
Programming Models
for Accelerators
(and the role NVIDIA plays)

Duncan Poole, NVIDIA

DOE Funded GPU Computing Revolution

2001 2003

1,000,000’s

Early Adopters

Time

Research

Universities
Supercomputing Centers

Oil & Gas

CAE
CFD

Finance
Rendering

Data Analytics
Life Sciences

Defense
Weather
Climate

Plasma Physics

GPUs Reaching Broader Set of Developers

100,000’s

2004 Present

Small Changes, Big Speed-up
Application Code

+

GPU CPU Use GPU to Parallelize
Compute-Intensive Functions

Rest of Sequential
CPU Code

CUDA By the Numbers:

 CUDA Capable GPUs >375,000,000

 Toolkit Downloads >1,000,000

 Active Developers >120,000

 Universities Teaching CUDA >500

 CUDA Toolkit Downloads / Hour 98

Programming Models

 Math, Communications Libraries

 OpenMP, OpenACC Directives

 C, C++, Fortran, PGAS – (NVVM) Languages

 IDE, Debug, Profile – (CUPTI) Tools

 Management, Scheduling, Monitoring (NVML) Manage

3 Ways to Accelerate Applications

Applications

Libraries

“Drop-in”
Acceleration

Programming
Languages

OpenACC
Directives

Maximum
Flexibility

Easily Accelerate
Applications

3 Ways to Accelerate Applications

Applications

Libraries

“Drop-in”
Acceleration

Programming
Languages

OpenACC
Directives

Maximum
Flexibility

Easily Accelerate
Applications

CUDA Libraries are
interoperable with OpenACC

3 Ways to Accelerate Applications

Applications

Libraries

“Drop-in”
Acceleration

Programming
Languages

OpenACC
Directives

Maximum
Flexibility

Easily Accelerate
Applications

CUDA Languages are
interoperable with OpenACC,

too!

3 Ways to Accelerate Applications

Applications

Libraries

“Drop-in”
Acceleration

Programming
Languages

OpenACC
Directives

Maximum
Flexibility

Easily Accelerate
Applications

Easy, High-Quality Acceleration

Ease of use: Using libraries enables GPU acceleration without in-depth
 knowledge of GPU programming

“Drop-in”: Many GPU-accelerated libraries follow standard APIs, thus
 enabling acceleration with minimal code changes

Quality: Libraries offer high-quality implementations of functions
 encountered in a broad range of applications

Performance: NVIDIA libraries are tuned by experts

GPU Accelerated Libraries
“Drop-in” Acceleration for your Applications

NVIDIA cuBLAS NVIDIA cuRAND NVIDIA cuSPARSE NVIDIA NPP

Vector Signal
Image Processing

GPU Accelerated
Linear Algebra

Matrix Algebra on
GPU and Multicore NVIDIA cuFFT

C++ STL Features
for CUDA

Sparse Linear
Algebra IMSL Library

Building-block
Algorithms for CUDA

http://code.google.com/p/thrust/downloads/list�

3 Ways to Accelerate Applications

Applications

Libraries

“Drop-in”
Acceleration

Programming
Languages

OpenACC
Directives

Maximum
Flexibility

Easily Accelerate
Applications

Programming
Languages

Programming Languages

MATLAB, Mathematica, LabVIEW Numerical analytics

OpenACC, CUDA Fortran Fortran

OpenACC, CUDA C C

Thrust, CUDA C++ C++

PyCUDA Python

GPU.NET C#

What is CUDA?

CUDA Architecture
Expose GPU parallelism for general-purpose computing
Retain performance

CUDA C/C++

Based on industry-standard C/C++
Small set of extensions to enable heterogeneous programming
Straightforward APIs to manage devices, memory etc.

void saxpy(int n, float a,

 float *x, float *y)

{

 for (int i = 0; i < n; ++i)

 y[i] = a*x[i] + y[i];

}

int N = 1<<20;

// Perform SAXPY on 1M elements

saxpy(N, 2.0, x, y);

__global__

void saxpy(int n, float a,

 float *x, float *y)

{

 int i = blockIdx.x*blockDim.x + threadIdx.x;

 if (i < n) y[i] = a*x[i] + y[i];

