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A basis for nanosciences: the BigDFT project

STREP European project: BigDFT(2005-2008)
Four partners, 15 contributors:
CEA-INAC Grenoble (T.Deutsch), U. Basel (S.Goedecker),
U. Louvain-la-Neuve (X.Gonze), U. Kiel (R.Schneider)

Aim: To develop an ab-initio DFT code
based on Daubechies Wavelets, to be
integrated in ABINIT.
BigDFT 1.0 −→ January 2008

In this presentation
Present HPC scenario

GPU exploitation in BigDFT runs

Consideration of interest for Electronic Structrure
Calculations
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Outline

1 Parallel computing and architectures
From past to present: software
HPC nowadays
Memory bottleneck

2 (DFT) Developer point of view
Present Situation
Optimization

3 User viewpoint
Frequent mistakes
Performance evaluation
Material accelerators: Evaluating GPU gain
Practical cases

4 Conclusion and Messages
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Moore’s law

40 years of improvements
Transistor counts double every
two years. . .

. . . but how?

Power is the limiting factor (around 100 W nowadays)

Power ∝ Frequency3 * Clock rate is limited
Multiple slower devices preferable than one superfast device
* More performance with less power→ software problem?
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Why software problem?

The power cost of frequency

Cores Hz (Flop/s) W Flop/s/W
Superscalar 1 1.5 × 1.5 × 3.3 × 0.45

Multicore 2 0.75 × 1.5 × 0.8 × 1.88

Exercise:
Take a given computational problem

Write a code at a time t0.
Solve the problem on a computer.

Freeze your code and wait some time t1− t0
Take a new computer at time t1.
Solve again the same problem.

What happens to your performances?

Laboratoire de Simulation Atomistique http://inac.cea.fr/L_Sim Luigi Genovese



HPC and
BigDFT

Architectures
Software problem

HPC nowadays

Memory bottleneck

Developer
approach
Present Situation

Optimization

User
viewpoint
Frequent mistakes

Performance
evaluation

GPU

Practical cases

Conclusion

HPC thumb-rules have changed

Frequency-dominated era
4 Parallelism is not improved by the architecture

4 Frequency increases→ No. Flop/s increases

* Code runs faster

Manycore era
4 Parallelism is dramatically changed in the architecture

4 Frequency decreases

* Code runs slower

6 The code should be changed

The parallel behaviour of a code (oversimplification)
Capacity computing: many independent jobs

Capability computing: single job, parallel intensive
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The cost of the memory transfer

1W × 1 Year = 1$ (neglecting cooling and storage)

Some facts about memory transfer: Memory bandwidth
40 GB/s (CPU); 20 GB/s (RAM); 3.5 GB/s (interconnect)

Bandwidth evolves less faster than computational power:
4 ∼90’s (Math co-processor): 1 Flop/s each 4 Bytes transferred
6 Nowadays: 62 Flop/s per Bytes transferred

The cost in energy of data movement
Computation: a FMA costs now 100 pJ (10 pJ in the future)

Move data in RAM costs 4.8 nJ (1.92 nJ)

Communicating data (MPI) costs 7.5 nJ (2.5 nJ)

* Moore’s law revisited:
Thread number executions will double each year

A complicated scenario for HPC with ab initio codes
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Distribute the data on hybrid supercomputer

How a code can be executed on hybrid CPU-GPU
architectures?

Network

CPU

GPU

GPUCPU

GPU

GPU

CPU

CPU

Data transfer is still
MPI-based

Only on-board
communication between

GPU and CPU

Data distribution should depend on the presence of GPUs on
the nodes→ Multilevel parallelization required
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(Hybrid) Supercomputing: developer’s view

GPGPU on Supercomputers
Traditional architectures are somehow saturating
More cores/node, memories (slightly) larger but not faster

Architectures of Supercomputers are becoming hybrid
3 out to 5 Top Supercomputers are hybrid machines

Extrapolation: In 2015, No. 500 will become petafloppic
Likely it will be a hybrid machine

Codes should be conceived differently
# MPI processes is limited for a fixed problem size

Performances increase only by enhancing parallelism

Further parallelisation levels should be added (OpenMP,
GPU)

Does electronic structure calculations codes are suitable?
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How far is petaflop (for DFT)?

