7% | 391200.0 |ratt i .LOOPS
| | 9.6% | 27.354247 | 0.186752 | 0.7% | 391200.0 |ratx i .LOOPS
|| 7.7% | 21.911069 | 1.037701 | 4.5% | 1562500.0 |mcedif .LOOPS
| | 5.4% | 15.247551 | 2.389440 | 13.6% | 35937500.0 |mcevald
| | 5.2% | 14.908749 | 4.123319 | 21.7% | 600.0 |rhsf .LOOPS
| | 4.7% | 13.495568 | 1.229034 | 8.4% | 35937500.0 |mceval4 .LOOPS
[ ] 4.6% | 12.985353 | 0.620839 | 4.6% | 701.0 |calc_tempSthermchem m .LOOPS
|| 4.3% | 12.274200 | 0.167054 | 1.3% | 1562500.0 |mcavis new$Stransport m .LOOPS
|| 4.0% | 11.363281 | 0.606625 | 5.1% | 600.0 |computespeciesdiffflux$transport m .LOOPS
| ] 2.9% | 8.257434 | 0.743004 | 8.3% | 21921875.0 |mixcp$thermchem m
| | 2.9% | 8.150646 | 0.205423 | 2.5% | 100.0 |integrate .LOOPS
| | 2.4% | 6.942384 | 0.078555 | 1.1% | 391200.0 |gssa_ i .LOOPS
|| 2.3% | 6.430820 | 0.481475 | 7.0% | 21921875.0 |mixcpSthermchem m .LOOPS
| ] 2.0% | 5.588500 | 0.343099 | 5.8% | 600.0 |computeheatflux$transport m .LOOPS
| | 1.8% | 5.252285 | 0.062576 | 1.2% | 391200.0 |rdwdot i .LOOPS
| | 1.7% | 4.801062 | 0.723213 | 13.1% | 31800.0 |derivative x calc_ .LOOPS
|| 1.6% | 4.461274 | 1.310813 | 22.7% | 31800.0 |derivative y calc_ .LOOPS
|| 1.5% | 4.327627 | 1.290121 | 23.0% | 31800.0 |derivative z calc_ .LOOPS
| ] 1.4% | 3.963951 | 0.138844 | 3.4% | 701.0 |get mass frac$variables m .LOOPS



CRANY

Restructured S3D for multi-core systems THE SUPERCOMPUTER COMPANY
S3D
Time Step Solve_Drive
Time Step Runge K Integrate

Time Step Runge K RHS

Time Step Runge K get mass fraction
Time Step Runge K get_velocity
Time Step Runge K calc_inv_avg
Time Step Runge K calc_temp

Time Step Runge K Compute Grads
Time Step Runge K Diffusive Flux
Time Step Runge K Derivatives

Time Step Runge K reaction rates
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Statistics from running S3D

Table 1: Profile by Function Group and Function

Time% | Time | Imb. | Imb. | Calls | Group
| | Time | Time% | | Function |-—-————====S55 = s
85.3% | 539.077983 | == | -— | 144908.0 |USER

N R
|| 21.7% | 136.950871 | 0.583731 | 0.5% | 600.0 |rhsf
|| 14.7% | 93.237279 | 0.132829 | 0.2% | 600.0 |rhsf .LOOPQR1i.1084
| | 8.7% | 55.047054 | 0.309278 | 0.6% | 600.0 |rhsf .LOOPR1i.1098
| | 6.3% | 40.129463 | 0.265153 | 0.8% | 100.0 |integrate
|| 5.8% | 36.647080 | 0.237180 | 0.7% | 600.0 |rhsf .LOOPR1i.1211
| | 5.6% | 35.264114 | 0.091537 | 0.3% | 600.0 |rhsf .LOOPQR1i.194
| | 3.7% | 23.624271 | 0.054666 | 0.3% | 600.0 |rhsf .LOOPR1i.320
| | 2.7% | 17.211435 | 0.095793 | 0.6% | 600.0 |rhsf .LOOPR@1i.540
|| 2.4% | 15.471160 | 0.358690 | 2.6% | 14400.0 |derivative y calc buff r .LOOPQR11i.1784
|| 2.4% | 15.113374 | 1.020242 | 7.2% | 14400.0 |derivative z calc buff r .LOOPQR11.1822
|| 2.3% | 14.335142 | 0.144579 | 1.1% | 14400.0 |derivative x calc buff r .LOOPQ11.1794
| | 1.9% | 11.794965 | 0.073742 | 0.7% | 600.0 |integrate .LOOP@1i.96
|| 1L.7% | 10.747430 | 0.063508 | 0.7% | 600.0 |computespeciesdiffflux2Stransport m .LOOP
| | 1.5% | 9.733830 | 0.096476 | 1.1% | 600.0 |rhsf .LOOPR1i.247
| | 1.2% | 7.649953 | 0.043920 | 0.7% | 600.0 |rhsf .LOOPR1i.274
| | 0.8% | 5.116578 | 0.008031 | 0.2% | 600.0 |rhsf .LOOPR1i.398
| | 0.6% | 3.966540 | 0.089513 | 2.5% | 1.0 |s3d_
| | 0.3% | 2.027255 | 0.017375 | 1.0% | 100.0 |integrate .LOOP@1i.73
|| 0.2% | 1.318550 | 0.001374 | 0.1% | 600.0 |rhsf .LOOPQR1i.376
|| 0.2% | 0.986124 | 0.017854 | 2.0% | 600.0 |rhsf .REGIONE@1i.1096
|| 0.1% | 0.700156 | 0027669 | 4.3% | 1.0 [[exie



Advantage of raising loops

e Create good granularity OpenMP Loop
e |Improves cache re-use

e Reduces Memory usage significantly

e Creates a good potential kernel for an accelerator
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Time Step — acc_data

Time Step—acc_data RungeK
Time Step—acc_data Runge K
Time Step—acc_data Runge K
Time Step—acc_data RungeK
Time Step—acc_data  RungeK
Time Step—acc_data RungeK
Time Step—acc_data RungeK
Time Step—acc_data RungeK
Time Step—acc_data  RungeK

Time Step—acc_data RungeK
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S3D

Solve Drive

Integrate

RHS
get mass fraction
get_velocity
calc_inv_avg
calc_temp
Compute Grads
Diffusive Flux
Derivatives

reaction rates
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Thank you. Questions?
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