}

int N = 1<<20;

cudaMemcpy(x, d_x, N, cudaMemcpyHostToDevice);

cudaMemcpy(y, d_y, N, cudaMemcpyHostToDevice);

// Perform SAXPY on 1M elements

saxpy<<<4096,256>>>(N, 2.0, x, y);

cudaMemcpy(d_y, y, N, cudaMemcpyDeviceToHost);

CUDA C
Standard C Code Parallel C Code

http://developer.nvidia.com/cuda-toolkit

3 Ways to Accelerate Applications

Applications

Libraries

“Drop-in”
Acceleration

Programming
Languages

OpenACC
Directives

Maximum
Flexibility

Easily Accelerate
Applications

Simple: Directives are the easy path to accelerate compute
 intensive applications

Open: OpenACC is an open GPU directives standard, making GPU
 programming straightforward and portable across parallel
 and multi-core processors

Powerful: GPU Directives allow complete access to the massive
 parallel power of a GPU

OpenACC
The Standard for GPU Directives

High-level Benefits

Create high-level heterogeneous programs
Without explicit accelerator initialization
Without explicit data or program transfers between host and accelerator

Compiler directives to specify parallel regions in C & Fortran

Offload parallel regions
Portable across OSes, host CPUs, accelerators, and compilers

High-level… with low-level access

Programming model allows programmers to start simple

Compiler gives additional guidance

Loop mappings, data location, and other performance details

Compatible with other GPU languages and libraries

Interoperate between CUDA C/Fortran and GPU libraries
e.g. CUFFT, CUBLAS, CUSPARSE, etc.

3 OpenACC Partners

Single binary (X86 and GPU) for OpenACC
Great cross platform support on X86 and Windows/Mac and Linux
15 day free trial with OpenACC

OpenACC cross platform story
Intel MIC and AMD GPU support via HMPP coming
Supports any CPU Compiler (ICC)

Pro-Active consultant business model

Complete vendor solution: CRAY OpenACC + CRAY Hardware
CUDA GDB and Allinea debugger for OpenACC

OpenACC Directives

Program myscience
 ... serial code ...
!$acc kernels
 do k = 1,n1
 do i = 1,n2
 ... parallel code ...
 enddo
 enddo
!$acc end kernels
 ...
End Program myscience

CPU GPU

Your original
Fortran or C code

Simple Compiler hints

Compiler Parallelizes code

Works on many-core GPUs &
multicore CPUs

OpenACC
Compiler

Hint

Can you mix CUDA and OpenACC?
Yes, you can even use CUDA to manage
memory

Familiar to OpenMP Programmers

main() {
 double pi = 0.0; long i;

 #pragma omp parallel for reduction(+:pi)
 for (i=0; i<N; i++)
 {
 double t = (double)((i+0.05)/N);
 pi += 4.0/(1.0+t*t);
 }

 printf(“pi = %f\n”, pi/N);
}

CPU

OpenMP

main() {
 double pi = 0.0; long i;

 #pragma acc kernels
 for (i=0; i<N; i++)
 {
 double t = (double)((i+0.05)/N);
 pi += 4.0/(1.0+t*t);
 }

printf(“pi = %f\n”, pi/N);
}

CPU GPU

OpenACC

subroutine saxpy(n, a, x, y)
 real :: x(:), y(:), a
 integer :: n, i
$!acc kernels
 do i=1,n
 y(i) = a*x(i)+y(i)
 enddo
$!acc end kernels
end subroutine saxpy

...
$ Perform SAXPY on 1M elements
call saxpy(2**20, 2.0, x_d, y_d)
...

void saxpy(int n,

 float a,

 float *x,

 float *restrict y)

{

#pragma acc kernels

 for (int i = 0; i < n; ++i)

 y[i] = a*x[i] + y[i];

}

...

// Perform SAXPY on 1M elements

saxpy(1<<20, 2.0, x, y);

...