At present, with traditional architectures
Routinely used DFT calculations are:

Few dozens (hundreds) of processors

Parallel intensive operations (blocking communications,
60-70 percent efficiency)

Not freshly optimised (legacy codes, monster codes)

* Optimistic estimation: 5 GFlop/s per core × 2000 cores ×
0.9 = 9 TFlop/s = 200 times less than Top 500’s #3!

It is such as
Distance Earth-Moon = 384 Mm
Distance Earth-Mars = 78.4 Gm = 200 times more

Moon is reached. . . can we go to Mars? (. . . in 2015?)
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BigDFT as a case study: operations performed

The SCF cycle
Orbital scheme:

Hamiltonian

Preconditioner

Coefficient Scheme:

Overlap matrices

Orthogonalisation

Comput. operations
Convolutions

BLAS routines

FFT (Poisson Solver)

Why not GPUs?

Real Space Daub. Wavelets
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How to optimize particular operations?

A trade-off between benefit and effort

FORTRAN based
4 Relatively accessible (loop unrolling)

4 Moderate optimisation can be achieved relatively fast

6 Compilers fail to use vector engine efficiently

Push optimisation at the best
About 20 different patterns have been studied for one
1D convolution

Tedious work, huge code −→ Maintainability?

* Automatic code generation?

Consider new programming paradigms
New coding approaches are most welcome

→ Kronos’ OpenCL standard
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MPI parallelization I: Orbital distribution scheme

Used for the application of the hamiltonian
Operator approach: The hamiltonian (convolutions) is applied
separately onto each wavefunction

ψ5

ψ4

ψ3

ψ2

ψ1

MPI 0

MPI 1

MPI 2
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MPI parallelization II: Coefficient distribution scheme

Used for scalar products & orthonormalisation
BLAS routines (level 3) are called, then result is reduced

ψ5

ψ4

ψ3

ψ2

ψ1

MPI 0 MPI 1 MPI 2

At present, MPI_ALLTOALL(V) is used to switch
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OpenMP parallelisation

Innermost parallelisation level
(Almost) Any BigDFT operation is parallelised via OpenMP

4 Useful for memory demanding calculations

4 Allows further increase of speedups

4 Saves MPI processes (less intra-node Message
Passing)

6 Less efficient than
MPI (intranode)

6 Compiler and
system dependent

6 OMP sections
should be regularly
maintained
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Interpretation of HPC behaviour:

Evaluate the code behaviour:
A not so easy task (especially nowadays)
Frequent mistakes:

Parallel efficiency is not walltime

Scalability is not only communication-driven
Performance evaluation is a multicritierion evaluation
process

Best scalability (Machine point of view)
Best acceleration efficiency (Vendor point of view)
Best walltime (User point of view)

But also robustness, fault tolerance

Anticipated messages
Far from trivial situation:

No golden rule

HPC Optimal Stategies should be interpreted
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Amdahl’s law

A basic concept
The speedup with N cores depends of the parallel fraction
(P) of the code:

speedup =
1

P
N +(1−P)

It represents the limits to the scalability of a given code

An important definition

Parallel Efficiency = Time(Nref)
Time(N)

N
Nref

Often used as a benchmark
of a code in a parallel environment

Lots of factors involved
Scalability of the problem

Communication performances

Computational cost of operations
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Intranode bandwidth problem
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Scalability does not depend only on communication
Amdahl’s law is a upper limit!
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Parallelisation and architectures

Same code, same runs. Which is the best?
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CCRT Titane (Nehalem, Infiniband) CSCS Rosa (Opteron, Cray XT5)

Titane is 2.3 to 1.6 times faster than Rosa!

Degradation of parallel performances: why?
1 Calculation power has increased more than networking
2 Better libraries (MKL)

* Walltime reduced, but lower parallel efficiency

This will always happen while using GPU!
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Architectures, libraries, networking

Same runs, same sources; different user conditions
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Differences
up to a
factor of 3!

A case-by-case study
Consideration are often system-dependent, a thumb rule not
always exists.

* Know your code!
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A (even more) frequent mistake

Example: two DFT codes running on the same system.
Naive question: Which one is faster?

The running conditions
Machine generation (CPU, cores, cache,. . . )

Parallel environment (MPI procs, OMP threads, GPUs)

Binaries (libraries, compiler,. . . )

Network vs. Computation performance

The code conditions (DFT example)
Basis set (formalism, cut-off, . . . )

Self-Consistentcy (Input Guess, minimization scheme)

How this question should be posed?
Which is lowest time-to-solution possible for this system
on a given machine?

Which is the fastest machine for this system?
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Using GPUs in a given (DFT) code

Developer and user dilemmas
Does my code fits well? For which systems?

How much does porting costs?

Should I always use GPUs?

How can I interpret results?

Evaluating GPU convenience
Three levels of evaluation

1 Bare speedups: GPU kernels vs. CPU routines
Does the operations are suitable for GPU?

2 Full code speedup on one process
Amdahl’s law: are there hot-spot operations?

3 Speedup in a (massively?) parallel environment
The MPI layer adds an extra level of complexity
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The time-to-solution problem I: Efficiency

Good example: 4 C at, surface BC, 113 Kpts

Parallel efficiency of 98%, convolutions largely dominate.

Node:
2× Fermi + 8 ×
Westmere
8 MPI processes

# GPU added 2 4 8

SpeedUp (SU) 5.3 9.8 11.6
# MPI equiv. 44 80 96

Acceler. Eff. 1 .94 .56
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The time-to-solution problem II:Robustness

Not so good example: A too small system
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8 CPU efficiency is poor (calculation is too fast)

8 Amdahl’s law not favorable (5x SU at most)

4 GPU SU is almost independent of the size

4 Users’ keyword: robustness and reliability
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Hybrid and Heterogeneous runs with OpenCL

NVidia S2070 Connected each
to a Nehalem
Workstation

BigDFT may run
on both

ATI HD 6970

Sample BigDFT run: Graphene, 4 C atoms, 52 kpts

No. of Flop: 8.053 · 1012

MPI 1 1 4 1 4 8
GPU NO NV NV ATI ATI NV + ATI
Time (s) 6020 300 160 347 197 109
Speedup 1 20.07 37.62 17.35 30.55 55.23
GFlop/s 1.34 26.84 50.33 23.2 40.87 73.87

Next Step: handling of Load (un)balancing
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A rapidly evolving situation

Architecture evolutions
Manycore era (multilevel parallelisation)

Memory traffic as the limiting factor

Software evolutions
Superposition of parallelization layers

Optimization issues: maintainability vs. robustness

Users ability
Architecture dimensioning: adapt the runs to the system

Performance evaluation approach

And it is not going better:
New set of architectures (GPU, MIC, BG/Q,. . . )
New development paradigms (MPI, OpenMP,
OpenCL,. . . )
HPC codes must follow (HPC projects, Users
how-to,. . . ) . . . and algorithms
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O(N) approach (traditional O(N3))

Crossover point

TCPU

N

Formalism Advantage
Use locality of wavelets

Localization regions

Better flexibility

Different schemes to
localise wavefunctions

Where are we?
A prototype version
validated since 2007

New localisation
schemes already tested
with cubic paradigm

* Underlying infrastructure
ready, soon in production
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A look in near future: science with HPC DFT codes

Enhancing BigDFT functionalities
PAW formalism
Should further reduce computational overhead

O(N) approach, production code
Possible thanks to wavelets localisation and orthogonality

New parallelisation scheme suitable for very large
platforms

Further refine formalims for Quantum Chemistry
Systematic basis set extension for accurate treatment

The Mars mission
Is Petaflop performance possible?

Multilevel parallelization→ one order of magnitude

Bigger systems, heavier methods→ (more than) one
order of magnitude bigger
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General considerations

What is desirable? (Does it open new directions?)
Performance should lead to improvements

Optimisation effort
Know the code behaviour and features
Careful performance study of the complete algorithm

Identify and make modular critical sections
Fundamental for mainainability and architecture evolution

Optimisation cost: consider end-user running conditions
Robustness is more important than best performance

Performance evaluation know-how
No general thumb-rule: what means High Performance?
A multi-criterion evaluation process

Multi-level parallelisation always to be used
Your code will not (anymore) become faster via hardware
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