A Very Simple Exercise: SAXPY
SAXPY in C SAXPY in Fortran

Directives: Easy & Powerful

Real-Time Object
Detection

Global Manufacturer of Navigation
Systems

Valuation of Stock Portfolios
using Monte Carlo

Global Technology Consulting Company

Interaction of Solvents and
Biomolecules

University of Texas at San Antonio

Optimizing code with directives is quite easy, especially compared to CPU threads or writing CUDA kernels. The
most important thing is avoiding restructuring of existing code for production applications. ”

-- Developer at the Global Manufacturer of Navigation Systems

“
5x in 40 Hours 2x in 4 Hours 5x in 8 Hours

OpenACC Tools Ecosystem

Debuggers
Allinea DDT, CUDAdbg, on Cray
Allinea partial support on CAPS

Profilers
Cudaprof works today

Also work underway with other CUPTI partners

Libraries
Existing CUDA libraries will work

point developers to SDK examples (New OpenACC.org www)
called outside the accelerator region
in accelerator data regions

Impact of CUDA 5

GPU Object Linking
Libraries and plug-ins for GPU code

New Nsight™ Eclipse Edition
Develop, Debug, and Optimize… All in one tool!

Dynamic Parallelism
Spawn new parallel work from within GPU code on GK110

GPUDirect™
RDMA between GPUs and PCIe devices

CUDA 5
Application Acceleration Made Easier

Dynamic Parallelism

CPU Fermi GPU CPU Kepler GPU

Fermi: Only CPU can generate GPU work Kepler: GPU can generate work for itself

CUDA 5: Separate Compilation & Linking

CUDA 5 can link multiple object files into one program

+ program.exe main.cpp

a.cu b.cu

a.o b.o

c.cu

c.o

Separate compilation allows building independent object files

CUDA 5: Separate Compilation & Linking

Can also combine object files into static libraries

a.cu b.cu

a.o b.o +
ab.culib … ab.culib

program2.exe

+

main2.cpp

bar.cu

+

Facilitates code reuse, reduces compile time

+

main.cpp

program.exe

foo.cu

+

Link and externally call device code

NVIDIA GPUDirect™ now supports RDMA

GPU1 GPU2

PCI-e

System
Memory

GDDR5
Memory

GDDR5
Memory

CPU

Network
Card

Server 1

PCI-e

GPU1 GPU2

GDDR5
Memory

GDDR5
Memory

System
Memory

CPU

Network
Card

Server 2

Network

RDMA: Remote Direct Memory Access between any GPUs in your cluster

Platform MPI MVAPICH Open MPI

GPU Direct Peer-to-Peer Transfers

GPU-Aware MPI Libraries
Integrated Support for GPU Computing

http://developer.nvidia.com/cuda-tools-ecosystem�
http://developer.nvidia.com/cuda-tools-ecosystem

NVIDIA® Nsight™ Eclipse Edition

CUDA-Aware Editor
Automated CPU to GPU code refactoring
Semantic highlighting of CUDA code
Integrated code samples & docs

Nsight Debugger
Simultaneously debug of CPU and GPU
Inspect variables across CUDA threads
Use breakpoints & single-step debugging

Nsight Profiler
Quickly identifies performance issues
Integrated expert system
Source line correlation

Available for Linux and Mac OS

,

CUDA Compiler Contributed to Open Source LLVM

Developers want to build
front-ends for

Java, Python, R, DSLs

Target other processors like
ARM, FPGA, GPUs, x86

CUDA
C, C++, Fortran

LLVM Compiler
For CUDA

NVIDIA
GPUs

x86
CPUs

New Language
Support

New Processor
Support

CUDA 5 and OpenACC

OpenACC 2.0

Procedure Calls
Without Inlining
Separate Compilation
Allows for device libraries
Enabled by CUDA5 linking

Nested Parallelism
Launch more parallel
operations without host
return
Program stays on device
Enabled by CUDA5 + Kepler2

Unstructured Data Region
OpenACC 1.0 supports
structured data (enter at
top, exit at bottom)
Programs want dynamic
malloc/free of data on
device

OpenACC 2.0 Continued

Float** in C/C++
for rectangular arrays

Clarifications to 1.0 spec
promote uniform
implementations

OpenACC test suite
Promote uniform
implementations

Other items in discussion
Multiple device support
Profiling and other tool
interfaces
Array Reductions
Deep copy for pointer
based data structures

OpenACC Membership

Bylaws model Khronos, OpenMP

Added low-cost Academic Membership Class

Founding members: CAPS, Cray, PGI, NVIDIA

New Members: Allinea, Georgia Tech, ORNL, TU-Dresden,
University of Houston

Others welcome!

OpenACC and OpenMP

Members of OpenACC are (almost) all members of OpenMP

Which means, members will ultimately support both standards, until convergence

Q3 meetings will set roadmaps for

Draft OpenMP 4.0 features, subcommittees decide what goes in draft

Draft OpenACC 2.0 features

OpenACC strengths

Leadership in features that extract GPGPU performance

Gap in features does not appear to be closing

OpenACC at Supercomputing 2012
Organizer Type Title
Vetter ++ Tutorial Scalable Heterogeneous Computing on GPU Clusters

Cray Tutorial Productive, Portable Performance on Accelerators Using OpenACC Compilers
and Tools

PGI Tutorial Introduction to GPU Computing with OpenACC

PGI Tutorial Advanced GPU Computing with OpenACC

Cray Broad
Engagement

An Effective Standard for Developing Performance Portable Applications for
Future Hybrid Systems

Levesque ++ Paper Hybridizing S3D into an Exascale Application using OpenACC

Farber ++ BOF OpenACC API Status and Future

CAPS Exhibitor
Forum

Advanced Programming of Many-Core Systems Using CAPS OpenACC Compiler

NV/PGI/AMD/Int
el

BOF High-level Programming Models for Computing Using Accelerators
Nvidia Confidential

http://sc12.supercomputing.org/schedule/event_detail.php?evid=tut136�
http://sc12.supercomputing.org/schedule/event_detail.php?evid=tut134�
http://sc12.supercomputing.org/schedule/event_detail.php?evid=tut134�
http://sc12.supercomputing.org/schedule/event_detail.php?evid=tut104�
http://sc12.supercomputing.org/schedule/event_detail.php?evid=tut105�
http://sc12.supercomputing.org/schedule/event_detail.php?evid=bespkr112�
http://sc12.supercomputing.org/schedule/event_detail.php?evid=bespkr112�
http://sc12.supercomputing.org/schedule/event_detail.php?evid=pap146�
http://sc12.supercomputing.org/schedule/event_detail.php?evid=bof127�
http://sc12.supercomputing.org/schedule/event_detail.php?evid=exforum136�
http://sc12.supercomputing.org/schedule/event_detail.php?evid=bof200�

NVIDIA Conferences

Supercomputing (SC12)
http://sc12.supercomputing.org/
November 10th-16th 2012
Salt Lake City, Utah
NVIDIA will help promote partner ecosystem
Let us know if you have K20 Demos

GPU Technology Conference (GTC13)
http://www.gputechconf.com/page/home.html
March 18th-21st 2013
San Jose, California
Call for Submissions ends October 3rd

http://sc12.supercomputing.org/�
http://www.gputechconf.com/page/home.html�

Thank you!

	Programming Models�for Accelerators �(and the role NVIDIA plays)
	DOE Funded GPU Computing Revolution
	GPUs Reaching Broader Set of Developers
	Small Changes, Big Speed-up
	Slide Number 5
	Slide Number 6
	3 Ways to Accelerate Applications
	3 Ways to Accelerate Applications
	3 Ways to Accelerate Applications
	3 Ways to Accelerate Applications
	Easy, High-Quality Acceleration
	Slide Number 12
	3 Ways to Accelerate Applications
	Programming Languages�
	What is CUDA?
	CUDA C
	3 Ways to Accelerate Applications
	Slide Number 18
	High-level Benefits
	High-level… with low-level access
	3 OpenACC Partners
	OpenACC Directives�	
	Familiar to OpenMP Programmers
	A Very Simple Exercise: SAXPY
	Directives: Easy & Powerful
	OpenACC Tools Ecosystem
	Impact of CUDA 5
	Slide Number 28
	Dynamic Parallelism
	CUDA 5: Separate Compilation & Linking
	CUDA 5: Separate Compilation & Linking
	NVIDIA GPUDirect™ now supports RDMA
	Slide Number 33
	NVIDIA® Nsight™ Eclipse Edition
	CUDA Compiler Contributed to Open Source LLVM
	CUDA 5 and OpenACC
	OpenACC 2.0
	OpenACC 2.0 Continued
	OpenACC Membership
	OpenACC and OpenMP
	OpenACC at Supercomputing 2012
	NVIDIA Conferences
	Thank you!

